Real-Time Implementation of a LQR-Based Controller for the Stabilization of a Double Inverted Pendulum

Amanda Bernstein and Hien Tran, Member, SIAM

Abstract—The problem of real-time implementation of a linear quadratic regulator (LQR)-based controller for the balance of a double inverted pendulum (DIP) mounted on a cart is presented. Physically, the DIP system is stabilized when the two pendulums are aligned in a vertical position. The mathematical model for the dynamics of a DIP can be derived using the Lagrange's energy method, which is computed from the calculation of the total potential and kinetic energies of the system. This results in a highly nonlinear system of three secondorder ordinary differential equations. The nonlinear system is linearized around its zero equilibrium state and LQR controller is implemented in real-time to stabilize the DIP system (i.e., to keep DIP in an upright position). Both simulation and real-time experimental results are presented.

Index Terms—double inverted pendulum, LQR, feedback controller, real-time implementation.

I. INTRODUCTION

THE double inverted pendulum (DIP) system is an extension of the single inverted pendulum (with one additional pendulum added to the single inverted pendulum), mounted on a moving cart. The DIP system is a standard model of multivariable, nonlinear, unstable system, which can be used for pedagogy as well as for the introduction of intermediate and advanced control concepts. There are two types of control synthesis for an inverted pendulum, swingup and stabilization. One of the most popular control methods for swinging up the inverted pendulum is based on the energy method (see [1] and the references therein). The stabilization problem of an inverted pendulum is a classical control example for testing of linear and nonlinear controllers (see, e.g., [1], [2], [3]). Several control design approaches have been applied for the stabilization of the double inverted pendulum including the linear quadratic regulator [4], the statedependent Riccati equation, optimal neural network [5], and model predictive control [3]. To our knowledge, these studies only use numerical simulations to

Manuscript received December 12, 2016.

Fig. 1: Double inverted pendulum mounted on a Quanser linear servo base unit (IP02).

test the feasibility of the control methodologies and do not provide real-time experimental implementation on a physical system.

In this paper, we present the real-time implementation of a LQR-based feedback control for the stabilization about the upright position of the double inverted pendulum mounted on a cart. The apparatus of the DIP system, which was provided by Quanser Consulting Inc. (119 Spy Court, Markham, Ontariio, L3R 5H6, Canada), is depicted in Fig. 1. The DIP system consists of two aluminum rods; one seven inches long and the other 12 inches long. The aluminums are mounted on the linear servo base unit (IP02) consisting of a cart driven by a DC motor and two encoders. One encoder is used to measure the cart's position while the other encoder is used to sense the short link angle. The longer link angle is measured by an encoder mounted on the pendulum itself. Based on these measurements of the cart position and the two pendulum angles, a voltage is computed using the LQR control theory to move the cart back and forth to balance the two pendulums in the upright, vertical position.

II. DIP System Model

A. Frame of Reference

Figure 2 shows a free body diagram of the DIP system mounted on a cart. The system consists of

A. Bernstein is a graduate student with the Department of Mathematics, North Carolina State University, Raleigh, NC 27695 USA e-mail: ascoons@ncsu.edu.

H. Tran is with the Department of Mathematics, North Carolina State University, Raleigh, NC 27695 USA e-mail: tran@ncsu.edu.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, IMECS 2017, March 15 - 17, 2017, Hong Kong

two rods connected to each other by a hinge with the lower rod connected to the motorized cart. The corresponding nomenclature for this system is given in Appendix A. The angle α of the lower rod is zero when the rod is pointed perfectly upwards, and the angle θ of the upper rod is zero when it is perfectly in line with the lower rod. It should be noted that, in the literature, the models for the DIP system are derived with the angle θ measured with respect to the vertical axis [5] (instead of relative to the lower pendulum rod as in this paper). We define the positive sense of the rotation to be counterclockwise and the displacement to be towards the right when facing the cart.

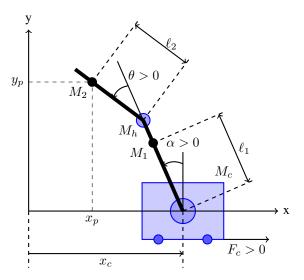


Fig. 2: Free body diagram of the DIP mounted on a cart.

B. Equations of Motion

We use Lagrange's energy method to derive the equations of motion for the DIP system. The single input is the driving force F_c generated by the DC motor and acting on the cart via the motor pinion. The Lagrangian of the motion is computed from the calculation of the total potential and kinetic energies of the system.

