

Abstract— Genetic Algorithms have been widely used to

generate test cases by automatically searching a space for
suitable solutions to a search problem. In this paper, we intend
to produce a set of test cases that effectively find faults in a web
application from an initial set of test cases. We introduce a
variant of genetic algorithms, a pseudo-genetic algorithm that
generates model-based test cases and transforms them into
executable test cases. We incorporated the pseudo-genetic
algorithm in a search-based testing tool called MutateIFML.
We included the web application’s model during the
optimisation process to ensure that the offspring test cases are
syntactically sound. Then, we evaluate the effectiveness of the
test cases using the mutation score of the test cases. We found
that MutateIFML performs better on a collection of mutant
systems under test that were created by hand, based on bug
reports of a web application, compared to mutant systems
under tests created by a mutation testing tool. Finally, we
discuss further improvements for MutateIFML.

Index Terms— Search-based testing, model-based testing,
functional testing, genetic algorithms

I. INTRODUCTION
ENERATING test cases is challenging, particularly when
it requires automating the process to produce

executable test cases. According to Utting [1], the process
usually involves initialising the system under test (SUT),
putting the SUT in the required context, creating the test
input values, passing those inputs to the SUT, recording the
SUT response, comparing that response with the expected
outputs, and assigning a pass/fail verdict to each test.
Researchers have implemented various approaches to
address these challenges, depending on the type of problem
that they want to solve, and the type of SUT involved. The
application of Genetic Algorithms (GAs) is quite prevalent
in test case generation that involves test case optimisation.
GAs are applied as part of the search-based testing (SBT)
approach, which uses metaheuristic search techniques [2] to
search for the best solution in a search space or population.

Sometimes, GAs are modified to solve specific search
problems, such as the Memetic Algorithms that incorporates
local search operators into GAs [3]. In this paper, we use the

Manuscript received December 22, 2016; revised January 16, 2017.
Suhaila M. Yasin is with the School of Information Technology and

Electrical Engineering, The University of Queensland, Brisbane 4072,
Queensland Australia, on leave from Universiti Tun Hussein Onn Malaysia,
86400 Parit Raja, Batu Pahat, Johor, Malaysia (e-mail:
s.mohdyasin@uq.edu.au).

Paul A. Strooper is with the School of Information Technology and
Electrical Engineering, The University of Queensland, Brisbane 4072,
Queensland Australia. (e-mail: pstroop@itee.uq.edu.au).

Jim R. H. Steel is with the Australian e-Health Research Centre, CSIRO,
Boulder, Herston 4029, Queensland Australia. (e-mail: jim.steel@csiro.au).

term ‘fitness’ to refer to the performance of both the parent
and offspring test cases. We also use the term ‘population’
to refer to the set of test cases. We modify GAs with several
intentions. Firstly, the initial selection phase of GAs is used
to evaluate the fitness of the initial set of test cases. The
fitness of these test cases later provides valuable insight
regarding the limitations of the initial population,
specifically concerning the nature of faults in the SUT that
were not discovered by the test cases. Secondly, we use the
Interaction Flow Modelling Language (IFML) to represent
candidates, as opposed to traditional binary string
representation. IFML has the capability to model the
content, user interaction and control behaviour of the front
ends of WAs [4]. We want to produce multiple test cases
with varied interaction flows, and the IFML elements
provide a suitable representation for the model-based test
cases that we are using. Thirdly, the termination of GAs can
be configured quite easily to satisfy specific search
problems. In our case, we want to increase the effectiveness
of the test cases in revealing faults in the SUT.

