



Abstract— In software engineering, version control is an

important activity for change management. Functional

requirements are essential parts to communicate software

behaviors, which may include inputs of a corresponding

function. Functional requirements may be changed during the

software development process. Consequently, inputs in a

functional requirement might relate to other parts of software

artifacts such as database schema, and test cases. If changes are

occurred more frequently, they lead to difficulties in

maintaining data consistency. Moreover, the data will possibly

be lost if the system is built without a version control, so it is

hard to revert to the previous state. This paper proposes an

approach for version control on database schema and test cases

from the functional requirements’ input changes. The proposed

approach applies a successive versioning method with the

backward versioning strategy. Thus, the proposed approach

can be adopted in implementing a tool for effective version

control.

Index Terms— Version Control, Functional Requirements’

Input Changes, Database Schema, Test Case

I. INTRODUCTION

HANGES could be occurred at any phases in the

software development life cycle. When changes occur,

their effect may possibly impact on many parts of software

artifacts, e.g. Functional Requirements (FR), and test case.

Basically, functional requirements are essential part of

software artifacts that define and communicate one or more

specific behaviors or functions that a software must perform

[1]. A function that is enclosed within the functional

requirements, is described as a set of inputs in order to

produce expected outputs. The input in the functional

requirement is related to the database schema in which the

instance data of the input are stored. In general, Database

Schema takes the responsibility to define characteristics of

data in the database. Therefore, if users change the

characteristics of the inputs, such as data type or length, it is

possible that the database schema is affected by the changes.

Unfortunately, database schema is not the only affected

artifact. Test cases are also affected because they are used to

validate a software function in conformance with predefined

functional requirements. If a set of the functional

Manuscript received January 07, 2017; revised January 23, 2017.

P. Kiatphao and T. Suwannasart are with the Software Engineering Lab,

Center of Excellence in Software Engineering, Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

Thailand, E-mail: Parichat.Kia@student.chula.ac.th,Taratip.S@chula.ac.th.

requirement’s inputs is changed, test cases might be added,

updated or deleted. Furthermore, since the relationship

between functional requirements and test cases can be traced

by the Requirement Traceability Matrix (RTM), the RTM is

also required to update following the changes of test cases

and the functional requirements.

If changes are occurred more frequently, they lead to the

difficulty in maintaining data consistency because of the

increasing number of data versions. In this case, it is

necessary to control the evolution of the software and

provide an ability to revert the state of data if there is a

mistake. From the purpose of dealing with multiple changes,

version control is needed because it is the task of keeping

software system (or artifacts) consisting of many versions

and configurations well-organized [2].

Previously, there is a research that proposed an approach

for analyzing the impact from changes to the inputs of

functional requirements [3], which also focuses on updating

database schema and test cases to make software works

properly as usual. However, their update procedure is to

replace older version without storing the historical data.

According to the previous research, if there is any mistake

on the change, it is hard to revert to the previous version.

In this paper, we present an approach for version control

on database schema, test cases and RTM where one or more

inputs of functional requirements are changed. We have

designed an approach for keeping versions by applying the

concept of backward versioning strategy which supports

reverting the previous version if the latest change is

mistaken.

We have organized the rest of this paper as follows:

Section 2 describes related work. Section 3 describes the

necessary background knowledge. Section 4 presents the

proposed approach for version control. Finally, conclusion

and future work are discussed in section 5.

II. RELATED WORK

To investigate the feasibility, we first studied the

alternative method for version control. E. J. Choi et al.,

presented a method for the version control by using a tree

data structure [4]. They presents their method named HiP

(History in Parent) which uses concept of backward

versioning strategy. Their method maintains the history node

as a sequence of pointers to each node which applied the

“Save_History” algorithm. This algorithm is started by

storing the beginning of the node list in head pointer which

points to the current node (or current version). The current

Version Control on Database Schema and Test

Cases from Functional Requirements’ Input

Changes

Parichat Kiatphao and Taratip Suwannasart

C

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

node contains a pointer to the previous node, and so on.

