ARL Formulas of MA Control Chart with Zero-Inflated Binomial Model when Underlying Distribution is Ratio of Two Poisson Means

Direk Bualuang, Yupaporn Areepong, and Saowanit Sukparungsee

Abstract—The aim of this research is to derive an explicit formulas of Average Run Length (ARL) for the Moving Average (MA) control chart with Zero-Inflated Binomial model when the underlying distribution is ratio of two Poisson means. The ARL is used in term of comparison the performance in detecting a change on control chart. The derived formulas of ARL is carried out and showed to be beneficial for quality controller.

Index Terms— Moving Average control chart, Zero-Inflated Binomial, Average Run Length

I. INTRODUCTION

Control chart is one of the important tools of Statistical Process Control (SPC). SPC are widely used for detecting changes in a processes, measuring, controlling, and improving quality of the process in many areas of interest including medicine, finance and economics, engineering, and others. Shewhart control chart was invented by Dr. Walter Shewhart in the 1924 as tool to determine if a manufacturing process mean is constant. It is well-known fact that Shewhart control chart do not perform well for small shift in the process mean (see, e.g., Pawar [1]). To resolve this defective point, several types of control chart were developed for detecting small shift in the process mean.

In 1954 the Cumulative Sum (CUSUM) control chart was first presented by Page [2]. Next, Exponentially Weighted Moving Average (EWMA) control chart was presented by Roberts [3] in 1959. Both were effective in detecting small shifts in the process mean and better than Shewhart control chart. Recently, Khoo[4] first presented Moving Average (MA) control chart for monitoring the non-conforming or defective fraction in discrete process.

The productions of high quality have been produced by industrial entrepreneurs. The occurrence of large number of

Manuscript received January 11, 2017. This work was supported in part by graduate college, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.

D. Bualuang is with Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand (e-mail: direk2029@gmail.com).

Y. Areepong is with Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand (e-mail: yupaporn.a@sci.kmutnb.ac.th).

S. Sukparungsee is with Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand (e-mail: swns@kmutnb.ac.th).

zero failures on the products has commonly presented. In particular health engineering, it is called rare health events (see in [5],[6]). Applying to traditional np-chart based on a binomial distribution, a large number of observed zero data for an attribute quality characteristic can be fit the binomial distribution [5], In many cases, binomial distribution may be more flexible and natural to use in place of Poisson distribution with the control charts for ratio of two Poisson means [7], because binomial model is simple and flexible alternative to the Poisson model including case of overdispersion too[8]. Therefore, developed model can be based on Zero Inflated Binomial (ZIB) distribution. In this paper, analytical ARL formulas of MA control charts when observations are from a zero-inflated binomial model when underlying distribution is ratio of two Poisson means is derived.

II. ZERO-INFLATED BINOMIAL MODEL WHEN THE UNDERLYING DISTRIBUTION IS RATIO OF TWO POISSON MEANS

Let observations $X_1, X_2, ..., X_n$ be i.i.d. random variables with binomial distribution underlying ratio of two Poisson means, where X_i number of nonconforming is items in sample *i* of *m* samples of size *n*. A simple way to model Zero-Inflated is to include a proportion θ of extra-zeros follow from a Binomial distribution. Let *Y* and *Z* be two independent Poisson variates with parameter α and β respectively. Then, the condition distribution of *Y* given *Y* + *Z* follows a Binomial distribution with parameters *n* and $p = \frac{\alpha}{\alpha + \beta}$. The Zero-Inflated Binomial Underlying

distribution is ratio of two Poisson means density function $X \square ZIB_{poi}(n, \alpha, \beta, \theta)$ can be written as

$$f(x) = \begin{cases} \theta \binom{n}{x} \left(\frac{\alpha}{\alpha+\beta}\right)^x \left(1-\frac{\alpha}{\alpha+\beta}\right)^{n-x} & ; x = 1, 2, ..., n \\ (1-\theta) + \theta \left(1-\frac{\alpha}{\alpha+\beta}\right)^n & ; x = 0 \end{cases}$$

