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MHSAX-based Time Series Classification using
Local Sequence Alignment Technique
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Abstract—Time series classification is one of the best-known
grand challenges because of its many fields of application and
difficulty. Time series classification is the task of mapping an
unclassified time series to a discrete class label. In the last
decade, Symbolic Aggregate approXimation (SAX), which is a
state-of-the-art feature expression for time series, has attracted
the attention of many data mining researchers. In this paper,
we propose a novel method for time series classification using
a SAX-based symbolic representation. The proposed method
includes a moving average convergence divergence (MACD)-
histogram-based SAX (MHSAX) and a nearest neighbor (1-
NN) classifier utilizing the local sequence alignment technique.
To evaluate the proposed method, we implemented it and
conducted experiments using the UCR Time Series Classifica-
tion Archive. The experimental results show that the proposed
method outperforms not only other distance-based 1-NNs, but
also other state-of-the-art methods.

Index Terms—Time series classification, SAX, MACD his-
togram, Local sequence alignment

I. INTRODUCTION

IME series is a sequence of observations collected at

regular intervals. Time series appear in any domain
of applied computer science that involves temporal data
measurements. With the emergence of the Internet of Things,
the use of time series generated by sensor devices are
widespread in many application domains. There are several
different types of time series; in this study, we focus on
a simple time series that is a sequence of primitive items
(e.g., real numbers, integer values, or symbols), including
sensor-monitored values, stock prices, currency exchange
rates, radio waves, electrocardiogram values, event streams,
earthquake waves, and biomedical signals. Data mining re-
searchers and practitioners have been studying a wide range
of time series data mining techniques, from basic methods,
such as frequent pattern and motif extraction, classification,
similarity search, prediction, and anomaly detection, to large-
scale time series management, parallel processing, and time
series indexing structures [1], [2].

Time series data mining researchers have focused on time
series classification [3], because it has a broad range of ap-
plications from science to engineering, including biological
analysis, electroencephalogram, image and motion recogni-
tion, and financial analysis. Time series classification is a
task that is similar to data classification, such as document
and image classification. Time series classification identifies
the class label of an unlabeled time series using training
data whose class labels are known in advance. Each data
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point in a time series is simple; however, in contract to
multivariate data, time series data are sequence data, such
as strings; therefore, there is a specific need to capture time-
variable features. In the design of time series classifiers three
points should be considered: the feature expression for the
time series, the definition of the distance function, and the
classification strategy.

High-level symbolic representation is one of the most
robust techniques for the feature expression of a time se-
ries. In this representation, a time series is encoded into a
sequence of symbols in order to eliminate the influence of
noise. Techniques for the symbolic representation of time
series allow a rich variety of string algorithms to be applied
to time series. This has motivated researchers to utilize
well-known string algorithms to improve the performance of
time series data mining. In particular, symbolic Aggregate
approXimation (SAX) [4] is one of the best-studied high-
level symbolic representations for time series because it can
compress time series and provide a variety of measurement
metrics.

In our previous work [5], we proposed a nearest neigh-
bor (I-NN) SAX-based classifier for time series that uti-
lizes a moving average convergence divergence (MACD)-
histogram-based SAX (MHSAX) representation and the ex-
tended Levenshtein distance. MHSAX is a hybrid repre-
sentation of SAX representations of a time series and its
MACD histograms [6]. MHSAX adequately captures not
only the local variation, but also the global variation in time
series. The extended Levenshtein distance is a measure of
the dissimilarity between two MHSAX representations.

MHSAX is a superior high-level representation; however,
there is room for further improvement in the accuracy of the
calculation of the distance between time series. In this paper,
we propose a novel 1-NN SAX-based classifier utilizing
the local sequence alignment technique, which is used in
the bioinformatics field and is useful for distinguishing
dissimilar sequences that are suspected to contain regions of
similar sequence motifs within their larger sequences. The
Smith-Waterman algorithm [7] is a general local alignment
method based on dynamic programming. We modified this
algorithm so that it measures the distance between two
MHSAX representations using the algorithm. To evaluate the
proposed method, experiments were conducted by using the
UCR Time Series Classification Archive [8]. The proposed
method shows good performance compared with our previ-
ous method.