Finally, the last node (or first version) has its pointer points

to NULL as a mark of the end of the list. This algorithm

shows that the change history of a node will be maintained at

its parent node explicitly. However, their method limits the

application of version control in term of the program source

code only. This paper applies their method for version

control, especially the part of Save_History algorithm in

order to perform the version control on database schema and

test cases.

Another related research was proposed by A. Kampeera et

al. [3], in which they presented an approach to analyze the

impact of functional requirements’ input changes to database

schema and test cases. They also generated a SQL command

for updating schema directly. Moreover, a related test case,

which is identified by the RTM, will be updated. However,

their approach used the update operation by replacing an old

version of functional requirements and test cases with a new

version directly. The aforementioned operation may

consider as a drawback of their approach because it leads to

difficulty in reverting to any previous state of the data if the

change is mistaken. Hence, our approach offers a solution to

these problems by collecting a variety of data version as a

change history automatically. The collection of change

history will allow users for tracking and reverting changes

more effectively.

III. BACKGROUND

A. Version Control

Version control is a challenging task or activity for

software development and maintenance in software

engineering [2]. Version control helps managing changes for

maintaining software (or software artifact) versions in order

to provide an ability of tracking and reverting changes to the

specified version. Version control also refers to an activity

for keeping the old version of a software (or software

artifact) when it is changed, and a new version is created [4].

Version control can be performed in one of two methods:

the Full Copy and the Delta. The Full Copy method

maintains versioned data entirely in each version. The

modification is done by duplicating as a new file with same

name but different version numbers. The Delta method

maintains only one complete version and reconstructs other

versions from the difference between each version. There are

two strategies used in the Delta method [5]. The forward

versioning strategy which maintains the oldest version as a

complete version and keeps the version of the difference

between each version and the oldest one. The backward

versioning strategy which maintains the current version as a

complete version and keeps the version from the difference

between each version and the current one.

IV. PROPOSED APPROACH

In this section, we will describe our proposed approach

for version control on database schema and test cases when

functional requirements’ inputs are changed. The framework

for constructing version control environment following our

proposed approach consists of six steps:

1) Initiate the Corresponding Data

2) Analyze and Store Change Data

3) Analyze and Update the Impact of Change

4) Store Change History and Control Version

5) Cancel the Latest Change

6) Display Result

Fig. 1 shows the behavioral representation of our

proposed approach. Each step is described and given the

example respectively in the following subsections.

A. Initiate the Corresponding Data

First, a user initiates the corresponding data for the

system, including (1) Functional Requirements which consist

of a functional requirement ID (FR Id), a description (FR

Description), a version (FR Version), and a set of inputs.

The inputs are specified by name, data type, data length,

constraints, and its relation to database schema. (2) Database

schema which consists of table names, field names as well as

their specifications including data types, data lengths, and

constraints. (3) Test cases which consist of a test case ID, a

related functional requirement ID, a test case version, an

expected result, and inputs with associated test data. (4) A

requirement traceability matrix or RTM which consists of

the relations between functional requirements and test cases.

B. Analyze and Store Change

In this step, we analyze the effect on functional

requirements’ input(s) from a user request. This paper

focuses on three types of change:

1) Add new inputs

2) Delete inputs

3) Update inputs, including input name, data type, data

length, and constraints.

Assume that we have an original version of functional

requirements as shown in Table I. If the change is occurred

1. Initiate the

Corresponding Data

2. Analyze and

Store Change Data

3. Analyze and Update

the Impact of Change

System

Database

4. Store Change

History and Control

Version

5. Cancel the latest

change

6. Display Results

Target DatabaseTarget Database

1. Functional Requirements

2. Database Schema

3. Test Cases

4. RTM

List of Functional

Requirements’ Input

Changes

Cancellation

Request

Table and Field

Name

Information about The

Latest Version of

Database Schema

Historical Data of Latest Change

Change Request No.

with Change Details

Change Details

The Latest Version

Cancelled

Historical Data of Change and

The Latest Version of Data

Historical Data of Change and

The Latest Version of Data

Result of the Change

Initial Data

The Affected Data and

Last Updated Data

 Fig. 1. Conceptual Framework for Version Control on Database

Schema and Test Case from Functional Requirements’ Input Changes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

as a change request shown in Table II, we will analyze the

change for storing the detail of the changed input into a

system database and generating a new unique identifier

(Change Request No.) to the change request.