In order to calculate the energy of the system, we first determine the absolute cartesian coordinates for the center of gravity of each pendulum rod and the hinge. For the lower rod, pendulum 1, the center of gravity is located at

$$x_{1}(t) = x_{c}(t) - \ell_{1} \sin(\alpha(t)) y_{1}(t) = \ell_{1} \cos(\alpha(t))$$
(1)

and for the upper rod, pendulum 2, the center of gravity is located at

$$x_{2}(t) = x_{c}(t) - \ell_{2} \sin(\alpha(t) + \theta(t))$$

- $L_{1} \sin(\alpha(t))$ (2)
$$y_{2}(t) = \ell_{2} \cos(\alpha(t) + \theta(t)) + L_{1} \cos(\alpha(t)).$$

The center of gravity of the hinge is located at

$$x_h(t) = x_c(t) - L_1 \sin(\alpha(t))$$

$$y_h(t) = L_1 \cos(\alpha(t)).$$
(3)

We determine the linear velocity of each component by taking derivatives with respect to time of (1), (2), and (3) to obtain

$$\begin{aligned} x_1'(t) &= x_c'(t) - \ell_1 \alpha'(t) \cos(\alpha(t)) \\ y_1'(t) &= -\ell_1 \alpha'(t) \sin(\alpha(t)) \\ x_2'(t) &= x_c'(t) - \ell_2 (\alpha'(t) + \theta'(t)) \cos(\alpha(t)) \\ &+ \theta(t)) - L_1 \alpha'(t) \cos(\alpha(t)) \\ y_2'(t) &= -\ell_2 (\alpha'(t) + \theta'(t)) \sin(\alpha(t) + \theta(t)) \\ &- L_1 \alpha'(t) \sin(\alpha(t)) \\ x_h'(t) &= x_c'(t) - L_1 \alpha'(t) \cos(\alpha(t)) \\ y_h'(t) &= -L_1 \alpha'(t) \sin(\alpha(t)). \end{aligned}$$
(4)

1) Potential Energy: The total potential energy in a system, V_T , is the energy a system has due to work being or having been done to it. Typically potential energy is due to either vertical displacement (gravitational potential energy) or spring-related displacement (elastic potential energy). Here, there is no elastic potential energy, just the potential energy due to gravity. However, since the cart is limited to horizontal motion, it has no gravitational potential energy. The potential energies of the pendulum rods and the hinge are given by

$$V_1(t) = M_1 g y_1 = M_1 g \ell_1 \cos(\alpha(t))$$
(5)

$$V_2(t) = M_2 g y_2 = M_2 g \left[\ell_2 \cos(\alpha(t) + \theta(t)) \right]$$

$$+L_1\cos(\alpha(t))]\tag{6}$$

$$V_h(t) = M_h g y_h = M_h g L_1 \cos(\alpha(t)).$$
(7)

Then the total potential energy of the system is the sum of each component's potential energy. Summing (5), (6), and (7) and rearranging, we obtain

$$V_T(t) = [M_1g\ell_1 + M_2gL_1 + M_hgL_1]\cos(\alpha(t)) + M_2g\ell_2\cos(\alpha(t) + \theta(t)).$$
(8)

2) *Kinetic Energy:* The total kinetic energy of a system, T_T , is the amount of energy due to motion. For the DIP system, the kinetic energy is the sum of the translational and rotational energies of each component.

First, we consider the cart which has kinetic energy due to its linear motion along the track and due to the rotation of the DC motor. The translational kinetic energy of the cart is given by

$$T_{ct}(t) = \frac{1}{2}M_c(x'_c(t))^2.$$
 (9)

The rotational kinetic energy of the cart's DC motor is given by

$$T_{cr}(t) = \frac{1}{2} J_m(\omega_c(t))^2,$$
 (10)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, IMECS 2017, March 15 - 17, 2017, Hong Kong

where

$$\omega_c(t) = \frac{K_g}{r_{mp}} x'_c(t). \tag{11}$$

Then the total kinetic energy of the cart is the sum of translational and rotational kinetic energies,

$$T_c(t) = \frac{1}{2} \left[M_c + \frac{J_m K_g^2}{r_{mp}^2} \right] (x'_c(t))^2.$$
(12)