The rest of this paper is organized as follows. In Sections
IT and III, related work is respectively summarized and
described briefly. In Section IV, the MACD-Histogram-based
SAX and a novel method for time series classification are
proposed. In Section V, the experimental results are shown,
and we discuss the method’s performance. We conclude the
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paper in Section VI.

II. RELATED WORK

There are three major approaches to time series classi-
fication: distance-based, feature-based, and model-based [9]
approaches. The distance-based approach defines the distance
function, measuring the distance between time series, and
classifies the time series with reference to the mutual dis-
tance. The feature-based approach discovers the signature
subsequences of a time series and classifies it according to
whether it includes these signature subsequences. The model-
based approach attempts to apply statistical model analysis
to time series classification.

The distance-based approach has been well-studied, and
many studies have reported that 1-NN is the simplest and yet
most stable algorithm. The early studies were based on the
Euclidean distance; however, the Euclidean distance is not
robust against slight gaps between time series and differences
in their shapes. To address this problem, the dynamic time
warping (DTW) distance was proposed [10]. DTW improves
the performance of time series classification dramatically.
Ding et al. [11] reported that 1-NN with DTW, in general,
performs well, and the difference between its performance
and that of other subsequent distance metrics is small.

Shapelets [12], [13] are one of the most well-known
techniques for feature-based and model-based approaches.
Shapelets are segments of time series that identify class
efficiently. They are extracted by evaluating the class pre-
diction qualities of numerous candidates extracted from the
series segments. Since SAX was proposed, researchers have
focused on the feature-based approach using SAX. SAX-
VSM [14] is a state-of-the-art algorithm based on SAX and
the “bag of words” model. Each class is represented by a
feature vector and the feature vector is weighted by TF*IDF
weighting. An unlabeled time series is assigned to a class in
which the unlabeled time series has the highest feature score.

Recently, some state-of-the-art methods have been pro-
posed. Silva et al. [15] proposed recurrence plots for time
series feature representation. To measure the distance be-
tween two time series, they use Campana-Keogh (CK-1)
distance, which is a Kolmogorov complexity-based distance
for estimating image similarity. Gormes et al. [16] proposed
a novel feature-based method in which frequent sequences
of symbols (motifs) are defined as features that are included
only in a specific class. Decision trees are then constructed
using the extracted motifs. Kamath et al. [17] proposed a fea-
ture construction algorithm based on genetic programming.
In addition, Wang et al. [18] introduced a completely new
method in which deep learning techniques are applied.

The proposed method uses the SAX-based approach. The
SAX-based method is limited in terms of discrimination
capability because it cannot capture the local variation in
a time series. MACD histograms facilitate the recognition of
local variation in a time series; therefore, MACD-Histogram-
based SAX improves the class identification rate of the time
series. The method most similar to ours was presented in
[19], where Zhao et al. proposed a new DTW-based method
named shapeDTW. DTW can capture the global variation;
however, it does not necessarily achieve locally sensible
matches. To address this issue, shapeDTW attempts to pair
locally similar subsequences and to avoid matching points
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with distinct neighborhoods. In contrast to conventional
methods, our method encodes time series into SAX-based
high-level symbolic representations because noise can then
be ignored.

III. MACD-HISTOGRAM-BASED SAX
In this section, MHSAX is described more in detail.

A. Symbolic Aggregate approXimation

There are two aspect of a SAX representation[4]: com-
pression of a time series and conversion of the time series
into symbols. SAX reduces the length of the time series and
transforms the compressed time series into a symbolic string.
After SAX was proposed, it enthralled time series researchers
because it is a simple and intuitive representation. Moreover,
the lower bound of the distance between SAX representations
of two different time series can be calculated and this allows
conventional string algorithms to be utilized efficiently.

SAX representations are created using three steps: (1)
normalization, (2) compression using piecewise aggregate
approximation (PAA) [20], and (3) discretization. In the nor-
malization step, each time series is normalized such that the
mean and standard deviation are zero and one, respectively.
In the compression using the PAA step, a compressed time
series is created, where the length is reduced from n to [,
where [ < n. In the discretization step, each value of the
compressed time series is converted into a discrete symbol
from a set of o symbols.