 Table II shows that three inputs of a functional

requirement is changed due to the change request 'CR-01' as

described as follows: First, ‘Student Id’ is changed its data

type from VARCHAR to CHAR and its length from 10 to 9

characters. Second, a ‘Mobile’ input field is deleted entirely.

Finally, a new input named ‘Email’ is added to the

functional requirements, with initiation of its attributes and

constraints.

C. Analyze and Update the Impact of Change

In this paper, we assume that the change impact analysis

will be done by a stub service which behaves as same as the

actual service proposed in [3]. Thus, we use the detail of the

change request from step B to analyze the change impact

and update associated data. In this moment, the schema of

the target database will be updated to the current state. The

results of impact analysis are as follows:

1) Affected Functional Requirements

2) Affected Test Cases

3) Affected tables and fields in the target database.

4) Affected Requirements Traceability Matrix

D. Store Change History Data and Version Control

In this step, the change history is recorded after a stub

service returned its result. The analysis result presents a

relationship of the corresponding data between each version

as shown in Table III and IV, and the result is stored into the

system database as well.

Table III shows an example of historical data belonging to

the change request ‘CR-01’ which indicates that the

functional requirement ‘FR-01’ has affected by this change

and a new version of ‘FR-01’ was created. Therefore, the

version of ‘FR-01’ is changed from 1.0 to 2.0.

Table IV shows an example of the change details for the

functional requirement ‘FR-01’. The change details show

that the functional requirement ‘FR-01’ has been changed in

three inputs from the change request ‘CR-01’ and each input

is compared between old and new version. For instances,

‘Student Id’ field in the functional requirement ‘FR-01’ has

reduced its length from 10 to 9 characters.

Furthermore, from the change request ‘CR-01’, test cases

that are related to the functional requirement ‘FR-01’ are

also affected, e.g. the test case ‘TC-01’ contains test data

with length of 10 characters. We illustrate the change history

for the affected test case as shown in Table V and VI.

Table V shows an example of historical data belonging to

the change request ‘CR-01’ which indicates that the test case

TABLE IV

THE AFFECTED FUNCTIONAL REQUIREMENT IN DETAILS

Change Request No. CR-01

FR Id FR-01

Input Name Student Id Mobile Email

Change Type Edit Delete Add

Data Type Old VARCHAR VARCHAR

New CHAR VARCHAR

Data Length Old 10 15 NULL

New 9 NULL 50

Unique Old NULL

New Y

Null Old Y NULL

New NULL N

Default Old

New

Max Old

New

Min Old

New

* The blank cells represent data that does not change anything.

TABLE II

AN EXAMPLE OF LIST OF INPUT CHANGES

Change Request No. CR-01

FR Id FR-01

No Input Name
Changes

Type Description

1 Student Id Edit Data Type (‘varchar’, ‘char’),

Data Length (‘10’, ‘9’)

2 Mobile Delete Delete a field

3 Email Add Data Type (‘’, ‘varchar’)

Data Length (‘’, ‘50’),

Unique (‘’, ‘Y’),

Default (‘’, ‘’),

Null (‘’, ‘N’),

Max (‘’, ‘’),

Min (‘’, ‘’),

Table (‘student’),

Field (‘email)

TABLE V

CHANGE HISTORY OF THE AFFECTED TEST CASE

Change Request No. CR-01

Test Case No. TC-01

Change Type Edit

Old Test Case Version 1.0

New Test Case Version 2.0

TABLE III

HISTORICAL CHANGE DATA OF THE AFFECTED FUNCTIONAL REQUIREMENT

Change Request No. CR-01

FR Id FR-01

Old Function Version 1.0

New Function Version 2.0

TABLE I

THE FUNCTIONAL REQUIREMENT FR-01 (VERSION 1.0)