Next we consider the kinetic energy of each pendulum rod. For each, we assume the mass of the pendulum is concentrated at its center of gravity. Then, the translational kinetic energy of the lower pendulum rod is given by

$$T_{1t}(t) = \frac{1}{2} M_1 \left[(x_1'(t))^2 + (y_1'(t))^2 \right]$$

= $\frac{1}{2} M_1 [(x_c'(t))^2 - 2\ell_1 x_c'(t) \alpha'(t) \cos(\alpha(t)) + \ell_1^2 (\alpha'(t))^2], (13)$

and the rotational kinetic energy is given by

$$T_{1r}(t) = \frac{1}{2} I_1(\alpha'(t))^2.$$
(14)

Thus, the total kinetic energy for the lower pendulum rod is given by

$$T_{1}(t) = \frac{1}{2}M_{1}\left[(x_{c}'(t))^{2} - 2\ell_{1}x_{c}'(t)\alpha'(t)\cos(\alpha(t)) + \ell_{1}^{2}(\alpha'(t))^{2}\right] + \frac{1}{2}I_{1}(\alpha'(t))^{2}.$$
 (15)

Similarly, the translational and rotational kinetic energies of the upper pendulum rod are given by

$$T_{2t}(t) = \frac{1}{2}M_2 \left[(x'_2(t))^2 + (y'_2(t))^2 \right]$$

= $\frac{1}{2}M_2 \left[(x'_c(t))^2 - 2\ell_2 x'_c(t)(\alpha'(t) + \theta'(t)) \times \cos(\alpha(t) + \theta(t)) - 2L_1 x'_c(t)\alpha'(t)\cos(\alpha) + 2L_1\ell_2\alpha'(t)(\alpha'(t) + \theta'(t))\cos(2\alpha + \theta) + \ell_2^2(\alpha'(t) + \theta'(t))^2 + L_1^2(\alpha'(t))^2 \right]$
$$T_{2r}(t) = \frac{1}{2}I_2(\theta'(t))^2$$

for a total kinetic energy of

$$T_{2}(t) = \frac{1}{2}M_{2}\left[(x_{c}'(t))^{2} - 2\ell_{2}x_{c}'(t)(\alpha'(t) + \theta'(t)) \times \cos(\alpha(t) + \theta(t)) - 2L_{1}x_{c}'(t)\alpha'(t)\cos(\alpha) + 2L_{1}\ell_{2}\alpha'(t)(\alpha'(t) + \theta'(t))\cos(2\alpha + \theta) + \ell_{2}^{2}(\alpha'(t) + \theta'(t))^{2} + L_{1}^{2}(\alpha'(t))^{2}\right] + \frac{1}{2}I_{2}(\theta'(t))^{2}.$$
(16)

Finally, the hinge has only translational kinetic energy since it cannot rotate about its own axis.

Therefore the total kinetic energy of the hinge is given by

$$T_{h}(t) = \frac{1}{2} M_{h} \left[(x'_{h}(t))^{2} + (y'_{h}(t))^{2} \right]$$

= $\frac{1}{2} M_{h} \left[(x'_{c}(t))^{2} - 2L_{1}x'_{c}(t)\alpha'(t)\cos(\alpha(t)) + L_{1}^{2}(\alpha'(t))^{2} \right].$ (17)

Summing (12), (15), (16), and (17) we obtain the total kinetic energy of the system

$$T_T(t) = \frac{1}{2} \left[M_c + \frac{J_m K_g^2}{r_{mp}^2} + M_1 + M_2 + M_h \right] (x'_c(t))^2 - [M_1 \ell_1 + M_2 L_1 + M_h L_1] x'_c(t) \alpha'(t) \cos(\alpha(t)) + \frac{1}{2} \left[M_1 \ell_1^2 + I_1 + M_2 L_1^2 + M_h L_1^2 \right] (\alpha'(t))^2 - M_2 \ell_2 x'_c(t) (\alpha'(t) + \theta'(t)) \cos(\alpha(t) + \theta(t)) + M_2 L_1 \ell_2 \alpha'(t) (\alpha'(t) + \theta'(t)) \cos(2\alpha(t) + \theta(t)) + \frac{1}{2} M_2 \ell_2^2 (\alpha'(t) + \theta'(t))^2 + \frac{1}{2} I_2 (\theta'(t))^2.$$
(18)