The details of a SAX representation of a the time series are
as follows. Let the i-th time series in a time series data set
TSbeT; = (ti1,ti2, -+ ,tin). Inthis study, T; is a simple
time series, where each value is a primitive value such as an
integral value or real number. In the normalization step, for
each value of T}, t; ; is normalized to the value

tii —av
Ci,j = Wsidg’ (1

(i, Z?:l tij)/(n x m) and sd =
\/zy; S (tij — avg)?/(n x m). Let the i-th normal-
ized time series of n lengths be

where avg =

Ci = (€ij1,Ci2, - Cipn)- ()

In the compression using the PAA step, C; is divided into
[ frames, where each frame has the same length w = n/l.
The average of the values in each frame represents the
frame. Thus, C; of length n is compressed into a time
series of length [. Let the PAA representation of C; be
P, = (pia,pi2s - »pi1)s where the j-th value of P; is
defined as follows:
wxyg

>

k=wx (j—1)+1

1
pl,]_w

Ci k- 3)

In the discretization step, the codomain of the real number
is first divided into « regions, where the boundaries between
areas are determined by equalizing the area of each region
under the N (0,1) Gaussian curve. The number « is called
the cardinality. The boundaries are called breakpoints, and
an ordered list of the breakpoints’ values is denoted by

B = (B07617 e 7Ba—17ﬁa)7
whereB; < Bit1, Bo = —00,and Bo = +00). “4)
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If there are « regions, the area of the region between the
breakpoints 8,1 and j3; is 1/a.

For cardinality is «, there are « symbols for mapping
a symbol to each region. Let a set of symbols be ¥ =

1, ,%q ). The value of p;; is mapped to a symbo
by by Th 1 fopi; i d bol
according to

Sij = Xk, f Br—1 < pij < Bk (5)

Let a sequence of the assigned symbols be S§; =
(841,82, -+ ,si,). This sequence is called a SAX string.
A SAX string, where T; is encoded on the condition that the
cardinality is « and the size of window is w, is denoted by
SAX (w, «)[T;]. The j-th element of SAX (w, «)[T;] is also
denoted by SAX (w, «)[T;];. Fig. 1 shows an example of a
SAX representation of a time series. The blue and red lines
show a normalized time series and its PAA representation,
respectively. The domain is divided into four regions so that
the cardinality is four. Each region is assigned a symbol “a,”
“b,” “c,” or “d.” The time series is hence converted to SAX
string “bedcca.”

Example of SAX

Fig. 1.

TABLE T
BREAKPOINTS
a 3 4 5 6 7 8
£1 | -043 | -0.67 | -0.84 | -0.97 | -1.07 | -L.15
B2 0.43 0 -0.25 | -043 | -0.57 | -0.76
B3 0.67 0.25 0 -0.18 | -0.32
B4 0.84 0.43 0.18 0
Bs 0.97 0.57 0.32
Be 1.07 0.76
Br 1.15

B. MACD Histogram

MACD was introduced by Gerald Appel in the late 1970s
and is used in the technical analysis of stock prices. Stock
prices are referred to as a time series; therefore, by analyzing
the time series of stock prices, the chances of profiting from
trading a stock can be determined. Time series are regarded
as trajectories of two-dimensional positions. Velocity v and
acceleration a are calculated using the observed changes in
position. The MACD and the MACD histogram are defined
as the velocity acceleration a of a time series.

