
 

  
Abstract---This paper proposes a technique to design the    

(n-2) stage PD (Proportional-Derivative) controller cascaded 
with the PID (Proportional-Integral-Derivative) controller in 
accordance with nth order plants. The Continuous-Time (CT) 
design is firstly reviewed to show the advantages of the Kitti’s 
method. The proposed technique is based on the Kitti’s method 
in combination with the use of First Order Hold (FOH) to 
discretize the CT plant and Delayed First Order Hold (DFOH) 
to discretize the CT controller for obtaining the proper 
Discrete-Time (DT) controller structure. The simulation results 
confirm that the proposed design technique can be applied to 
the DT framework with better specifications than it was 
expected. 
 

Index Terms— Continuous-Time / Discrete-Time PID×(n-2) 
PD controllers, First Order Hold, Delayed First Order Hold 
 

I. INTRODUCTION 

 t is known that most industrial plants are type 0 and 
consist of three to five first order lags or dead time plus 

one first order lag [1]. However, the PID controller is 
properly applied to a typical second order plant only. In 
order to control a third order system to obtain the given 
specifications, an analytic PIDA (Proportional-Integral-
Derivative-Acceleration) controller design technique is then 
proposed [2]. For a third or higher nth order plant, a design 
method based on root locus technique for the PID×(n-2) 
stage PD cascade controllers in CT framework has been 
presented [3]. This design technique is aimed to satisfy the 
desired specifications without trial and error. Then, the 
forward controller is employed to decrease the overshoot, 
and the controlled system structure becomes two degree of 
freedom (2-DOF) control system as shown in Fig. 1. 
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Fig. 1.  Structure of the 2-DOF control system. 
 

For DT framework, three generations of these PID×(n-2) 
stage PD cascade controllers have been proposed recently. 
The first design for the DT PID×(n-2) stage PD cascade 
controllers is using Zero Order Hold (ZOH) discretization 
method [4], while the second one is using “Tustin” or 
bilinear discretization method to design the controllers in z-
plane [5]. The third concept to design DT controllers is also 
using “Tustin”, but it is required to transform the CT 
designed controller from s-plane to z-plane [6]. In order to 
be an alternative method for DT controller designs, this 
paper presents an effective design technique using FOH and 
DFOH discretizations as well as using Kitti’s method. The 
MATLAB simulation results for verifying the controller 
performances are also included. 

 

II.  METHODOLOGY 

Fig. 2 shows the steps for design of digital control systems 
[7], which are 2 major steps; plant modeling and controller 
design. 

 

 
Fig. 2.  Steps of the digital control system design. 

 

A. Problem Statement 

From a block diagram of Fig. 3, we need to find the 
PID×(n-2) stage PD cascade controllers K(s) or K(z) for the 
plant G(s), so that the given desired specifications could be 
acceptably achieved. 
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Fig. 3.  Block diagram of typical control system. 

 

B. Continuous–Time Framework 

Let the nth order plant G(s) be controlled by the cascade 
controllers K(s), their transfer function is assumed to be 
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The transfer function of the PID controller can be stated as 

1 2( )( )
( ) ,i

PID p d pid
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where Kp is a proportional gain, Ki  is an integral gain, and 
Kd is a derivative gain. Hence, the PD controller transfer 
function is 
 

( ) ( ).PD p d pd pdK s K K s K s z= + = +  (3) 

 
The open-loop transfer function for the PID×(n-2) stage 

PD cascade controllers K(s) and the plant G(s) can be given 
by 
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By using Kitti’s method, z1 = 3.1 and z2 = 6.1 are firstly 
assigned, then find only zpd and K from the root locus angle 
and magnitude conditions as follows. 
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=

∡ ⋯
 (5) 

 
The desired specifications to be designed are usually 
specified in terms of transient and steady state response 
characteristics of the control system to a unit-step input, 
exhibited by a pair of complex-conjugate dominant closed-

loop poles 21d n ns jζω ω ζ± = − ± − as follows: 
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From the given desired specification in term of the Percent 
Overshoot (P.O.), the damping ratio is 

 
2 2

2. . . .
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100 100
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 (7) 

 
From the given Settling Time {ts(±2%)}, the undamped 
natural frequency is 
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st

ζ
ω

ζ

− −
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Hence, one of the dominant closed-loop poles is located at 

