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Abstract—The problem of real-time implementation
of a linear quadratic regulator (LQR)-based controller
for the balance of a double inverted pendulum (DIP)
mounted on a cart is presented. Physically, the DIP
system is stabilized when the two pendulums are aligned
in a vertical position. The mathematical model for the
dynamics of a DIP can be derived using the Lagrange’s
energy method, which is computed from the calculation
of the total potential and kinetic energies of the system.
This results in a highly nonlinear system of three second-
order ordinary differential equations. The nonlinear
system is linearized around its zero equilibrium state and
LQR controller is implemented in real-time to stabilize
the DIP system (i.e., to keep DIP in an upright position).
Both simulation and real-time experimental results are
presented.

Index Terms—double inverted pendulum, LQR, feed-
back controller, real-time implementation.

I. INTRODUCTION

THE double inverted pendulum (DIP) system is an
extension of the single inverted pendulum (with

one additional pendulum added to the single inverted
pendulum), mounted on a moving cart. The DIP sys-
tem is a standard model of multivariable, nonlinear,
unstable system, which can be used for pedagogy
as well as for the introduction of intermediate and
advanced control concepts. There are two types of
control synthesis for an inverted pendulum, swing-
up and stabilization. One of the most popular control
methods for swinging up the inverted pendulum is
based on the energy method (see [1] and the refer-
ences therein). The stabilization problem of an inverted
pendulum is a classical control example for testing of
linear and nonlinear controllers (see, e.g., [1], [2], [3]).
Several control design approaches have been applied
for the stabilization of the double inverted pendulum
including the linear quadratic regulator [4], the state-
dependent Riccati equation, optimal neural network
[5], and model predictive control [3]. To our knowl-
edge, these studies only use numerical simulations to
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Fig. 1: Double inverted pendulum mounted on a
Quanser linear servo base unit (IP02).

test the feasibility of the control methodologies and do
not provide real-time experimental implementation on
a physical system.

In this paper, we present the real-time implementa-
tion of a LQR-based feedback control for the stabiliza-
tion about the upright position of the double inverted
pendulum mounted on a cart. The apparatus of the DIP
system, which was provided by Quanser Consulting
Inc. (119 Spy Court, Markham, Ontariio, L3R 5H6,
Canada), is depicted in Fig. 1. The DIP system consists
of two aluminum rods; one seven inches long and the
other 12 inches long. The aluminums are mounted on
the linear servo base unit (IP02) consisting of a cart
driven by a DC motor and two encoders. One encoder
is used to measure the cart’s position while the other
encoder is used to sense the short link angle. The
longer link angle is measured by an encoder mounted
on the pendulum itself. Based on these measurements
of the cart position and the two pendulum angles, a
voltage is computed using the LQR control theory
to move the cart back and forth to balance the two
pendulums in the upright, vertical position.

II. DIP SYSTEM MODEL

A. Frame of Reference

Figure 2 shows a free body diagram of the DIP
system mounted on a cart. The system consists of
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two rods connected to each other by a hinge with
the lower rod connected to the motorized cart. The
corresponding nomenclature for this system is given
in Appendix A. The angle α of the lower rod is zero
when the rod is pointed perfectly upwards, and the
angle θ of the upper rod is zero when it is perfectly in
line with the lower rod. It should be noted that, in the
literature, the models for the DIP system are derived
with the angle θ measured with respect to the vertical
axis [5] (instead of relative to the lower pendulum rod
as in this paper). We define the positive sense of the
rotation to be counterclockwise and the displacement
to be towards the right when facing the cart.

Mc
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yp

xp
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Fig. 2: Free body diagram of the DIP mounted on a
cart.

B. Equations of Motion
We use Lagrange’s energy method to derive the

equations of motion for the DIP system. The single
input is the driving force Fc generated by the DC
motor and acting on the cart via the motor pinion.
The Lagrangian of the motion is computed from the
calculation of the total potential and kinetic energies
of the system.

In order to calculate the energy of the system, we
first determine the absolute cartesian coordinates for
the center of gravity of each pendulum rod and the
hinge. For the lower rod, pendulum 1, the center of
gravity is located at

x1(t) = xc(t)− `1 sin(α(t))
y1(t) = `1 cos(α(t))

(1)

and for the upper rod, pendulum 2, the center of
gravity is located at

x2(t) = xc(t)− `2 sin(α(t) + θ(t))

− L1 sin(α(t))

y2(t) = `2 cos(α(t) + θ(t)) + L1 cos(α(t)).