MACD is the difference between the two types of ex-
ponential moving averages (EMAs). The EMA is a type
of weighted moving average known as an exponentially
weighted moving average. The weighting for each older
value in a time series decreases exponentially. The definition
of the EMA for the ¢-th element of T; is

ema(ws)[Ti]e = v X tig + (1 — y)emalT;]i—1
=Y (0= i), (6
k=0

where ws is the size of the sliding window, and v =
2/(ws—1). Suppose that ¢ = k; this implies that the average
is calculated using the (k — ws)-th to the k-th element.
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Let the time series of the EMA values of T; under ws
be ema(ws)[T;]. The difference between ema(wsy)[T;]; and
ema(wsz)[T;]; is called the MACD, where ws; # wss:

macd(wsy, ws2)[T;]; =

ema(wsy)[T;]r — ema(ws2)[Ti]:, wsy < wsa. (7)

The MACD is considered to be a derivative value of the EMA
and is a velocity. The EMA of the MACD, where the size of
window is wss, is called the MACD signal. The difference
between the signal and the MACD is called the MACD
histogram. The MACD histogram is a derivative value of
the MACD and is regarded as the acceleration of the time
series.

signal(wsi, wsz, wss)[T;]; =
ema(wss)[macd(wsy, ws2)[T;]]:, ®)
histogram(wsy, wse, ws3)[T;]; =

macd(wsy, ws2)[T;]; — signal(wsy, wsa, wss)[T;]e, (9)

C. Definition

A MHSAX is a string that merges two different
types of SAX strings: the SAX string of a time
series and the SAX string of the MACD histograms
of the time series. Let the SAX string of 7; and
histogram(wsy, wsa, wss)[T;] be SAX(w,a)[T;] and
SAX (w, a)[histogram(wsy, wss, wss)[T;]], respectively.
For brevity, SAX (w, a)[T;] is denoted by OSAX (p)[T:],
and SAX (w, a)[histogram(wsy, wse, wss)[T;]] is denoted
by MSAX(p)[T;], where p is the set of parameters
{w, o, ws1, wsa, wss}.

MHSAX is a sequence that alternates elements of
OSAX (p)[T;] and MSAX (p)[T;]. In particular, the se-
quence is (OSAX[T;]1.MSAX (w,a)[Ti]1, OSAX[T}]2,
MSAX (w,a) [Ti]2, - -+, OSAX[Ti];, MSAX (w, @)[Ti]i).
where | = n/w. The MHSAX string of T; is de-
noted by M HSAX (p)[T;]. Suppose that OSAX (p)[T;] =
(aabcdeaa) and MHSAX (p)[T;] = (ccdeedac). We
resequence alternately, and then, MHSAX (p)[T;] =

((ac)(ac)(bd)(ce)(de)(ed)(aa)(ac)).

IV. PROPOSED METHOD

In this section, we propose a novel method for time series
classification that is an improved version of our previous
method.

A. Problem Definition

Suppose that there are k classes in a time series data
set and C'L is given as a set of class labels CL =
{CLy,CLs,---,CLy}. Time series classification is defined
as a task that maps a time series 7T}, which is unlabeled, to
a class label ¢l € C'L. The mapping function is a classifier
TC, which is written as TC' : T, — ¢l, cl € CL.

B. Local Sequence Alignment

In this study, the distance-based method is applied as
the time series classification strategy. Therefore, the dis-
tance between two MHSAX strings needs to be defined. In
our previous work, we measured the distance between two
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TABLE 11
EXAMPLE OF MHSAX
Symbols Contents
MHSAX (p)[Th ((ac)(aa)(aa)(aa)(ba))
MHSAX (p)[T> ((ba)(bb)(aa)(aa)(aa))
MHSAX (p)[T5 ((ac)(bc)(ab)(bb)(aa))

MHSAX strings using the extended Levenshtein distance.
The Leveshtein distance is known as the edit distance and
measures how many operations are required to transform one
MHSAX string into another MHSAX string.

Suppose that there are three MHSAX strings in Ta-
ble II. The distances between MHSAX (p)[T1] and
MHSAX (p)[Tz], and between T and T3 are 3/5 and 2/5,
respectively. In this case, our previous method detect T5
is similar to T5. 77 and 7% have a characteristic pattern
(#(aa)(aa)(aa)*), though. The majority of difficult time
series classification problems distinguish different class time
series by identifying characteristic patterns. The extended
Levenshtein distance is unsuitable for these types of time
series classification problems.