Testing web applications (WAs) manually is difficult.
Today’s fast-paced WA development practices often cause
testing to be neglected [5]. Automating the test case
generation and optimisation increases the efficiency of
testing. We have developed a prototype SBT support tool
called MutateIFML. MutateIFML uses the modified GA to
generate new test cases from the existing pool of test cases.
MutateIFML also facilitates test execution by controlling
Humbug [6] a mutation-testing tool that executes test cases
by using PHPUnit and Selenium WebDriver1. It evaluates
the fitness of the test cases by calculating the mutation score
of these test cases. We used two groups of mutant SUTs: (1)
mutant SUTs that are automatically generated by Humbug
and (2) mutant SUTs produced by hand based on a fault
taxonomy for WA’s faults, and a bug report of the SUT.
The former is produced at code level, whereas the latter is
performed at a higher level to achieve more diversity in
terms of the mutant classification.

The paper is set up as follows. In Section II, we review
the related literature on SBT, including the use of GAs in
SBT. In Section III, we present our modified GA. In Section
IV, we describe the SBT support tool, MutateIFML that we
developed. In Section V, we explain the validation of
MutateIFML’s prototype that was performed with
OpenBiblio, a WA library management system. In Section
VI, we discuss the results from the validation of
MutateIFML. In Section VII we elaborate the plan for
improving MutateIFML.

A Pseudo-Genetic Algorithm for Optimising
Test Cases

Suhaila M. Yasin, Member, IAENG, Paul A. Strooper, and Jim R. H. Steel

G

1 Selenium WebDriver - http://www.seleniumhq.org/projects/webdriver/

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

II. RELATED WORK
This research project builds on earlier work from three

areas: search-based testing, model-based testing (MBT) and
fault-seeding. This section discusses the findings from
earlier work within the scope of WA testing.

A. Search-based Testing
The term “search-based testing” is used interchangeably

with “search-based software testing”. In this paper, the
following definition of SBT is used: “Applying a
metaheuristic algorithm to a software testing approach in
order to optimise a certain testing task that was in focus”
[7]. The term “metaheuristic” here refers to “all stochastic
algorithms with randomisation and local search” [8]. The
randomisation causes the local search to be able to be
moved to search on the global scale [8]. In software testing,
SBT is applied with the intention of supporting automation
as opposed to manual testing [7], and reducing testing effort,
while at the same time being adaptable to changes [2].

Consider Evolutionary Algorithms (EAs) as an example
of a search algorithm. The search algorithm begins with a
group of individuals, which are known as the initial
population. These individuals may represent various objects
in testing (source code, test data, test cases, or classes),
depending on the problem that a tester wishes to solve [9].
The search process is guided by the fitness function, a
component that is capable of guiding the search towards
revealing the potential solution within a practical time limit
[7]. The fitness function helps the EAs in finding the best
individual that could solve the problem, by measuring the
individual’s fitness value. If the best individual is not found,
the search process will go through a repetitive cycle of
selecting several individuals in the population, recombining
their attributes (through operations such as crossover that
switches attributes between a pair of individuals and/or the
mutation of some attributes of selected individuals), and will
then introduce the modified individuals as new members of
the population (offspring). To achieve successful
implementation of SBT, two elements of the SBT
algorithms need to be accurately defined: representation of
the search problem, and the fitness function that captures the
objectives of the search problem and guides the search
process [9].

SBT was introduced by Miller and Spooner with a simple
technique for generating test data for floating-point inputs
[10]. However, tool support for SBT remained elusive until
several years later. The introduction of the GA and EA
toolbox which helps automate the search process [11] led to
further developments in SBT. This is evident in several later
works that introduce the SBT approach with this toolbox to
solve several software testing problems [12-14].

Most SBT contributions focus on test data generation
[9]. Instead of optimising test data, we focus on optimising
test cases to improve their effectiveness in testing. Control-
flow coverage is the most commonly used criterion in
evaluating the effectiveness of SBT algorithms [15]. Instead
of control-flow coverage, we use mutation score as a
criterion, since we are focusing our effort on searching
solutions capable of discovering faults.