(2)

The center of gravity of the hinge is located at

xh(t) = xc(t)− L1 sin(α(t))

yh(t) = L1 cos(α(t)).
(3)

We determine the linear velocity of each component
by taking derivatives with respect to time of (1), (2),
and (3) to obtain

x′1(t) = x′c(t)− `1α′(t) cos(α(t))

y′1(t) = −`1α′(t) sin(α(t))

x′2(t) = x′c(t)− `2(α′(t) + θ′(t)) cos(α(t)

+ θ(t))− L1α
′(t) cos(α(t))

y′2(t) = −`2(α′(t) + θ′(t)) sin(α(t) + θ(t))

− L1α
′(t) sin(α(t))

x′h(t) = x′c(t)− L1α
′(t) cos(α(t))

y′h(t) = −L1α
′(t) sin(α(t)).

(4)

1) Potential Energy: The total potential energy in
a system, VT , is the energy a system has due to work
being or having been done to it. Typically potential
energy is due to either vertical displacement (gravita-
tional potential energy) or spring-related displacement
(elastic potential energy). Here, there is no elastic po-
tential energy, just the potential energy due to gravity.
However, since the cart is limited to horizontal motion,
it has no gravitational potential energy. The potential
energies of the pendulum rods and the hinge are given
by

V1(t) =M1gy1 =M1g`1 cos(α(t)) (5)
V2(t) =M2gy2 =M2g [`2 cos(α(t) + θ(t))

+L1 cos(α(t))] (6)
Vh(t) =Mhgyh =MhgL1 cos(α(t)). (7)

Then the total potential energy of the system is the
sum of each component’s potential energy. Summing
(5), (6), and (7) and rearranging, we obtain

VT (t) = [M1g`1 +M2gL1 +MhgL1] cos(α(t))

+M2g`2 cos(α(t) + θ(t)).
(8)

2) Kinetic Energy: The total kinetic energy of a
system, TT , is the amount of energy due to motion.
For the DIP system, the kinetic energy is the sum
of the translational and rotational energies of each
component.

First, we consider the cart which has kinetic energy
due to its linear motion along the track and due to
the rotation of the DC motor. The translational kinetic
energy of the cart is given by

Tct(t) =
1

2
Mc(x

′
c(t))

2. (9)

The rotational kinetic energy of the cart’s DC motor
is given by

Tcr(t) =
1

2
Jm(ωc(t))

2, (10)
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where

ωc(t) =
Kg

rmp
x′c(t). (11)

Then the total kinetic energy of the cart is the sum of
translational and rotational kinetic energies,

Tc(t) =
1

2

[
Mc +

JmK
2
g

r2mp

]
(x′c(t))

2. (12)

Next we consider the kinetic energy of each pen-
dulum rod. For each, we assume the mass of the
pendulum is concentrated at its center of gravity. Then,
the translational kinetic energy of the lower pendulum
rod is given by

T1t(t) =
1

2
M1

[
(x′1(t))

2 + (y′1(t))
2
]

=
1

2
M1[(x

′
c(t))

2

− 2`1x
′
c(t)α

′(t) cos(α(t)) + `21(α
′(t))2], (13)

and the rotational kinetic energy is given by

T1r(t) =
1

2
I1(α

′(t))2. (14)

Thus, the total kinetic energy for the lower pendulum
rod is given by

T1(t) =
1

2
M1

[
(x′c(t))

2 − 2`1x
′
c(t)α

′(t) cos(α(t))

+ `21(α
′(t))2

]
+

1

2
I1(α

′(t))2. (15)

Similarly, the translational and rotational kinetic ener-
gies of the upper pendulum rod are given by

T2t(t) =
1

2
M2

[
(x′2(t))

2 + (y′2(t))
2
]

=
1

2
M2

[
(x′c(t))

2 − 2`2x
′
c(t)(α

′(t) + θ′(t))

× cos(α(t) + θ(t))− 2L1x
′
c(t)α

′(t) cos(α)

+2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α+ θ)

+`22(α
′(t) + θ′(t))2 + L2

1(α
′(t))2

]
T2r(t) =

1

2
I2(θ

′(t))2

for a total kinetic energy of

T2(t) =
1

2
M2

[
(x′c(t))

2 − 2`2x
′
c(t)(α

′(t) + θ′(t))

× cos(α(t) + θ(t))− 2L1x
′
c(t)α

′(t) cos(α)

+2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α+ θ)

+`22(α
′(t) + θ′(t))2 + L2

1(α
′(t))2

]
+

1

2
I2(θ

′(t))2. (16)

Finally, the hinge has only translational kinetic
energy since it cannot rotate about its own axis.