To consider characteristic patterns, the distance between
two MHSAX strings is calculated using local sequence
alignment scores. LLocal sequence alignment is known as
the Smith-Waterman algorithm, and it can extract the locally
most similar subsequences. Suppose that there are two time
series T; and T} and their MACD-Histogram-based SAX
representations are M HSAX (p)[T;] and M HSAX (p)[T%]-
The score matrix for the local sequence alignment is defined
as

SMI‘70<—O i:07~'~ 711/27SM07]' ~—0 j:07~-~ ,lk/27

0
SM; 1, —1

SM; ; + max 1.3 (10)
SMi,jfl —1

SMi 11+ f(a,b,c,d)
a < MHSAX(p)[ﬂ]Ql_l, b« MHSAX(p)[Tk]Qj_h

1, if s1 =89 & s3 =54

f(s1,52,83,84) ¢ 0, if s1=1s52 | s3=54 (11)
—1, otherwise.
The distance is defined as follows:
dist(MHSAX (p)[T], MHSAX (p)[Tx]) =
1 —maz(SM)/maxz(l;/2,1/2). (12)

Let us consider the above example again. Under the local
sequence alignment score, the distance between 77 and T5,
and between T, and T3 are 3/5 and 1/5, respectively. In this
case, Ty is more similar to 74 than T5.

C. Algorithm

The proposed method is based on the 1-NN classifier [21],
which is the simplest yet most robust technique for distance-
based time series classification. The 1-NN classifier assigns
an unlabeled time series to the class label of its closest
neighbor. The processing steps for the proposed time series
classification are as follows (Fig. 2).

1) Each time series in the training data set is encoded to
an MHSAX representation.
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Fig. 2. Proposed method.
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Class 2

2) An unlabeled time series is encoded to an MHSAX
representation.

3) For all pairs of time series in the training data set and
the unlabeled time series, the distance based on the
local sequence alignment score between the MHSAX
representations is calculated. The class label of the
nearest time series is assigned to the unlabeled time
series.

V. EXPERIMENTS

In the experiments, we used the UCR Time Series Clas-
sification Archive [8], which is the largest available time
series classification benchmark data set. Table IIT shows the
details of each data set in the UCR Time Series Classification
Archive. This archive includes 85 types of labeled time series
data sets with a variety of lengths, class numbers, and data
sizes. Each data set is divided into two types of data sets: a
training data set, and a test data set. For each data set, we
constructed a 1-NN classifier using the training data set and
we measured the error rates of classification using the test
data set.

The proposed method was compared with four types of
I-NN classifiers: EQ I-NN, BWW DTW [-NN, DTW [-NN,
and MHSAX. The EQ I-NN classifier utilizes the Euclidean
distance and the BWW DTW 1-NN, and DTW I-NN classifiers
employ the DTW distance. The MHSAX classifier is our
previous method. The MACD’s parameters for the proposed
method were ws; = 3, wsy =5, and wsg = 4. Moreover,
the least error rates were found by varying the following
parameters: the PAA window size w € {1,2,3,4,5} and
the cardinality o € {3,4,---,14}. Table IIT shows the
classification error rates for each method. The values in the
table are described on the UCR Time Series Classification
Archive web site. Underlined values indicate the lowest error
rate. Table IV summarizes the results. The proposed method
obtains the lowest error rates of the tested methods for 47
out of 85 data sets. In addition, its average error rates and
average rankings are the smallest.