The mean and variance of the above distribution are as follows

$$E(X) = n \left(\frac{\alpha}{\alpha + \beta}\right) \theta$$

and $Var(X) = \theta n(n-1) \left(\frac{\alpha}{\alpha + \beta}\right)^2 + n \left(\frac{\alpha}{\alpha + \beta}\right) \theta - n^2 \left(\frac{\alpha}{\alpha + \beta}\right)^2 \theta^2$

III. The Moving Average Control Chart for $\rm ZIB_{POI}$ observations

A MA control chart is a type of memory control chart based on equal weighted moving average. Suppose individual observations, $X_1, X_2, ..., X_i, ...$ are collected, the moving average of width w at time i can be computed as

$$MA_{i} = \begin{cases} \frac{X_{i} + X_{i-1} + \ldots + X_{i-w+1}}{i} = \frac{\sum_{j=1}^{i} X_{j}}{i} & i < w \\ \frac{X_{i} + X_{i-1} + \ldots + X_{i-w+1}}{w} = \frac{\sum_{j=i-w+1}^{i} X_{j}}{w} & i \ge w \end{cases}$$

where *w* is the width of the MA control chart. The mean and variance of the moving average are as follows:

$$E(MA_i) = E(X_i) = n\left(\frac{\alpha}{\alpha+\beta}\right)\theta$$

and

$$Var(MA_{i}) = \begin{cases} \frac{\theta n (n-1) \left(\frac{\alpha}{\alpha+\beta}\right)^{2} + n \left(\frac{\alpha}{\alpha+\beta}\right) \theta - n^{2} \left(\frac{\alpha}{\alpha+\beta}\right)^{2} \theta^{2}}{ni}, i < w \\ \frac{\theta n (n-1) \left(\frac{\alpha}{\alpha+\beta}\right)^{2} + n \left(\frac{\alpha}{\alpha+\beta}\right) \theta - n^{2} \left(\frac{\alpha}{\alpha+\beta}\right)^{2} \theta^{2}}{nw}, i < w \end{cases}$$

For periods i < w, the control limits are given by

$$UCL / LCL = n\left(\frac{\alpha}{\alpha+\beta}\right)\theta \pm k\sqrt{\frac{\theta n\left(n-1\right)\left(\frac{\alpha}{\alpha+\beta}\right)^2 + n\left(\frac{\alpha}{\alpha+\beta}\right)\theta - n^2\left(\frac{\alpha}{\alpha+\beta}\right)^2\theta^2}{in}}$$

and for periods $i \ge w$

$$UCL / LCL = n\left(\frac{\alpha}{\alpha+\beta}\right)\theta \pm k\sqrt{\frac{\theta n\left(n-1\right)\left(\frac{\alpha}{\alpha+\beta}\right)^2 + n\left(\frac{\alpha}{\alpha+\beta}\right)\theta - n^2\left(\frac{\alpha}{\alpha+\beta}\right)^2\theta^2}{wn}}$$

where k is the width of control limit.

IV. THE EXPLICIT FORMULA FOR EVALUATING ARL FOR MA CONTROL CHART

The ARL values of MA control chart for Zero-Inflated Binomial model underlying two Poisson Means can be derived as follows. Let ARL = n and $p_j = \frac{\alpha_j}{\alpha_j + \beta_j}$, then

$$\begin{aligned} \frac{1}{ARL} &= \left(\frac{1}{n}\right) P\left(o.o.c.\,signal\,at\,time\,i < w\right) \\ &+ \left[\frac{n - (w - 1)}{n}\right] P\left(o.o.c.\,signal\,at\,time\,i \ge w\right) \\ &= \left(\frac{1}{n}\right) \left\{\sum_{i=1}^{w-1} \left[P\left(\frac{\sum_{j=1}^{i} np_{j}\theta_{j}}{i} > UCL_{i}\right) + P\left(\frac{\sum_{j=1}^{i} np_{j}\theta_{j}}{i} < LCL_{i}\right) \right] \right\} \\ &+ \left[\frac{n - (w - 1)}{n}\right] \left[P\left(\frac{1}{w}\sum_{j=i - w + 1}^{i} np_{j}\theta_{j} > UCL_{w}\right) \\ &+ P\left(\frac{1}{w}\right) \sum_{j=i - w + 1}^{i} np_{j}\theta_{j} < LCL_{w} \right] \end{aligned}$$