 
2.118 2.221.ds j= − +  (9) 

 
The open-loop transfer function without zpd at sd is 
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The angle from the zero zpd to sd is 

 

( )arg[ ] arg ( ) 73.171 .pd dz KGwozpd sπ= − = �  (11) 

 
The location of the zero zpd can find from 
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Now, it is implied that 
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The open-loop gain K can be found from the magnitude 
condition of the root locus technique as follows: 
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To decrease the overshoot caused by adding the zero (s+zpd) 
to the open-loop transfer function KG(s), the forward 
controller can be stated as 

 

( ) .pd
f

pd

z
K s

s z
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+
 (15) 
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Fig. 4.  Plots of root loci in s-Plane. 

 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Time (secs)

A
m

pl
itu

de

 
 

Fig. 5.  Unit step responses. 

 
The overall system is then approximated as if it is a standard 
second order system as follows: 
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Fig. 4 shows the plots of root loci in s-Plane. The unit step 

responses with and without the forward controller are shown 
in Fig. 5, respectively. 

 

C. Discrete-Time Framework 

To design the DT controller, the CT plant (or CT system) 
and CT controller can be discretized by FOH [9] and by 
DFOH [10], respectively. Then we design the DT controller 
in the same way as the CT framework. 

 

 
 

Fig. 6.  Discretization. 

The DT transfer function of the CT plant ( )G s  with the 

sampling time (sec/samples)T is discretized by FOH is as 

follows: 
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Hence, from (1) yields 
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Finally, we have 
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For 1/ 50 sec/samples,T = we obtain 
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Then, 
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In this work, to obtain the structure of DT PID×(n-2) 

Stage PD cascade controllers for a third order plant, the 
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DFOH [10] is applied. Based on the DFOH, the desired DT 
transfer function can be stated as 
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Finally, we have 
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From (22) and (26), the open-loop transfer function used to 
design the DT PID×(n-2) stage PD cascade controllers can 
be written as 
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By using Kitti’s Method to design the cascade 
controllers ( )K z , let 0.9518az =  and 0.8969bz = . Then, 

the open-loop transfer function without ( )cz z−  is 
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The desired specifications for design of the controller K(z) 
are given in (6). Then the dominant closed-loop pole in z-
Plane is 
 

0.958 0.043,

1 50 sec/ sample.

dT s
dz e j

T

⋅ = = +


=
 (30) 

 
Then, the necessary angle of the open-loop transfer function 
without the zero (z−zc) at the dominant closed-loop pole zd is 
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From the angle condition of the root locus method, the angle 
from zc to zd can be written as 
 

[ ] [ ]arg arg ( ) 57.562 .c c dz KGwoz zπ= − = �  (32) 

 
Since, the angle of the zero (z−zc) is less than 90� , then zc is 
located at the left hand side of zd as follows. 
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Another required parameter is the controller gain K, which 
can be found from the magnitude condition of the root locus 
method as follows. 
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Finally, the controller transfer function can be stated by 
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The root loci for the DT controller with the sampling time 

1 50 sec/ sampleT =  are shown in Fig. 7. While, the unit 

step response are shown in Fig. 8, respectively. 
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Fig. 7 Root Loci in z-Plane. 
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Fig. 8 Unit Step Responses. 
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Fig. 9 Root Loci in z-Plane. 
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Fig. 10 Unit Step Responses. 
 

For the sampling time T = 1/500 sec/samples, the 
corresponding root loci and unit step responses are shown in 
Fig. 9 and Fig. 10, respectively. Where, the plant transfer 
function, the controller transfer function and the dominant 
closed loop pole are as follows: 
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 (36) 

III.  CONCLUSION 

 The design of PID×(n-2) stage PD cascade controllers in 
CT framework has been described to point out the aim of 
Kitti’s method, which provides that all desired specifications 
to be designed can be achieved without trial and error steps 
in the design process. However, the original design based on 
Kitti’s method uses the forward controller for decreasing 
undesired overshoot. Nowadays, the forward controller is 
rarely or never used, because there is alternate way to 
decrease the maximum percent overshoot by increasing the 
controller gain to be greater than the designed value, so that 
the plots of root loci are always toward the real axis along 
circular shape. If the sampling time is enough, all desired 
specifications are easily obtained. 
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