We compared our proposed method with two other SAX-
based classifiers BOW [22] and SAX-VSM [14]. Table
V compares their performance on 42 data sets from the
UCR Time Series Classification Archive. The proposed
method achieves good performance compared with BOW
and SAX-VSM. We also compared our proposed method
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TABLE IIT
RESULTS OF ERROR RATES
Number Number Number Best Warping
of of of Euclidean | Window DTW | DTW Proposed
Name Classes Train Data | Test Data | Length 1-NN 1-NN 1-NN MHSAX Method
50Words 50 450 455 270 0.369 0.242 0.31 0.193 0.195
Adiac 37 390 391 176 0.389 0.391 0.396 0.286 0.299
ArrowHead 3 36 175 251 0.2 0.2 0.297 0.085 0.097
Beef 5 30 30 470 0.333 0.333 0.367 0.133 0.133
BeetleFly 2 20 20 512 0.25 0.3 0.3 0.1 0.05
BirdChicken 2 20 20 512 0.45 0.3 0.25 0 0
Car 4 60 60 577 0.267 0.233 0.267 0.133 0.116
CBF 3 30 900 128 0.148 0.004 0.003 0.034 0.04
ChlorineConcentration 3 467 3840 166 0.35 0.35 0.352 0.369 0.371
CinC_ECG_torso 4 40 1380 1639 0.103 0.07 0.349 0.114 0.121
Coffee 2 28 28 286 0 0 0 0 0
Computers 2 250 250 720 0.424 0.38 0.3 0.272 0.268
Cricket_X 12 390 390 300 0.423 0.228 0.246 0.248 0.233
Cricket_Y 12 390 390 300 0.433 0.238 0.256 0.243 0.243
Cricket_Z 12 390 390 300 0.413 0.254 0.246 0.248 0.238
DiatomSizeReduction 4 16 306 345 0.065 0.065 0.033 0.058 0.055
DistalPhalanxOutlineAgeGroup 3 139 400 80 0.218 0.228 0.208 0.2025 0.205
DistalPhalanxOutlineCorrect 2 276 600 80 0.248 0.232 0.232 0.231 0.231
DistalPhalanxTW 6 139 400 80 0.273 0.272 0.29 0.245 0.2625
Earthquakes 2 139 322 512 0.326 0.258 0.258 0.208 0.204
ECG 2 100 100 96 0.12 0.12 0.23 0.11 0.09
ECG5000 5 500 4500 140 0.075 0.075 0.076 0.064 0.064
ECGFiveDays 2 23 361 136 0.203 0.203 0.232 0.132 0.105
ElectricDevices 7 8926 7711 96 0.45 0.376 0.399 0.324 0.322
Face(all) 14 560 1690 131 0.286 0.192 0.192 0.218 0.211
Face(four) 4 24 88 350 0.216 0.114 0.17 0.034 0.022
FacesUCR 14 200 2050 131 0.231 0.0838 0.095 0.045 0.039
Fish 7 175 175 463 0.217 0.154 0.177 0.051 0.051
FordA 2 1320 3601 500 0.341 0.341 0.438 0.326 0.266
FordB 2 310 3636 500 0.442 0.414 0.406 0.350 0.297
Gun-Point 2 50 150 150 0.087 0.087 0.093 0 0
Ham 2 109 105 431 0.4 0.4 0.533 0.361 0.333
HandOutlines 2 370 1000 2709 0.199 0.197 0.202 0.164 0.162
Haptics 5 155 308 1092 0.63 0.588 0.623 0.512 0.509
Herring 2 64 64 512 0.484 0.469 0.469 0.343 0.343
InlineSkate 7 100 550 1882 0.658 0.613 0.616 0.552 0.550
InsectWingbeatSound 11 220 1980 256 0.438 0.422 0.645 0.453 0.472
ItalyPowerDemand 2 67 1029 24 0.045 0.045 0.05 0.048 0.048
LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.205 0.32 0.322
Lightning-2 2 60 61 637 0.246 0.131 0.131 0.163 0.147
Lightning-7 7 70 73 319 0.425 0.288 0.274 0.219 0.164
MALLAT 8 55 2345 1024 0.086 0.086 0.066 0.108 0.118
Meat 3 60 60 448 0.067 0.067 0.067 0.033 0.033
Medicallmages 10 381 760 99 0.316 0.253 0.263 0.315 0.359
MiddlePhalanxOutlineAgeGroup 3 154 400 80 0.26 0.253 0.25 0.235 0.24