ISBN: 978-988-14047-3-2 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

$$\begin{split} &= \left(\frac{1}{n}\right) \left\{ \sum_{i=1}^{n} \left[P\left(\frac{\frac{i}{\alpha_i} - \beta_i}{\alpha_i + \beta_i}\right) \theta_i \\ i > UCL_i \right] + P\left(\frac{\sum_{j=1}^{i} n\left(\frac{\alpha_j}{\alpha_j + \beta_j}\right) \theta_j > UCL_i}{i} \right) \right] \right. \\ &+ \left[\frac{n - (w - 1)}{n}\right] \left[P\left(\frac{1}{w_j} \sum_{j=i=n}^{i} n\left(\frac{\alpha_j}{\alpha_j + \beta_j}\right) \theta_j > UCL_i \right) \right] \\ &+ P\left(\frac{1}{w_j} \sum_{i=i=n}^{i} n\left(\frac{\alpha_i}{\alpha_j + \beta_j}\right) \theta_j < UCL_i \right) \right] \\ &= \left(\frac{1}{n}\right) \left\{ \sum_{i=1}^{w} \left[P\left(\frac{\sum_{j=1}^{i} n\left(\frac{\alpha_j}{\alpha_j + \beta_j}\right) \theta_j \\ i \\ i \\ > n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 + 3\sqrt{\frac{\theta_i n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{in} \right) \right] \\ &+ \left[\frac{n - (w - 1)}{n} \right] \left[P\left(\frac{1}{w} \sum_{j=i=w+1}^{i} n\left(\frac{\alpha_j}{\alpha_j + \beta_j}\right) \theta_j \\ &> n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 + 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &+ P\left(\frac{1}{w} \sum_{j=i-w+1}^{i} n\left(\frac{\alpha_j}{\alpha_j + \beta_j}\right) \theta_j \\ &< n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &< n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &< n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0 n(n - 1)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{wn} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0}{w}} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0}{w}} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0}{w}} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0}{w}} \right) \\ &\leq n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - 3\sqrt{\frac{\theta_0}{w}} \right) \\$$

Defining

$$Z_{1} = \frac{\sum_{j=1}^{i} n\left(\frac{\alpha_{j}}{\alpha_{j} + \beta_{j}}\right) \theta_{j} - n\left(\frac{\alpha_{1}}{a_{1} + \beta_{1}}\right) \theta_{1}}{\sqrt{\left(\frac{\theta_{1}n\left(n-1\right)\left(\frac{\alpha_{1}}{a_{1} + \beta_{1}}\right)^{2} + n\left(\frac{\alpha_{1}}{a_{1} + \beta_{1}}\right) \theta_{1} - n^{2}\left(\frac{\alpha_{1}}{a_{1} + \beta_{1}}\right)^{2} \theta_{1}^{2}\right)}}{in}$$

and

$$Z_{2} = \frac{\sum_{j=l-w+1}^{i} n\left(\frac{\alpha_{j}}{\alpha_{j}+\beta_{j}}\right)\theta_{j} - n\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)\theta_{1}}{\sqrt{\left(\frac{\theta_{1}n(n-1)\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)^{2} + n\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)\theta_{1} - n^{2}\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)^{2}\theta_{1}^{2}\right)}}{wn}$$