FR Id FR-01

FR Description Insert student information
FR Version 1.0

List of Inputs Relation

Input Name
Data

Type

L
e
n

g
th

Constraints

Table

Name

Field

Name

U
n

iq
u

e

D
ef

au
lt

N
u

ll

M
ax

M
in

Student Id varchar 10 Y - N - - student studentId

First Name nvarchar 45 - - N - - student firstName

Last Name nvarchar 45 - - N - - student lastName

Faculty varchar 2 - - N - - faculty facNo

Department varchar 2 - - N - - departme

nt

deptNo

Year int 1 - 1 N 1 4 student year

Mobile varchar 15 - - Y - - student mobile

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

‘TC-01’ has affected and changed its version from 1.0 to

2.0. In additional, our approach supports three test case

change types, including Addition, Deletion, and Editing of

an affected test case.

Since the length of ‘Student Id’ field of the functional

requirement ‘FR-01’ have been changed, Table VI shows

that the test input ‘Student Id’ and its corresponding test data

are affected and makes this test case inapplicable.

Consequently, the test input and its test data need to be

changed. Moreover, there are two more test inputs that are

also affected by this change and need to be handled as well.

Other than that the change probably affects to the

corresponding database schema and it needs to be updated.

The change history of the database schema is also recorded.

We illustrate the change history for the impact on the

corresponding database schema as shown in Table VII.

Table VII shows that the database schema of table

‘student’ need to be changed with respect to the functional

requirement ‘FR-01’. Thus, the change history keeps the

difference between each version, e.g. the database field

‘studentId’ in the database table ‘student’ has changed its

data type from VARCHAR to CHAR and the length from 10

to 9 characters as same as the corresponding functional

requirement ‘FR-01’. In addition, the new version of the

current database schema can be kept directly from the target

database by using a SQL command after a stub service has

updated.

From the aforementioned example of the versioning step,

we can classify our strategy used as the backward versioning

strategy for version control because a new or current version

is created after completing an update and treat as a complete

version. Other than that the new or current version is linked

to the previous one before disabling it. We follow the

backward versioning strategy as it can be represented in the

same way as shown in Fig. 2.

In this paper, we apply the backward versioning strategy

into an atomic level of each data, i.e. each test case, each

functional requirement, and each field of database schema.

Finally, the updated functional requirement ‘FR-01’ can

be represented as a new version as shown in table VIII. The

current version is stored in the system database as a

complete version.

Also, the updated version of other affected data is stored

in the system database as well. For instances, the complete

or current version of the affected test case ‘TC-01’ in the

system database can be shown in Table IX.