MiddlePhalanxOutlineCorrect 2 291 600 80 0.247 0.318 0.352 0.265 0.258
MiddlePhalanxTW 6 154 399 80 0.439 0.419 0.416 0.393 0.388
MoteStrain 2 20 1252 84 0.121 0.134 0.165 0.114 0.107
Non-InvasiveFetal ECGThorax1 42 1800 1965 750 0.171 0.185 0.209 0.413 0.430
Non-InvasiveFetalECGThorax2 42 1800 1965 750 0.12 0.129 0.135 0.290 0.304
OliveOil 4 30 30 570 0.133 0.133 0.167 0.066 0.1
OSULeaf 6 200 242 427 0.479 0.388 0.409 0.119 0.107
PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.239 0.272 0.265 0.258
Phoneme 39 214 1896 1024 0.891 0.773 0.772 0.708 0.724
Plane 7 105 105 144 0.038 0 0 0 0
ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.215 0.195 0.175 0.170
ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.21 0.216 0.265 0.161
ProximalPhalanxTW 6 205 400 80 0.292 0.263 0.263 0.235 0.23
RefrigerationDevices 3 375 375 720 0.605 0.56 0.536 0.453 0.453
ScreenType 3 375 375 720 0.64 0.589 0.603 0.538 0.538
ShapeletSim 2 20 180 500 0.461 0.3 0.35 0.038 0.016
ShapesAll 60 600 600 512 0.248 0.198 0.232 0.12 0.101
SmallKitchenAppliances 3 375 375 720 0.659 0.328 0.357 0.389 0.402
SonyAIBORobotSurface 2 20 601 70 0.305 0.305 0.275 0.244 0.251
SonyATBORobotSurfacell 2 27 953 65 0.141 0.141 0.169 0.157 0.136
StarLightCurves 3 1000 8236 1024 0.151 0.095 0.093 0.057 0.075
Strawberry 2 370 613 235 0.062 0.062 0.06 0.044 0.044
SwedishLeaf 15 500 625 128 0.211 0.154 0.208 0.088 0.0832
Symbols 6 25 995 398 0.1 0.062 0.05 0.034 0.043
SyntheticControl 6 300 300 60 0.12 0.017 0.007 0.046 0.06
ToeSegmentationl 2 40 228 277 0.32 0.25 0.228 0.166 0.149
ToeSegmentation2 2 36 130 343 0.192 0.092 0.162 0.061 0.053
Trace 4 100 100 275 0.24 0.01 0 0 0
TwoLeadECG 2 23 1139 82 0.253 0.132 0.096 0.070 0.034
TwoPatterns 4 1000 4000 128 0.09 0.002 0 0.00025 0.002
uWaveGestureLibrary_X 3 396 3582 315 0.261 0.227 0.273 0.219 0.233
uWaveGestureLibrary_Y 8 896 3582 315 0.338 0.301 0.366 0.305 0.352
uWaveGestureLibrary_7Z 8 896 3582 315 0.35 0.322 0.342 0.296 0.31072
UWaveGestureLibraryAll 8 896 3582 945 0.052 0.034 0.108 0.036 0.044
Wafer 2 1000 6174 152 0.005 0.005 0.02 0.003407 0.0037
Wine 2 57 54 234 0.389 0.389 0.426 0.259 0.259
WordSynonyms 25 267 638 270 0.382 0.252 0.351 .246 0.258
Worms 5 77 181 900 0.635 0.586 0.536 0.436 0.480
WormsTwoClass 2 77 181 900 0.414 0.414 0.337 0.276 0.254
Yoga 2 300 3000 426 0.17 0.155 0.164 0.095 0.094
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TABLE IV TABLE VI
SUMMARY OF RESULTS COMPARISON WITH SHAPEDTW
BWW
EQ | DTW | DTW Proposed BWW
Metric I-NN | I-NN | I-NN | MHSAX | Method EQ DTW | DTW | shapeDTW Proposed
Number of Metric 1-NN 1-NN 1-NN 1-NN MHSAX Method
Best Solutions 7 16 11 31 47 Number of
Average of Best Solutions 1 1 2 31 31 37
Error Rates | 0.288 | 0.237 | 0.256 0.198 0.195 Average of
Average of Error Rates 0.288 0.237 0.256 0.214 0.198 0.195
Rankings 3.976 2.835 3.505 2.011 1.882 Average of
Rankings 4.607 3.392 4.047 3.202 2.547 2.380
TABLE V
COMPARISON WITH SAX-BASED METHODS REFERENCES
BOW | SAX-VSM | Proposed Method