Therefore the total kinetic energy of the hinge is given
by

Th(t) =
1

2
Mh

[
(x′h(t))

2 + (y′h(t))
2
]

=
1

2
Mh

[
(x′c(t))

2 − 2L1x
′
c(t)α

′(t) cos(α(t))

+L2
1(α

′(t))2
]
. (17)

Summing (12), (15), (16), and (17) we obtain the
total kinetic energy of the system

TT (t) =
1

2

[
Mc +

JmK
2
g

r2mp

+M1 +M2 +Mh

]
(x′c(t))

2

− [M1`1 +M2L1 +MhL1]x
′
c(t)α

′(t) cos(α(t))

+
1

2

[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1

]
(α′(t))2

−M2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

+M2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α(t) + θ(t))

+
1

2
M2`

2
2(α

′(t) + θ′(t))2 +
1

2
I2(θ

′(t))2. (18)

3) Lagrange’s Equations: The Lagrangian, L, of a
system is given by the difference between the total
kinetic and potential energies

L(t) = TT (t)− VT (t). (19)

Substituting (8) and (18) into (19) we obtain

L(t) = 1

2

[
Mc +

JmK
2
g

r2mp

+M1 +M2 +Mh

]
(x′c(t))

2

− [M1`1 +M2L1 +MhL1]x
′
c(t)α

′(t) cos(α(t))

+
1

2

[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1

]
(α′(t))2

−M2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

+M2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α(t) + θ(t))

+
1

2
M2`

2
2(α

′(t) + θ′(t))2 +
1

2
I2(θ

′(t))2

− g [M1`1 +M2L1 +MhL1] cos(α(t))

−M2g`2 cos(α(t) + θ(t)). (20)

By definition, Lagrange’s equations are given by

∂

∂t

(
∂

∂x′c
L
)
− ∂

∂xc
L = Q1 (21)

∂

∂t

(
∂

∂α′L
)
− ∂

∂α
L = Q2 (22)

∂

∂t

(
∂

∂θ′
L
)
− ∂

∂θ
L = Q3, (23)

where Q1, Q2, and Q3 are the generalized forces
applied to each of the generalized coordinates. When
we compute the generalized forces we neglect the
nonlinear Coulomb friction and the force due to the
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pendulum’s action on the linear cart. Therefore the
generalized forces are

Q1(t) = Fc(t)−Bcx
′
c(t) (24)

Q2(t) = −B1α
′(t) (25)

Q3(t) = −B2θ
′(t). (26)

We substitute (24), (25), and (26) into (21), (22), and
(23), respectively, to obtain

∂

∂t

(
∂

∂x′c
L
)
− ∂

∂xc
L = Fc(t)−Bcx

′
c(t) (27)

∂

∂t

(
∂

∂α′L
)
− ∂

∂α
L = −B1α

′(t) (28)

∂

∂t

(
∂

∂θ′
L
)
− ∂

∂θ
L = −B2θ

′(t). (29)

Using (20), we take the derivatives indicated in (21)
and rearrange to obtain[
Mc +

JmK
2
g

r2mp

+M1 +M2 +Mh

]
x′′c (t)

−
[(
M1`1 +M2L1 +MhL1

)
cos(α(t))

+M2`2 cos(α(t) + θ(t))
]
α′′(t)

−M2`2 cos(α(t) + θ(t))θ′′(t) +Bcx
′
c(t)[[(

M1`1 +M2L1 +MhL1

)
sin(α(t))

+M2`2 sin(α(t) + θ(t))
]
α′(t) +

2M2`2 sin(α(t) + θ(t))θ′(t)

]
α′(t)

+M2`2 sin(α(t) + θ(t))
(
θ′(t)

)2
= Fc(t).