E. Cancel the Latest Change

In real-life situation, the change can possibly be cancelled

TABLE VI

THE AFFECTED TEST CASE IN DETAILS

Change Request No. CR-01

Test Case No TC-01
Input Name Student Id Mobile Email

Change Type Edit Delete Add

Test Data
Old 5870947021 02-333999

New 876987893 Test@a.com

TABLE IX

THE LATEST VERSION OF TEST CASE TC-01

Test Case Id TC-01

Test Case Version 2.0

FR Id FR-01

Expected Output Valid

List of Inputs

Input Name Test Data Value

Student Id 876987893

First Name Julie

Last Name Ann

Faculty 05

Department 10

Year 1

Email Test@a.com

TABLE VIII

THE LATEST VERSION OF FUNCTIONAL REQUIREMENT FR-01

FR Id FR-01

FR Description Insert student information
FR Version 2.0

List of Inputs Relation

Input Name Type

L
e
n

g
th

Constraints

Table

Name

Field

Name
U

n
iq

u
e

D
ef

au
lt

N
u

ll

M
ax

M
in

Student Id char 9 Y - N - - student studentId

First Name nvarchar 45 - - N - - student firstName

Last Name nvarchar 45 - - N - - student lastName

Faculty varchar 2 - - N - - faculty facNo

Department varchar 2 - - N - - departme

nt

deptNo

Year int 1 - 1 N 1 4 student year

Email varchar 50 Y - N - - student email

Version

1.0
FR-01

Functional Requirements

Version

2.0

before change

after change

Fig. 2. Example of the new version creation using backward

versioning strategy

TABLE VII

CHANGE HISTORY OF THE AFFECTED DATABASE SCHEMA

Change Request No. CR-01

Schema Table Name student student student

Schema Field Name studentId mobile email

Change Type Edit Delete Add

Old Schema Version 1.0 1.0

New Schema Version 2.0 1.0

Data Type Old VARCHAR VARCHAR

 New CHAR VARCHAR

Data Length Old 10 15

 New 9 50

Unique Old

 New Y

Null Old Y

 New N

Default Old

 New

Max Old

 New

Min Old

 New

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

by any mistaken after the change has committed. In this case,

our approach supports the change cancellation of the latest

change only. In other word, our approach provides an ability

to revert the version but our approach does not allow

cancelling any version in the middle of the version sequence.

The cancelled change will be analyzed to find if the data

version corresponds to the cancelled change, e.g. the change

from change request ‘CR-03’ is cancelled. From the

analysis, the result appears that this change affects the

functional requirement ‘FR-02’ and ‘FR-03’ from version

2.0 to 3.0 and 1.0 to 2.0 respectively. Thus, if the change

request ‘CR-03’ is cancelled, the functional requirement

‘FR-02’ and ‘FR-03’ will be reversed to version 2.0 and 1.0

respectively by removing the cancelled version of data. The

linkage between versions can be found explicitly in the

change history we stored in step D.

F. Display Result

After all operation is done, the result of version control

will display with respect to the change (or change

cancellation), to inform the user about the following

information:

1) The change request information – this information

describes about who request the change, the date of

request, and which functional requirements’ input the

request intend to change.

2) Details of the effect on functional requirements, test

cases, RTM and database schema from the change

request.

3) The latest version of the corresponding data that are

changed from the change request.

V. CONCLUSION

We have proposed our approach for version control on

database schema and test cases from functional

requirements’ input changes. Using our approach, the record

of all changed data are kept as a historical data (or change

history). Then, the current state of data will be updated as a

new or current version. The creation of a new or current

version are handled by using the concept of backward

versioning strategy and apply ‘Save_History’ algorithm.

Moreover, by following our approach, the latest change is

allowed to be cancelled by removing the current version of

the data in order to reverse to the previous version. In the

future, we will develop a tool from our proposed approach.

Subsequently, the developed tool will be evaluated by

measuring the data accuracy.

REFERENCES

[1] IEEE Standard for Application and Management of the System

Engineering Process, IEEE Standard 1220, 2005.

[2] W. F. Tichy, “RCS—a system for version control,” Softw. Pract.

Exper., vol. 15, no. 7, pp. 637-654, July. 1985.

[3] A. Kampeera and T. Suwannasart, “Impact Analysis to Database

Schema and Test Case from Inputs of Functional Requirements

Changes,” in Lecture Notes in Engineering and Computer Science:

Proceedings of The International MultiConference of Engineers and

Computer Scientists 2016, pp. 449-453.

[4] E. J. Choi and Y. R. Kwon, “An Efficient Method for Version

Control of a Tree Data Structure,” Softw. Pract. Exper., vol. 27, no.

7, pp. 797-811, July. 1997.

[5] P. Dadam, V. Y. Lum and H. –D. Werner, “Integration of Time

Versions into a Relational Database System,” in Proc. 10th Int.

Conf. on Very Large Data Bases, San Francisco, 1984, pp. 509-

522.J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays

(Periodical style—Submitted for publication),” IAENG International

Journal of Applied Mathematics, submitted for publication.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