,then

$$\begin{split} &\frac{1}{ARL} = \left(\frac{1}{n}\right) \left\{ \sum_{i=1}^{n-1} \left[P\left(Z_{1} > \dots \underbrace{\left(n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} + 3 \sqrt{\frac{\theta_{i}n(n-1)\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}}{\frac{1}{n}} \right) - n\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}}{\frac{1}{n}} \right) \\ &+ P\left(Z_{i} < \underbrace{\left(n\left(\frac{\alpha_{o}}{\alpha_{o}} + \beta_{o}\right) \theta_{i} - 3 \sqrt{\frac{\theta_{i}n(n-1)\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}}{\frac{1}{n}} - n\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{i}}{\alpha_{o} + \beta_{o}}\right) \theta_{i}^{2}}{\frac{1}{n}} \right) \\ &+ \left[\frac{n - (w-1)}{n} \right] \left[P\left(Z_{2} > \underbrace{\left(n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}}{\frac{1}{n}} \right) - n\left(\frac{\alpha_{i}}{\alpha_{i} + \beta_{i}}\right) \theta_{i} \\ &+ \left[\frac{n \left(w-1\right)}{n} \right] \left[P\left(Z_{2} > \underbrace{\left(n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}} \right) - n\left(\frac{\alpha_{i}}{\alpha_{i} + \beta_{i}}\right) \theta_{i} \\ &+ \left[\frac{2}{N} \left(\frac{\theta_{i}n(n-1)\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}} \right) - n\left(\frac{\alpha_{i}}{\alpha_{i} + \beta_{i}}\right) \theta_{i} \\ &+ \left[\frac{2}{N} \left(\frac{2}{N} \left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - 3\sqrt{\frac{\theta_{i}n(n-1)\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}} \right) \\ &+ \left[\frac{2}{N} \left(\frac{2}{N} \left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - 3\sqrt{\frac{\theta_{o}}{\alpha_{o} + \beta_{o}}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}} \right) \\ &+ \left[\frac{2}{N} \left(\frac{2}{N} \left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - 3\sqrt{\frac{\theta_{o}}{\alpha_{o} + \beta_{o}}}\right)^{2} + n\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right)^{2} \theta_{i}^{2}} \right) \\ &+ \left[\frac{2}{N} \left(\frac{2}{N} \left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) - \frac{2}{N} \left(\frac{\alpha_{o}}{\alpha_{o} + \beta_{o}}\right) \theta_{i} - n^{2}\left(\frac{\alpha_{o}}{\alpha_$$

$$U = \left\{ \sum_{i=1}^{w-1} \left[P\left(Z_1 > \underbrace{\left(n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 + 3\sqrt{\frac{\theta_0 n\left(n-1\right)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right) \theta_0 - n^2\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 \theta_0^2}{in} \right) - n\left(\frac{\alpha_1}{\alpha_1 + \beta_1}\right) \theta_1 - \frac{1}{\alpha_1 + \beta_1} \left(\frac{\theta_0 n\left(n-1\right)\left(\frac{\alpha_0}{\alpha_0 + \beta_0}\right)^2 + n\left(\frac{\alpha_0}{\alpha_1 + \beta_1}\right) \theta_1 - n^2\left(\frac{\alpha_0}{\alpha_1 + \beta_1}\right)^2 \theta_1^2}{in} \right) - \frac{1}{\alpha_0 + \beta_0} \right) \right\}$$

$$+P\left(Z_{1} < \underbrace{\left(n\left(\frac{\alpha_{0}}{\alpha_{0}+\beta_{0}}\right)\theta_{0}-3\sqrt{\frac{\theta_{0}n\left(n-1\right)\left(\frac{\alpha_{0}}{\alpha_{0}+\beta_{0}}\right)^{2}+n\left(\frac{\alpha_{0}}{\alpha_{0}+\beta_{0}}\right)\theta_{0}-n^{2}\left(\frac{\alpha_{0}}{\alpha_{0}+\beta_{0}}\right)^{2}\theta_{0}^{2}}{\frac{in}{2}}-n\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)\theta_{1}}\sqrt{\frac{\left(\theta_{0}n\left(n-1\right)\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)^{2}+n\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)\theta_{1}-n^{2}\left(\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}}\right)^{2}\theta_{1}^{2}}{\frac{in}{2}}}\right)}{in}\right)}$$