50Words 0316 0.374 .195 [1]1 M. Last, A. Kandel, and H. Bunke, Data Mining in Time Series

Adiac 0.325 0.417 0.299 Databases, ser. Series in machine perception and artificial intelligence.

Beef 0267 0233 0.133 World Scientific, 2004.

CBF 0.048 0.01 0.04 X e . e

ChlorineConcentration 0.405 0.341 0371 [2] P.Esling and C. Agon, “Time-series data mining,” ACM Comput. Surv.,
CinC_ECG_torso 0.164 0.344 0.121 vol. 45, no. 1, pp. 12:1-12:34, Dec. 2012.

Coffee 0.036 0 0 [3] P. Geurts, Principles of Data Mining and Knowledge Discovery: 5th
Cricket_X 0305 0.308 0.233 European Conference, PKDD 2001, Freiburg, Germany, September 3—
Cricket_Y 0.313 0.318 0.243 . . . . . .
Cricket_Z 0.295 0.297 0.238 5, 2001 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,

DiatomSizeReduction 0.111 0.121 0.055 2001, ch. Pattern Extraction for Time Series Classification, pp. 115—

E_CG 0.11 0.14 0.09 127.

Ecgsg‘;g)ays 8%2‘81 % g;?; [4] T. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel
Face(four) 0.102 0.114 0.022 symbolic representation of time series,” Data Min. Knowl. Discov.,
FacesUCR 0.137 0.109 0.039 vol. 15, no. 2, pp. 107-144, Oct. 2007.
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Lightning-2 0.328 0.213 0.147 [6] T. J. Murphy and J. J. Murphy, Technical analysis of the financial
Lightning.7 oo | o o164 markets. ~Fishkill, N.Y.: New York Institute of Finance, 1999.

Medicallmages 0.401 0.516 0.359 [71 T.F. Smith and M. S. Waterman, “Identification of common molecular
MoteStrain 0.177 0.125 0.107 subsequences.” Journal of molecular biology, vol. 147, no. 1, pp. 195—

OliveOil 0.233 0.133 0.1 197, Mar. 1981,

OSULeaf 0.153 0.165 0.107 « : . :
SonyATBORobotSurface 0409 0306 0251 [8] E Keogh and S. Kasetty, “On the_n_eed for time s.ene,_’s data min-
SonyAIBORobotSurfacell || 0.154 0.126 0.136 ing benchmarks: A survey and empirical demonstration,” Data Min.

SwedishLeaf 0.125 0.278 0.083 Knowl. Discov., vol. 7, no. 4, pp. 349-371, Oct. 2003.

Symbols 0.088 0.109 0.043 [91 Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classi-

Symh%tr‘:c(éontr‘)l &017 &017 0'36 fication,” SIGKDD Explor. Newsl., vol. 12, no. 1, pp. 40-48, Nov.
TwoPatterns 0.01 0.004 0.034 2010. . . L .
TwoLeadECG 0.248 0.014 0.002 [10] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping
uWaveGestureLibrary_X 0.242 0.323 0.233 for datamining applications,” in Proceedings of KDD '00, 2000, pp.
uWaveGestureLibrary_Y 0.352 0.364 0.352 285-289
'WaveGestureLib: z 0.325 0.356 0.31 T . .
uave e‘SVaIrvzrl - 0.01 0.001 0.003 [11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,

WordSynonyms 0.371 0.44 0.258 “Querying and mining of time series data: Experimental comparison

Yoga 0.145 0.151 0.094 of representations and distance measures,” Proc. VLDB Endow., vol. 1,

with shapeDTW [19]. In [19], 84 data sets (not including
the StarLightCurves data sets) in the UCR Time Series
Classification Archive were used. Table VI compares the
performance of the methods. Both our previous method and
the proposed method are superior to shapeDTW.

VI. CONCLUSION

We proposed a novel 1-NN SAX-based time series classi-
fier. The proposed method includes a moving average conver-
gence divergence (MACD)-histogram-based SAX (MHSAX)
and the nearest neighbor (1-NN) classifier utilizing the local
sequence alignment technique. To evaluate the proposed
method, we implemented it and conducted experiments using
the UCR Time Series Classification Archive. The experi-
mental results show that the proposed method outperforms
our previous method. Moreover, its classification ability is
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