3) Lagrange's Equations: The Lagrangian, \mathcal{L} , of a system is given by the difference between the total kinetic and potential energies

$$\mathcal{L}(t) = T_T(t) - V_T(t). \tag{19}$$

Substituting (8) and (18) into (19) we obtain

$$\begin{aligned} \mathcal{L}(t) &= \frac{1}{2} \left[M_c + \frac{J_m K_g^2}{r_{mp}^2} + M_1 + M_2 + M_h \right] (x_c'(t))^2 \\ &- \left[M_1 \ell_1 + M_2 L_1 + M_h L_1 \right] x_c'(t) \alpha'(t) \cos(\alpha(t)) \\ &+ \frac{1}{2} \left[M_1 \ell_1^2 + I_1 + M_2 L_1^2 + M_h L_1^2 \right] (\alpha'(t))^2 \\ &- M_2 \ell_2 x_c'(t) (\alpha'(t) + \theta'(t)) \cos(\alpha(t) + \theta(t)) \\ &+ M_2 L_1 \ell_2 \alpha'(t) (\alpha'(t) + \theta'(t)) \cos(2\alpha(t) + \theta(t)) \\ &+ \frac{1}{2} M_2 \ell_2^2 (\alpha'(t) + \theta'(t))^2 + \frac{1}{2} I_2 (\theta'(t))^2 \\ &- g \left[M_1 \ell_1 + M_2 L_1 + M_h L_1 \right] \cos(\alpha(t)) \\ &- M_2 g \ell_2 \cos(\alpha(t) + \theta(t)). \end{aligned}$$

By definition, Lagrange's equations are given by

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x'_c} \mathcal{L} \right) - \frac{\partial}{\partial x_c} \mathcal{L} = Q_1 \tag{21}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial \alpha'} \mathcal{L} \right) - \frac{\partial}{\partial \alpha} \mathcal{L} = Q_2 \tag{22}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial \theta'} \mathcal{L} \right) - \frac{\partial}{\partial \theta} \mathcal{L} = Q_3, \qquad (23)$$

where Q_1 , Q_2 , and Q_3 are the generalized forces applied to each of the generalized coordinates. When we compute the generalized forces we neglect the nonlinear Coulomb friction and the force due to the Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, IMECS 2017, March 15 - 17, 2017, Hong Kong

pendulum's action on the linear cart. Therefore the generalized forces are

$$Q_1(t) = F_c(t) - B_c x'_c(t)$$
(24)

$$Q_2(t) = -B_1 \alpha'(t) \tag{25}$$

$$Q_3(t) = -B_2 \theta'(t).$$
 (26)

We substitute (24), (25), and (26) into (21), (22), and (23), respectively, to obtain

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x'_c} \mathcal{L} \right) - \frac{\partial}{\partial x_c} \mathcal{L} = F_c(t) - B_c x'_c(t) \qquad (27)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial \alpha'} \mathcal{L} \right) - \frac{\partial}{\partial \alpha} \mathcal{L} = -B_1 \alpha'(t) \tag{28}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial \theta'} \mathcal{L} \right) - \frac{\partial}{\partial \theta} \mathcal{L} = -B_2 \theta'(t).$$
⁽²⁹⁾

Using (20), we take the derivatives indicated in (21) and rearrange to obtain

$$\begin{bmatrix} M_{c} + \frac{J_{m}K_{g}^{2}}{r_{mp}^{2}} + M_{1} + M_{2} + M_{h} \end{bmatrix} x_{c}^{\prime\prime}(t) \\ - \left[\left(M_{1}\ell_{1} + M_{2}L_{1} + M_{h}L_{1} \right) \cos(\alpha(t)) \\ + M_{2}\ell_{2}\cos(\alpha(t) + \theta(t)) \right] \alpha^{\prime\prime}(t) \\ - M_{2}\ell_{2}\cos(\alpha(t) + \theta(t))\theta^{\prime\prime}(t) + B_{c}x_{c}^{\prime}(t) \\ \left[\left[\left(M_{1}\ell_{1} + M_{2}L_{1} + M_{h}L_{1} \right) \sin(\alpha(t)) \\ + M_{2}\ell_{2}\sin(\alpha(t) + \theta(t)) \right] \alpha^{\prime}(t) + \\ 2M_{2}\ell_{2}\sin(\alpha(t) + \theta(t))\theta^{\prime}(t) \right] \alpha^{\prime}(t) \\ + M_{2}\ell_{2}\sin(\alpha(t) + \theta(t))\theta^{\prime}(t) \end{bmatrix} \alpha^{\prime}(t) \\ + M_{2}\ell_{2}\sin(\alpha(t) + \theta(t))\theta^{\prime}(t) \end{bmatrix} \alpha^{\prime}(t)$$
(30)