(30)

Similarly, taking the derivatives indicated in (22) of
(20) and rearranging yields

−
[(
M1`1 +M2L1 +MhL1

)
cos(α(t))

+M2`2 cos(α(t) + θ(t))
]
x′′c (t)

+
[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1 +M2`

2
2

+2M2L1`2 cos(2α(t) + θ(t))
]
α′′(t)

+
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
θ′′(t)

+
[
B1 − 2M2L1`2 sin(2α(t)

+θ(t))
(
α′(t) + θ′(t)

)]
α′(t)

−M2L1`2 sin(2α(t) + θ(t))
(
θ′(t)

)2
−g
[
M1`1 +M2L1 +MhL1

]
sin(α(t))

−gM2`2 sin(α(t) + θ(t)) = 0.
(31)

Likewise, we take the derivatives indicated in (23) and
rearrange to obtain

−M2`2 cos(α(t) + θ(t))x′′c (t)

+
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
α′′(t)

+
[
M2`

2
2 + I2

]
θ′′(t)

−M2L1`2 sin(2α(t) + θ(t))
(
α′(t)

)2
+B2θ

′(t)

−gM2`2 sin(α(t) + θ(t)) = 0.
(32)

Equations (30), (31), and (32) are the equations of
motion for the DIP system. The units and parameter
values for all parameters in the model equations are
given in Appendix B. Finally, the control input in
the equations of motion is the force generated by the
motorized cart, Fc(t) (see (30)), but in our real-time
implementation the input to the DIP system is the
cart’s DC motor voltage, Vm(t). Using Kirchhoff’s
voltage laws and physical properties of our DIP sys-
tem, we can express Fc as a function of the applied
voltage Vm as

Fc(t) =
KgKt(Vm(t)rmp −KgKmx

′
c(t))

Rmr2mp

. (33)

III. REAL-TIME LQR CONTROL IMPLEMENTATION

For our real-time implementation of the LQR-based
feedback control for the balance of the DIP system
in the upright position, we use apparatus designed
and provided by Quanser Consulting Inc. (see Fig.
1). This includes a double inverted pendulum mounted
on an IP02 servo plant, a VoltPAQ amplifier, and two
Q2-USB DAQ control boards. The detailed technical
specifications and experimental set up can be found in
[6]. For a linear system with a quadratic cost functional
in both the state and the control, the optimal feedback
control is a linear state feedback law where the control
gains are obtained by solving a differential/algebraic
Riccati equation (see e.g. [7]). Since the equations of
motion for the DIP system, given by (30), (31), and
(32), are nonlinear, we first linearized them around the
zero equilibrium state to derive a local, approximate
optimal control solution.

A. Simulation Results

The stabilized control was first tested in simulation
with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1
using Matlab Simulink. Here, Q and R are the state
and input weighting matrices in the cost functional,
respectively. The simulation uses an initial condition
where the cart is at rest at a position of 0mm and both
the upper and lower pendulum angles are deflected to
1 degree. The simulation requires the cart’s position
to track a square wave (dashed line in Fig. 3 (a)) with
amplitude 12.5 mm and a frequency of 0.05 Hz. The
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state responses and corresponding control effort are
shown in Figs. 3 and 4. All values of the states and the
required control effort stay within the possible ranges
for our experimental apparatus.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Simulated state responses: cart position (a) and
velocity (d), lower angle position (b) and velocity (e),
and upper angle position (c) and velocity (f).

Fig. 4: Simulated control effort.

B. Experimental Results

The stabilized control was successfully implemented
in real time with Q = diag(30, 350, 100, 0, 0, 0) and
R = 0.1 using Matlab Simulink. The pendulum
is manually brought to the upright position and the
balancing control automatically takes over. Figs. 5

and 6 show the state responses and corresponding
control effort. From the state responses, we can see
that the pendulum was successfully balanced in the
upright position. The cart does not move more than
40 mm from the center of the track, and the angles
never differ from zero by more than 4 degrees. We also
note that the controller frequently reaches saturation
at -10 V in its effort to keep the pendulum balanced.
Future effort will include the design and testing of
more robust controllers such as the power series based
nonlinear controller discussed in [1], [2].

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Experimental state responses: cart position (a)
and velocity (d), lower angle position (b) and velocity
(e), and upper angle position (c) and velocity (f).