In the area of fault detection, academic contributions are
limited [15]. Watkins et al. introduce a failure-pursuit

strategy, based on a GA for system-level testing [16].
Tracey et al. propose the use of a Simulated Annealing (SA)
algorithm to search for test data that reveal specification
failures [17], demonstrated on three Ada programs.
Recently, SA was compared with GAs and greedy
algorithms in terms of test efficiency, t-way coverage and
fault detection rate through combinatorial interaction testing
performed on a collection of C and Java programs [18].
Learning from the flaws of GAs in previous
implementations, Baudry et al. introduce Bacteriologic
Algorithms to automate the test optimisation to increase the
quality of the test suites [19]. Another method called the U-
method is implemented by Guo et al. to trace faulty
transitions in Finite-State Machines (FSM) [20]. Chan et al.
demonstrate the use of EAs to discover unwanted behavior
in a computer game’s scenario [21]. The application of SBT
is also reported in discovering faulty scenarios when
simulating an automobile’s parking, adaptive cruise control
and anti-lock braking system [12, 14, 22]. In this paper, we
apply GA, one of the most popular type of EA to automate
the test optimisation of a WA. We aim to evaluate the
effectiveness of the test cases in revealing faults related to
the WA’s interactions with its users.

B. Application of SBT in Web Application Testing
Several works extended SBT into WA testing. It has

been suggested that SBT has a prominent role in future
Internet applications, since SBT algorithms are adaptive to
emerging challenges [23]. Extending previous research of
SBT into WA testing presents challenges in terms of
defining the representation of the candidates and the fitness
function. The dynamic structure of web interfaces [24] also
presents a difficulty. Since WAs are heavily event-driven
[25], their response is influenced by the user’s choice of
actions. This causes the WA’s interface to change with
every interaction. WAs allow semantically long user
interactions to accomplish complicated tasks, as long as the
user session remains active. Marchetto et al. propose HILL,
based on hill-climbing algorithms, to resolve the issue of
maintaining the fault-detection effectiveness of long
semantically interacting state-based sequences [26]. HILL is
applied on the FSM of a WA called FSMWeb, and uses
three fitness functions to find the most diverse test suite (i.e.
the test suite that covers the most events in a WA) as the
optimal solution. HILL compromises the length of the test
case to find the most diverse test suite, by favouring a test
suite containing limited test cases of different lengths over a
huge suite containing test cases of smaller length.
Manipulating longer test cases requires care as they involve
higher computational costs, are difficult to interpret
manually [27] and may lead to test case bloat [28]. Since
WAs also allow shorter sequences of interactions, it is
feasible to design a search algorithm that could address both
kinds of interactions. We consider both kinds of
interactions.

Alshahwan et al. [29] extend SBT algorithms [30, 31] and
fitness functions from previous works [17, 32, 33] to
develop a partially automated framework called the Search-
Based Web Application Tester (SWAT) for the testing of
WAs. Even though fault-detection capability is discussed,
the approach leans towards achieving significant branch
coverage and optimisation is done at the code-level. Our
approach measures the effectiveness of the test cases in
revealing seeded faults, and we perform optimisation at the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

model level of the WA.

Another SBT tool called the Web Application
Evolutionary Testing Tool (WETT) is proposed by Bolis et
al. [34], in which GAs are used to optimise a collection of
test cases expressed as Sahi [35] statements. The fitness
function used in WETT values individuals with higher
statement coverage and numbers of visited web pages.
Although the Sahi statements provide a representation from
the view of end-user interactions, the results showed low
statement coverage and considerable time overhead. Our
approach introduces a SBT tool that supports a high-level
test case representation of a WA’s behaviour, as opposed to
the low-level representations commonly used in existing
works. We use mutation score as our fitness function to
value individuals that kill WA mutants.

A more recent work implements a GA to select potential
locations that are most likely to contain failure events [36].
Instead of optimising test cases, Andrews et al. optimise test
paths and types of actual failure events (defects). Further,
the multi-objective fitness function used in their work
emphasises these objectives: rewarding novelty of an
offspring that is more distant from the existing population
(exploring), and measuring the proximity between the
offspring and the defects that have been discovered in the
previous generations (prospecting or mining).