Similarly, taking the derivatives indicated in (22) of (20) and rearranging yields

$$-\left[\left(M_{1}\ell_{1}+M_{2}L_{1}+M_{h}L_{1}\right)\cos(\alpha(t)) +M_{2}\ell_{2}\cos(\alpha(t)+\theta(t))\right]x_{c}^{\prime\prime}(t) +\left[M_{1}\ell_{1}^{2}+I_{1}+M_{2}L_{1}^{2}+M_{h}L_{1}^{2}+M_{2}\ell_{2}^{2} +2M_{2}L_{1}\ell_{2}\cos(2\alpha(t)+\theta(t))\right]\alpha^{\prime\prime}(t) +\left[M_{2}L_{1}\ell_{2}\cos(2\alpha(t)+\theta(t))+M_{2}\ell_{2}^{2}\right]\theta^{\prime\prime\prime}(t) +\left[B_{1}-2M_{2}L_{1}\ell_{2}\sin(2\alpha(t) +\theta(t))\right]\alpha^{\prime}(t) +\theta(t))\left(\alpha^{\prime}(t)+\theta^{\prime}(t)\right)\right]\alpha^{\prime}(t) -M_{2}L_{1}\ell_{2}\sin(2\alpha(t)+\theta(t))\left(\theta^{\prime}(t)\right)^{2} -g\left[M_{1}\ell_{1}+M_{2}L_{1}+M_{h}L_{1}\right]\sin(\alpha(t)) -gM_{2}\ell_{2}\sin(\alpha(t)+\theta(t))=0.$$
(31)

Likewise, we take the derivatives indicated in (23) and rearrange to obtain

$$-M_{2}\ell_{2}\cos(\alpha(t) + \theta(t))x_{c}''(t) + \left[M_{2}L_{1}\ell_{2}\cos(2\alpha(t) + \theta(t)) + M_{2}\ell_{2}^{2}\right]\alpha''(t) + \left[M_{2}\ell_{2}^{2} + I_{2}\right]\theta''(t) - M_{2}L_{1}\ell_{2}\sin(2\alpha(t) + \theta(t))(\alpha'(t))^{2} + B_{2}\theta'(t) - gM_{2}\ell_{2}\sin(\alpha(t) + \theta(t)) = 0.$$
(32)

Equations (30), (31), and (32) are the equations of motion for the DIP system. The units and parameter values for all parameters in the model equations are given in Appendix B. Finally, the control input in the equations of motion is the force generated by the motorized cart, $F_c(t)$ (see (30)), but in our real-time implementation the input to the DIP system is the cart's DC motor voltage, $V_m(t)$. Using Kirchhoff's voltage laws and physical properties of our DIP system, we can express F_c as a function of the applied voltage V_m as

$$F_c(t) = \frac{K_g K_t (V_m(t) r_{mp} - K_g K_m x'_c(t))}{R_m r_{mp}^2}.$$
 (33)

III. REAL-TIME LQR CONTROL IMPLEMENTATION

For our real-time implementation of the LQR-based feedback control for the balance of the DIP system in the upright position, we use apparatus designed and provided by Quanser Consulting Inc. (see Fig. 1). This includes a double inverted pendulum mounted on an IP02 servo plant, a VoltPAQ amplifier, and two Q2-USB DAQ control boards. The detailed technical specifications and experimental set up can be found in [6]. For a linear system with a quadratic cost functional in both the state and the control, the optimal feedback control is a linear state feedback law where the control gains are obtained by solving a differential/algebraic Riccati equation (see e.g. [7]). Since the equations of motion for the DIP system, given by (30), (31), and (32), are nonlinear, we first linearized them around the zero equilibrium state to derive a local, approximate optimal control solution.

A. Simulation Results

The stabilized control was first tested in simulation with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1using Matlab Simulink. Here, Q and R are the state and input weighting matrices in the cost functional, respectively. The simulation uses an initial condition where the cart is at rest at a position of 0mm and both the upper and lower pendulum angles are deflected to 1 degree. The simulation requires the cart's position to track a square wave (dashed line in Fig. 3 (a)) with amplitude 12.5 mm and a frequency of 0.05 Hz. The state responses and corresponding control effort are shown in Figs. 3 and 4. All values of the states and the required control effort stay within the possible ranges for our experimental apparatus.

