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Abstract—The accurate measurements of yaw angle and
sideslip angle are essential for autonomous EV dynamics
control. A novel lateral stability control method using on-
board GPS receiver is proposed. With proposed Kalman filter,
GPS measurement delay is revised and yaw angle and sideslip
angle could be estimated efficiently. On the other hand, we
choose model predictive control(MPC) as an advanced control
method to deal with the constrained optimal tracking problem
in autonomous driving. At last, simulation and experiment
results verify the effectiveness of proposed control system.

Index Terms—Autonomous driving, Lateral stability control,
MPC

I. INTRODUCTION

RAPID development of autonomous driving EV tech-
nology has improved the conservation and comfort

of human’s transportation. However, few works focus on
dynamic motion control. Actually, in the autonomous driving
system, the accurate measurements of vehicle yaw angle and
side slip angle at the center of gravity are essential for vehicle
stability control (VSC). Therefore, we try to design the yaw
angle and sideslip angle estimator by using single-antenna
GPS receiver in order to reduce the cost and improve the
safety of the autonomous driving system. Previously, yaw
angle control and sideslip angle control are often realized by
simple feedback controller like PD or PID[1]. In order to
simplify and improve accuracy of the control system, model
predictive control (MPC)[5] seems to be an effective method
to control steering angle of the EV. Thus, we choose MPC
as an advanced control method to deal with the constrained
optimal tracking problem.

II. VEHICLE MODELING

The planer 2-wheel model shown in Fig. 1 is used as
the vehicle model. And parameters in the model are shown
in TABLE I. Course angle is defined as the angle between
direction of vehicle and geodetic North calculated by GPS
data[4][7]. And sideslip angle is defined as the angle between
velocity vector and longitudinal direction. Thus, we can
obtain that course angle equals yaw angle plus sideslip
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Fig. 1: Planar 2-wheel model

angle with these definitions. Here, vehicle dynamics can be
expressed by the following equations.

mv(β̇ + γ) = −2Cf (β +
lfγ

v
− δ) − 2Cr(β − lrγ

v
) (1)

I(β̇ + γ) = −2Cf lf (β +
lfγ

v
− δ) + 2Crlr(β − lrγ

v
) (2)

c = ψ + β (3)

And the state space model of vehicle’s yaw motion can be
expressed as (4), (5) from (1), (2), and (3).

ẋ = Ax+Bu (4)
y = Cx+Du (5)

where,

x =
[
β γ ψ

]T
, y =

[
ψ c

]T
, u = δ (6)

A =

 a11 a12 0
a21 a22 0
0 1 0

 , B =

 b11
b21
0

 (7)

C =

[
0 0 1
1 0 1

]
, D =

[
0
0

]
(8)

a11 = −2(Cf + Cr)

mv
, a12 = −1 − 2(Cf lf − Crlr)

mv2
(9)

a22 = −
2(Cf l

2
f + Crl

2
r)

Iv
, a21 = −2(Cf lf − Crlr)

I
(10)
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TABLE I: Parameters in model

β Sideslip angle

γ Yaw rate

ψ Yaw angle

c Course angle

δ Steering angle

m Vehicle mass

v Vehicle speed

I Yaw moment of inertia

Cf ,Cr Front/Rear concenring stiffness

lf ,lr Distances from front/rear to CoG

b11 = −2Cf
mv

, b21 = −2Cf lf
mv

(11)

III. EXPERIMENTAL SYSTEM

In this study, we select the PHEV “PRIUS” as the exper-
imental vehicle which is developed by NEDO-PROJECT as
shown in Fig. 2. It is applicable for autonomous driving using
MicroAuto Box via dSpace. IMU is installed at the center of
gravity (CoG) to measure the yaw angle. A single-antenna
GPS receiver, the Hemisphere A325, is used to provide
vehicle position to calculate course angle with the update
rate of 10Hz. The accuracy of longitude and latitude near
to 1 centimeter level under real-time kinematic mode(RTK).
Datas of these sensors are transferred by ROS. ROS is
connected with MicroAuto Box by LAN.

Fig. 2: Experimental vehicle and GPS receiver.