Fig. 6: Experimental control effort.
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APPENDIX A
NOMENCLATURE

Description
(Moment of Inertia (MoI), Center of Gravity (CoG)

α Angle of Lower Rod Relative from vertical
α′ Lower Pendulum Angular Velocity
α′′ Lower Pendulum Angular Acceleration
Bc Viscous Damping Coef. (Motor Pinion)
B1 Viscous Damping Coef. (Lower Rod Axis)
B2 Viscous Damping Coef. (Upper Rod Axis)
Fc Cart Driving Force by the DC Motor
g Gravitional Constant
I1 MoI (Lower Rod) at its CoG
I2 MoI (Upper Rod) at its CoG
Jm Rotational MoI of the DC

Motor’s Output Shaft
Kg Planetary Gearbox Gear Ratio
`1 Length of Lower Rod from Pivot to CoG
`2 Length of Upper Rod from Hinge to CoG
L1 Total Length of Lower Rod
L Lagrangian
Mc Cart Mass
Mh Hinge Mass
M1 Lower Rod Mass
M2 Upper Rod Mass
rmp Motor Pinion Radius
Tct Translational Kinetic Energy of the Cart
Tcr Rotational Kinetic Energy

Due to the Cart’s DC Motor
Tc Total Kinetic Energy of the Cart
T1t Translational Kinetic Energy (Lower Rod)
T1r Rotational Kinetic Energy (Lower Rod)
T1 Total Kinetic Energy of the Lower Rod
T2t Translational Kinetic Energy of the Upper Rod
T2r Rotational Kinetic Energy of the Upper Rod
T2 Total Kinetic Energy of the Upper Pendulum
Th Total Kinetic Energy of the Hinge
TT Total Kinetic Energy of the System
V1 Potential Energy of the Lower Pendulum
V2 Potential Energy of the Upper Pendulum
Vh Potential Energy of the Hinge
VT Total Potential Energy of the System
xc Cart Linear Position
x′c Cart Velocity
x′′c Cart Acceleration
xh Absolute x-coord. of the Hinge’s CoG
x1 Absolute x-coord. of the Lower Rod’s CoG
x2 Absolute x-coord. of the Upper Rod’s CoG
x′h x-comp. of the Velocity of the Hinge’s CoG
x′1 x-comp. of the Velocity of the Lower Rod’s CoG
x′2 x-comp. of the Velocity of the Upper Rod’s CoG
yh Absolute y-coord. of the Hinge’s CoG
y1 Absolute y-coord. of the Lower Rod’s CoG
y2 Absolute y-coord. of the Upper Rod’s CoG
y′h y-comp. of the Velocity of the Hinge’s CoG
y′1 y-comp. of the Velocity of the Lower Rod’s CoG
y′2 y-comp. of the Velocity of the Upper Rod’s CoG
θ Angle of Upper Rod Relative to Lower Rod’s Shaft
θ′ Upper Pendulum Angular Velocity
θ′′ Upper Pendulum Angular Acceleration
ωc Motor Shaft Angular Velocity

APPENDIX B
MODEL PARAMETER VALUES

Description Value
Bc Viscous Damping Coefficient

as seen at the Motor Pinion 5.4 N.m.s/rad
B1 Viscous Damping Coefficient

as seen at the Lower Rod Axis 0.0024 N.m.s/rad
B2 Viscous Damping Coefficient

as seen at the Upper Rod Axis 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2

I1 Moment of Inertia of the Lower
Rod at its Center of Gravity 2.6347E-4 kg.m2

I2 Moment of Inertia of the Upper
Rod at its Center of Gravity 1.1987E-3 kg.m2

Jm Rotational Moment of Inertia
of the DC Motor’s Output Shaft 3.9E-7 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
Km Back-ElectroMotive-Force Const. 0.00767 V.s/rad
Kt Motor Torque Constant 0.00767 N.m/A
`1 Length of Lower Pendulum

from Pivot to Center of Gravity 0.1143 m
`2 Length of Upper Rod

from Hinge to Center of Gravity 0.1778 m
L1 Total Length of Lower Rod 0.2096 m
L2 Total Length of Upper Rod 0.3365 m
Mc Cart Mass 0.57 kg
Mh Hinge Mass 0.170 kg
Mw Extra Weight Mass 0.37 kg
M1 Lower Pendulum Mass 0.072 kg
M2 Upper Pendulum Mass 0.127 kg
Rm Motor Armature Resistance 2.6 Ω

rmp Motor Pinion Radius 6.35E-3 m
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