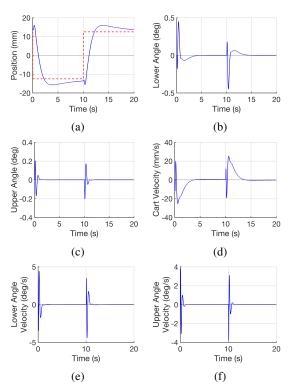


Fig. 3: Simulated state responses: cart position (a) and velocity (d), lower angle position (b) and velocity (e), and upper angle position (c) and velocity (f).

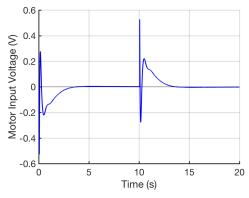


Fig. 4: Simulated control effort.

B. Experimental Results

The stabilized control was successfully implemented in real time with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1 using Matlab Simulink. The pendulum is manually brought to the upright position and the balancing control automatically takes over. Figs. 5 and 6 show the state responses and corresponding control effort. From the state responses, we can see that the pendulum was successfully balanced in the upright position. The cart does not move more than 40 mm from the center of the track, and the angles never differ from zero by more than 4 degrees. We also note that the controller frequently reaches saturation at -10 V in its effort to keep the pendulum balanced. Future effort will include the design and testing of more robust controllers such as the power series based nonlinear controller discussed in [1], [2].

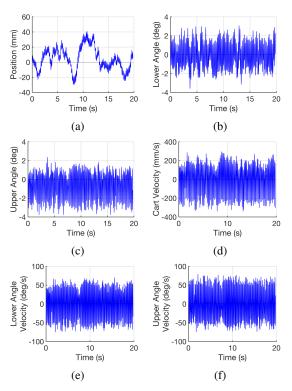


Fig. 5: Experimental state responses: cart position (a) and velocity (d), lower angle position (b) and velocity (e), and upper angle position (c) and velocity (f).

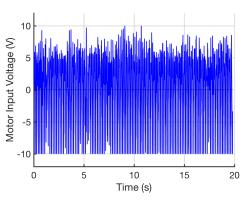


Fig. 6: Experimental control effort.

APPENDIX A NOMENCLATURE

	Description	
	(Moment of Inertia (MoI), Center of Gravity (CoG)	
<u>α</u>	Angle of Lower Rod Relative from vertical	
α'	Lower Pendulum Angular Velocity	
<u>α"</u>	Lower Pendulum Angular Acceleration	
B_c	Viscous Damping Coef. (Motor Pinion)	
B_1	Viscous Damping Coef. (Lower Rod Axis)	
B_2	Viscous Damping Coef. (Upper Rod Axis)	
F_c	Cart Driving Force by the DC Motor	
<i>g</i>	Gravitional Constant	
I_1	MoI (Lower Rod) at its CoG	
I_2	MoI (Upper Rod) at its CoG	
J_m	Rotational MoI of the DC	
	Motor's Output Shaft	
K_g	Planetary Gearbox Gear Ratio	
ℓ_1	Length of Lower Rod from Pivot to CoG	
ℓ_2	Length of Upper Rod from Hinge to CoG	
L_1	Total Length of Lower Rod	
L	Lagrangian	
M_c	Cart Mass	
M_h	Hinge Mass	
M_1	Lower Rod Mass	
M_2	Upper Rod Mass	
r_{mp}	Motor Pinion Radius	
T_{ct}	Translational Kinetic Energy of the Cart	
T_{cr}	Rotational Kinetic Energy	
	Due to the Cart's DC Motor	
T_c	Total Kinetic Energy of the Cart	
T_{1t}	Translational Kinetic Energy (Lower Rod)	
T_{1r}	Rotational Kinetic Energy (Lower Rod)	
T_1	Total Kinetic Energy of the Lower Rod	
T_{2t}	Translational Kinetic Energy of the Upper Rod	
T_{2r}	Rotational Kinetic Energy of the Upper Rod	
T_2	Total Kinetic Energy of the Upper Pendulum	
T_h	Total Kinetic Energy of the Hinge	
T_T	Total Kinetic Energy of the System	
V_1	Potential Energy of the Lower Pendulum	
V_2	Potential Energy of the Upper Pendulum	
V_h	Potential Energy of the Hinge	
V_T	Total Potential Energy of the System	
x_c	Cart Linear Position	
x'_c	Cart Velocity	
x_c''	Cart Acceleration	
x_h	Absolute x-coord. of the Hinge's CoG	
x_1	Absolute x-coord. of the Lower Rod's CoG	
x_2	Absolute x-coord. of the Upper Rod's CoG	
x'_h	x-comp. of the Velocity of the Hinge's CoG	
x'_1	x-comp. of the Velocity of the Lower Rod's CoG	
x'_2	x-comp. of the Velocity of the Upper Rod's CoG	
y_h	Absolute y-coord. of the Hinge's CoG	
y_1	Absolute y-coord. of the Lower Rod's CoG	
y_2	Absolute y-coord. of the Upper Rod's CoG	
y'_h	y-comp. of the Velocity of the Hinge's CoG	
y'_1	y-comp. of the Velocity of the Lower Rod's CoG	
y_2'	y-comp. of the Velocity of the Upper Rod's CoG	
$\frac{\theta}{\theta}$	Angle of Upper Rod Relative to Lower Rod's Shaft	
θ'	Upper Pendulum Angular Velocity	
$\theta^{\prime\prime}$	Upper Pendulum Angular Acceleration	
ω_c	Motor Shaft Angular Velocity	