IV. CONTROL SYSTEM DESIGN

A. Estimation Design

In this section, the idea of multi-rate output measurements
is applied for robust estimation of sideslip angle and yaw
angle. The state space (4), (5) is transformed to the discrete
form[2]:

xk+1 = Gk · xk +Hk · uk + wk (12)

yk = Ck · xk + vk (13)

where wk is process noise and vk is measurement noise.
wk and vk are assumed to be constructed by Gaussian
distribution with zero mean. And, here

Gk = eA·Tc , Hk =

Tc∫
0

eA·τ ·Bdτ, Ck = C (14)

Use the previous one-step information to define discretized
system, then we can obtain:

xak+1 = Gak · xak +Ha
k · uk + wk (15)

yak = Cak · xak + vk (16)

where,

Gak =

[
Gk TcI
0 I

]
, Ha

k =

[
Hk

0

]
. (17)

1) Multi-rate Measurements: In this Kalman filter
design[3], yaw angle and course angle are selected as output
measurements. While yaw angle’s sampling time from IMU
can be same as control period at Tc (1ms), the sampling time
of course angle from GPS receiver is much longer at Ts (100
ms). To solve this multi-rate problem, we proposed to set
pseudo-samples between two consecutive updates of course
angle as shown in Fig. 3. During pseudo-samples, there is no
course angle update. Therefore, we can build measurement
matrix Cak in two cases as in (18)(19).
If course angle is updated:

Cak =

[
0 0 1 0 0
1 0 1 0 0

]
; (18)

and during pseudo-samples:

Cak =

[
0 0 1 0 0
0 0 0 0 0

]
. (19)

Fig. 3: Two sampling times of output measurements.

2) Kalman Filter Algorithm: There are two parts, time
update part and measurement update part in Kalman filter
recursive algorithm. They are built by the following equa-
tions.
Time update:

x̂a−k = Gakx̂
a
k−1 +Ha

kuk−1 (20)

Measurement update:

x̂ak = x̂a−k +Kk(yak − Cak x̂
a−
k ) (21)

Error covariance is constructed as follows:

P−
k = GakPk−1G

aT
k +Q (22)

then update the error covariance:

Pk = (I −KkC
a
k )P−

k (23)

To calculate the Kalman Gain, we use the function:

Kk = P−
k C

aT
k (CakP

−
k C

aT
k +R)−1 (24)

Here, process noise covariance is

Q = E
[
wk wTk

]
, (25)
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Fig. 4: Kalman filter alogrithm.

and measurement noise covariance is

R = E
[
vk vTk

]
. (26)

From the descriptions above, the block diagram of Kalman
filter algorithm can be constructed in the Fig. 4. Q and
R are the process noise and measurement noise covariance
matrices. They are tuning parameters of the Kalman filter.
If R is too large, the Kalman gain decreases, thus, the
estimation fails to update the subsequent disturbances based
on measurements. GPS impacts on the variances of yaw
angle noise and course angle noise respectively. And these
noises are chosen based on measurement of course angle
from GPS because of its validity. On the other hand, large
Q leads the estimation to rely on the measurements.

B. Controller Design

The block diagram of the whole control system is shown
in Fig. 5. In the following sub-sections, we will explain the
design of this proposed system.

1) Reference Model: In this study, we choose the simplest
way in autonomous navigation: point-to-point[8]. To calcu-
late the command of desired steering angle to navigate the
vehicle from point (x1,y1) to point (x2,y2) with following
equations.

δ =



tan−1

(
x2 − x1
y2 − y1

)
, y2 > y1

π − tan−1

(
x2 − x1
y2 − y1

)
, y2 < y1, x2 > x1

tan−1

(
x2 − x1
y2 − y1

)
− π, y2 < y1, x2 < x1

(27)

A long path can be divided into several segments. In each
segment, steering angle reference is kept constant.

And the reference model is designed based on the steady-
state response of sideslip angle and yaw angle by using the
model in Section II . The following equations express the
calculation of reference values from the command of steering
angle.