C. Application of MBT in Web Application Testing
For the purposes of MBT, a model is a representation of

the SUT’s behaviour [37]. As defined by Utting et al., there
are four possible approaches for MBT [1]. Our approach
uses the following interpretation of MBT: “the generation of
executable test cases that include oracle information, such as
the expected output values of the SUT, or some automated
check on the actual output values to see if they are correct”
[1].

To date, MBT in WA testing has been performed using
C# [38], FSMs [39, 40], statecharts [25], Page Flow
Diagrams [41], ATS [42], and ReWeb [43]. However, these
modeling languages use a low-level representation of the
SUT. Ernits et al. [38] focus on discovering errors in the
actions of a WA. Using the NModel toolkit, smaller model
programs are constructed in the C# programming language
using an on-the-fly testing strategy. The drawback of this
approach is the large overhead and difficulties experienced
during the construction of the test harness. Aside from the
NModel approach, other approaches [25, 39-43] are aimed
at discovering inconsistencies in transitional paths. We use
the model to develop a high-level representation of a WA.
Since our work aims at revealing faults in the WA’s
behaviour, we focus on diversifying the user interactions of
a WA by optimising its model-based test cases.

Recent modeling languages (IFML [44], IAML [45], and
UWE [46]) have emerged to address the challenges of
providing a high-level representation of a WA’s interactions
with the end-user. The standard UML diagrams lack precise
modeling for critical components in WAs (web pages, form
elements, hyperlinks and buttons) [13], particularly from the
end-user’s perspective. IFML is a standard by the Object
Management Group (OMG), inspired by the Web Modeling
Language (WebML) notation [44]. In a survey conducted by
Wright et al. [47], WebML was considered to be the best
modeling language for interactive WAs as WebML fulfilled
all the criteria required in modeling interactive WAs.

WebML performs poorly against some criteria such as
supporting the modeling of some elements in interactive
WAs (i.e. browser information, user lifecycle or sessions,
and the user interface), and limitations in meta-modeling
tools and standards. Although Wright et al. propose IAML
[45] to overcome WebML’s shortcomings, IAML is openly
available2, but the lack of sufficient references causes
uncertainties on the kind of learning curve that it presents.
On the other hand, IFML has evolved from the ten years of
experience with WebML [48], and benefits from the
application of WebML in several projects [49, 50]. IFML
seems more appropriate based on its ability to model the
content, user interaction and control behaviour of the front
ends of WAs [4]. IFML does not require a steep learning
curve, being an OMG standard that supports visualisation
styles that are similar to UML.

III. PSEUDO-GENETIC ALGORITHM
In this paper, we define a valid offspring as a test case

that is syntactically correct and satisfies the requirements of
the SUT when it is executed. An invalid offspring is a test
case that is syntactically correct. but is flawed in terms of
the requirements of the SUT (e.g., contains a non-existent
interaction flow). We present our pseudo-genetic algorithm
in Algorithm 1.

Algorithm 1. Pseudo-genetic algorithm
Require: Initial set of test cases TS
Require: Maximum number of generation max
Require: Global mutation score gloMS
Require: General model GM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

population ¬ TS;
generation ¬ 0;
gloMS ¬ (fitness(population));
repeat
while (generation < max) do

P1 ¬ random(TS);
if crossover probability then

genes ¬ random(length(P1));
substitutes ¬ findAlternative(GM, genes);
if !isEmpty(substitutes) then

selected ¬ findSubstitute(substitutes, TS);
P2 ¬ random(selected);
O1, O2 ¬ crossover (P1, P2);

end if;
else

gene ¬ random(length(P1));
substitutes ¬ findAlternative(GM, genes);
if isEmpty(substitutes) then

selected ¬ random(substitutes);
O1 ¬ mutate(P1, selected);

end if;
MS ¬ (fitness{O1, O2});
oldgloMS ¬ gloMS
gloMS ¬ gloMS È (MS);
if (gloMS > oldgloMS) then

population ¬ population È{ O1,O2};
until gloMS > 80% or maximum resources spent

Algorithm 1 is modified from GA. It requires an initial set
of test cases TS, the general model of the application under
study GM, and the pre-defined maximum number of
generations max as input. It optimises the current
2 Internet Application Modelling Language – http://openiaml.org