Let

Substituting U and V into Eq. (1), we obtain:

$$\frac{1}{n} = \frac{1}{n}U + \left[\frac{n - (w - 1)}{n}\right]V$$

$$n = (1 - U)V^{-1} + (w - 1)$$

Therefore

ſ

$$ARL = \left[1 - \sum_{i=1}^{n-1} \left[P \left[Z_i > \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i + 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right]$$

$$+ P \left[Z_i < \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right] \right]$$

$$\times P \left[Z_i < \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right] \right]$$

$$\times P \left[Z_i < \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right] \right]$$

$$\times P \left[Z_i < \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right] \right]$$

$$= \left[P \left[Z_i > \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - 3 \sqrt{\frac{\theta_i n \left(n - 1 \right) \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] - n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i \right] \right] \right]$$

$$= \left[P \left[Z_i > \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 + n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i^2 }{n} \right] \right]$$

$$+ P \left[Z_i > \left(\frac{n \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right) \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i - n^2 \left(\frac{\alpha_i}{\alpha_i + \beta_i} \right)^2 \theta_i }{n} \right] \right]$$

(2)

ISBN: 978-988-14047-3-2 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

V. NUMERICAL RESULTS

In this section, the numerical results of average run length, in-control state (ARL₀) and out-of-control state (ARL₁), for Zero-Inflated Binomial model underlying two Poisson means MA control chart was calculated from Eq.(2) and are demonstrated. The parameter values for MA control chart were chosen by setting the desired ARL₀ = 370, $\theta = 0.05$ for probability of the observation is zero, the mean of Poisson $\alpha_0 = 3$, $\beta_0 = 10$, the simulation observation n = 500 and the shifts parameter $\delta = 0.01$, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0. The ARL vales calculated from explicit formula are shown in Table 1 and Table 2.

Table 1 shows the ARL values of Zero-Inflated Binomial model underlying two Poisson means. By varying α shifts, the results show that MA control chart with w = 20 has the best performance when shifts are small. For large shifts $2 \le w \le 5$ has the best performance.

Table 2 shows the ARL of Zero-Inflated Binomial model underlying two Poisson means. By varying β , the results show that the MA control chart with w = 20 has the best performance when shifts are small. For large shifts $2 \le w \le 15$ has the best performance.

Note that, calculation of ARL with the explicit formulas in Eq. (2) are simple and very fast with computational time of less than 1 second.

VI. CONCLUSION

Explicit formulas is derived for ARL on a MA control chart for observations from a Zero-Inflated Binomial underlying two Poisson means. The novel formulas of ARL is easy to use and easy to calculate and program. The performance of the novel formulas for ARL is demonstrated. The results show that for given ARL = 370 of MA control chart has best performance when the shifts in parameter values from an in-control to an out-of-control state are small.

TABLE I

The ARL results for ZIB_{poi} MA chart where $\theta = 0.05$ and ARL₀ = 370, when α shifts.