ψ(s) = G(s)δ(s) =

− b21s+ (a21b11 − a11b21)

s3 + (−a11 − a22)s2 + (a11a22 − a12a21)s
δ(s) (28)

β(s) = G(s)δ(s) =

− b11s+ (a12b21 − a22b11)

s2 + (−a11 − a22)s+ (a11a22 − a12a21)
δ(s) (29)

2) MPC Controller: As we can see, the problem in
autonomous driving system is that it is hard for tracking
command of the steering angle. Therefore, it is natural for
us to think about model predictive control (MPC)[5][6].
Firstly, MPC is a model based control method. It uses
dynamic model explicitly, to predict the future behavior of
the system. Secondly, MPC is an optimal control method, it
has a quadratic cost function. The control law is obtained
by minimizing the cost function. By adjusting the weights,
the trade-offs could be shifted. Thirdly, MPC could consider
the input constraints in solving the optimal problem. MPC
could consider all the problems above. The concept of MPC
is simple. A quadratic cost function of future behavior is
established and by finding a series of optimal input, the cost
function is minimized. The first one of the optimal input is
implemented and the procedures are repeated again in the
next step.[5]
In the procedures, there are three parts: prediction part,
optimization part, and implementation part.

In the prediction part,

xk+1 = Axk +Buk (30)
x1 = Ax0 +Bu0 (31)
x2 = Ax1 +Bu1 (32)
. . . (33)
xN = AxN−1 +BuN−1 (34)

inputs u0,u1,. . . ,uN−1 and current statex0 are unknown
parameters.
And when we come to optimization part,

min︷ ︸︸ ︷
(u0, u1, . . . , uN−1) J (35)

J is the cost function,

J =
∑
k

(
xTkQdxk + uTkRuk + ∆uTkR∆uk) (36)

then, we could calculate the first optimal input u0 in the
implementation part. At last, we tune the MPC controller in
the Matlab/Simulink. In the process of tuning, we need to
pay attention to the problem that the changing rate of steering
angle is too high. It will be a very high value instantly that
leads to ECU crush. Setting constraints is necessary to make
steering angle stable.
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Fig. 5: Overview of proposed control system.

a)

c)

b)

d)

Fig. 6: Cornering test(simulation result).
a) Yaw angle; b) Course angle; c) Steering angle; d) Trajectory of vehicle.

V. CONTROL SYSTEM VERIFICATION

A. Control-Simulation Results
In autonomous driving system, we need verify two aspects

of vehicle’s performance: straight driving and cornering.
In the simulation, vehicle velocity is kept at 25 km/h in
constant, and the general system with feed forward and
feedback controllers (PID) are performed for comparison. To
verify the robust issue, simulation results are summarized as
follows in two cases: In cornering simulation, Fig. 6 (a)(b)
illustrates the responses of vehicle yaw angle and course
angle according to different control schemes; (b) expresses
the front steering angles which are the control inputs; (d)
performs the trajectories of vehicle motion. Also, we made
lane changing test shown as Fig. 7 to make sure the control
system perform well in real autonomous driving process.

B. Control-Experimental Results
To evaluate the proposed control scheme, we conduct

the autonomous driving test. In the experiment, the vehicle

trajectory is desired to be driving to exit from parking lot
automatically. Steering angle reference is pre-calculated by
using formulation (27). The trajectory results are displayed in
Google Earth and Plot XY as shown in Fig. 8. As a result,
the tracking of yaw angle, course angle and trajectory are
successfully achieved. Thus, we can clearly see that when
applying the proposed control scheme, tracking performance
is very well.

VI. CONCLUSION

In this paper, a new yaw angle and sideslip control method
for autonomous driving of vehicle is proposed. The control
scheme is designed based on the following contributions:
1) Yaw angle and sideslip angle are estimated by single-
antenna GPS receiver and IMU sensor; 2) To deal with
multi-rate measurements, MRKF is applied to improve the
robustness of yaw angle and sideslip angle control; 3) Based
on the analysis of yaw motion, we used MPC to solve
steering angle’s tracking problem in autonomous driving.
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a)

c)

b)

d)

Fig. 7: Lane changing test(simulation result).
a) Yaw angle; b) Course angle; c) Steering angle; d) Trajectory of vehicle.

Fig. 8: Autonomous driving test.
a) Experimental trajectory (in GRS 80);
b) Experimental trajectory (in XY plot);

c) Yawrate (observed by IMU).

In this paper, sensors fusing is still too simple. We have
to consider environmental factors as disturbance. In future
work, we will accomplish more autonomous driving tests
with supplementary systems of laser sensors[9] and cameras
to improve automatic driving performance.
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