APPENDIX B MODEL PARAMETER VALUES

	Description	Value
B_c	Viscous Damping Coefficient	
	as seen at the Motor Pinion	5.4 N.m.s/rad
B_1	Viscous Damping Coefficient	
	as seen at the Lower Rod Axis	0.0024 N.m.s/rad
B_2	Viscous Damping Coefficient	
	as seen at the Upper Rod Axis	0.0024 N.m.s/rad
g	Gravitational Constant	9.81 m/s ²
I_1	Moment of Inertia of the Lower	
	Rod at its Center of Gravity	2.6347E-4 kg.m ²
I_2	Moment of Inertia of the Upper	
	Rod at its Center of Gravity	1.1987E-3 kg.m ²
J_m	Rotational Moment of Inertia	
	of the DC Motor's Output Shaft	3.9E-7 kg.m ²
K_g	Planetary Gearbox Gear Ratio	3.71
K_m	Back-ElectroMotive-Force Const.	0.00767 V.s/rad
K_t	Motor Torque Constant	0.00767 N.m/A
ℓ_1	Length of Lower Pendulum	
	from Pivot to Center of Gravity	0.1143 m
ℓ_2	Length of Upper Rod	
	from Hinge to Center of Gravity	0.1778 m
L_1	Total Length of Lower Rod	0.2096 m
L_2	Total Length of Upper Rod	0.3365 m
M_c	Cart Mass	0.57 kg
M_h	Hinge Mass	0.170 kg
M_w	Extra Weight Mass	0.37 kg
M_1	Lower Pendulum Mass	0.072 kg
M_2	Upper Pendulum Mass	0.127 kg
R_m	Motor Armature Resistance	2.6 Ω
r_{mp}	Motor Pinion Radius	6.35E-3 m

References

- E. Kennedy, Swing-up and Stabilization of a Single Inverted Pendulum: Real-Time Implementation. North Carolina State University, 2015.
- [2] E. Kennedy and H. Tran, "Real-time stabilization of a single inverted pendulum using a power series based controller," *Transactions on Engineering Technologies*, pp. 1–14, 2016.
- Transactions on Engineering Technologies, pp. 1–14, 2016.
 [3] P. Jaiwat and T. Ohtsuka, "Real-time swing-up of double inverted pendulum by nonlinear model predictive control," in 5th International Symposium on Advanced Control of Industrial Processes, May 28-30, 2014, Hiroshima, JAPAN, 2014, pp. 290–295.
- [4] S. Yadav, S. Sharma, and N. Singh, "Optimal control of double inverted pendulum using lqr controller," *Int. J. of Advanced Research in Computer Science and Software Engineering*, pp. 189–192, 2012.
- [5] A. Bogdanov, "Optimal control of double inverted pendulum on a cart," in *Technical Report CSE-04-006*, 2004.
- [6] Linear Motion Servo Plants: IP012 Double Inverted Pendulum (DBIP) Laboratory Manual, Quanser Consulting, Inc., Document number:535, Revision:04.
- [7] B. Anderson and J. Moore, *Optimal Control: Linear Quadratic Methods*. Prentice-Hall, 1990.