β	α	W							
		2	3	4	5	10	15	20	
10	3	370.4	370.4	370.4	370.4	370.4	370.4	370.4	
	3.01	360.640	360.340	360.042	359.745	358.280	356.847	355.445	
	3.02	350.075	348.933	347.801	346.678	341.212	335.981	330.976	
	3.03	338.840	336.405	334.009	331.651	320.403	310.003	300.377	
	3.04	327.073	322.998	319.026	315.154	297.183	281.279	267.152	
	3.05	314.910	308.951	303.210	297.678	272.816	251.898	234.149	
	3.06	302.483	294.494	286.903	279.684	248.376	223.436	203.261	
	3.07	289.916	279.842	270.415	261.579	224.681	196.911	175.492	
	3.08	277.321	265.184	254.012	243.701	202.294	172.862	151.194	
	3.09	264.799	250.685	237.918	226.323	181.555	151.479	130.307	
	3.1	252.440	236.483	222.308	209.646	162.623	132.722	112.555	
	3.2	148.651	124.681	106.916	93.306	56.523	41.615	34.780	
	3.3	86.239	66.213	53.306	44.448	25.116	19.991	19.064	
	3.4	52.051	37.684	29.329	24.054	14.557	13.533	14.636	
	3.5	33.158	23.203	17.877	14.759	10.344	11.021	12.752	
	4	7.137	5.287	4.664	4.523	5.549	6.633	7.231	
	5	2.240	2.181	2.291	2.416	2.666	2.681	2.681	

TABLE II The ARL results for *ZIB*_{poi} MA chart where $\theta = 0.05$ and ARL₀ =370, when β shifts.

α	β	W							
		2	3	4	5	10	15	20	
3	10	370.398	370.398	370.398	370.398	370.398	370.398	370.398	
	9.99	367.560	367.533	367.505	367.477	367.340	367.205	367.072	
	9.98	364.635	364.525	364.416	364.306	363.765	363.233	362.710	
	9.97	361.627	361.382	361.138	360.895	359.694	358.518	357.365	
	9.96	358.537	358.106	357.678	357.252	355.151	353.104	351.107	
	9.95	355.370	354.705	354.044	353.388	350.166	347.043	344.017	
	9.94	352.129	351.183	350.245	349.315	344.767	340.392	336.185	
	9.93	348.817	347.547	346.289	345.044	338.988	333.213	327.706	
	9.92	345.437	343.802	342.185	340.587	332.865	325.571	318.681	
	9.91	341.994	339.954	337.943	335.958	326.433	317.532	309.210	
	9.90	338.491	336.011	333.571	331.170	319.728	309.161	299.392	
	9.8	300.950	292.706	284.888	277.466	245.421	220.069	199.681	
	9.7	261.339	246.697	233.518	221.604	176.100	146.000	125.066	
	9.6	222.711	202.939	186.179	171.817	123.209	96.034	79.437	
	9.5	187.159	164.306	146.087	131.271	86.281	64.641	52.936	
	9	72.475	54.398	43.175	35.698	20.378	17.036	17.040	
	8	13.483	9.380	7.5708	6.740	6.871	8.417	9.842	

REFERENCES

- V.Y. Pawar and D.T. Shirke, "Nonparametric Moving Average Control Chart for Process Variability," *International Journal of Engineering Research & Technology (IJERT)*, vol. 3, June 2014, pp. 1570-1578.
- [2] E.S. Page, "Continuous inspection schemes," *Biometrika*, vol. 41, 1954, pp.100-114.
- [3] S.W. Robert, "Control Chart tests based on geometric moving average," *Technometrics*, vol. 1, 1959, pp. 239-250.
- [4] Michael B. C. Khoo, "A Moving Average Control Chart for Monitoring the Fraction Non conforming," *Quality and Reliability Engineering International*, vol. 20, 2004, pp.617-635.
- [5] W.H. Woodall, "The use of control charts in health-care and public health surveillance." *Journal of Quality Technology*, vol. 38, 2006, pp. 88–103.
- [6] L.H. Sego, W.H. Wooda, & M.R. Reynolds, "A comparison of surveillance methods for small incidence rates," *Statistics In Medicine*, vol. 27, 2007, pp. 1225-1247.
- [7] H. SAHAI and A. KHURSHID, "Confidence intervals for ratio of two Poisson means," *The Mathematical Scientist*, vol. 18, 1993, pp. 43-50
- [8] Ashit B. Chakraborty and Anwer Khurshid, "Control charts for Binomial when the underlying distribution is ratio of two Poisson means." <u>*Revista Investigacion Operacional*</u>, vol. 32, 2011, pp. 258-264.