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

population, i.e. the initial set of test cases, to produce an
offspring or a pair of offspring test cases, depending on the
result of a random selection to perform either a crossover or
a mutation. The offspring then joins the current population,
and the algorithm repeats itself until the maximum number
of generations has been reached.

SBT algorithms require defining the representation of the
individuals, and the fitness function that captures the
objectives of the search problem and guides the search
process [9]. In MutateIFML, each test case is a sequence of
actions by the user, represented using an IFML model. Each
gene represents an IFML element called the IFMLWindow.

There are several notable differences between Algorithm
1 and the traditional GA. Firstly, traditional GA consist of a
single level cycle of evolution, or optimisation. Our
algorithm consists of a two-level cycle of optimisation, with
the fitness evaluation phase on a separate level than the rest.
During the fitness evaluation, only fit individuals are
selected into the population. Secondly, the GM is consulted
during the recombination and mutation phase. The GM was
manually created prior to the application of Algorithm 1.
We use the GM to guide the search process in selecting valid
genes when performing crossover or mutation on the parent
test cases.

Our algorithm uses the cut and slice crossover technique
to perform crossover between two parent test cases on a
randomly chosen crossover position, genes. Starting with a
parent individual, the crossover operator randomly selects
the crossover position, genes in that parent individual. Next,
the algorithm consults the GM to find suitable substitutes. If
substitutes exist, the algorithm searches the population for
individual that possesses identical substitutes. If an
individual with the identical substitutes is found in the
population, crossover will be performed between that
individual and the first parent individual to generate two
new individuals. We implement this measure to minimise
the possibility of producing invalid offspring.

The mutation operators consist of insert, swap, and delete
mutation operators that modify a selected gene of a parent
individual. Only one mutation operator is randomly chosen
at a time. The insert and swap mutation operators consult the
GM to retrieve a list of suitable mutant genes. If the list is
not empty, the mutation operator will randomly select a
mutant gene for the insert or swap operation. As for the
delete mutation operator, the general model is used to
determine whether the selected gene is appropriate for
deletion. If the deletion of the selected gene produces
invalid offspring, no offspring will be produced.

IV. MUTATEIFML
MutateIFML works in collaboration with a mutation-

testing tool called Humbug and the Selenium WebDriver.
MutateIFML receives a set of web application test cases and
the general model of a web application, both expressed
using IFML, and the number of generations as input. Using
the pseudo-GA presented in Section III, MutateIFML
optimises the set of test cases. If MutateIFML selects the
mutation operators of insert, swap, or delete, it produces one
offspring. If MutateIFML selects the crossover operator, it
produces two offspring. Either way, these offspring are then

transformed into an executable Selenium test case. The
current MutateIFML prototype runs in a given number of
generations, and stops when the maximum number of
generations is reached.

Prior to running MutateIFML, mutants of the SUT were
produced separately. These mutants were faulty versions of
the SUT. Some were produced by calling Humbug’s
mutation component, whereas the rest of these mutants were
produced by seeding faults into the SUT by hand, based on a
fault taxonomy and an online bug reports.

The mutation score of the test case and the mutation score
of the population define the fitness function for
MutateIFML. A test case is deemed fit if it manages to
uncover faults in the SUT. The more faults it uncovers, the
fitter it becomes in the population.

The mutation scores are calculated at the test case level,
MS, and the test suite level, gloMS. The mutation score MS
determines the fitness of an individual in the population.
This is calculated the percentage of mutants revealed by the
individual. The mutation score gloMS determines the fitness
of the population by calculating the percentage of mutants
revealed by the union of all individuals (test cases) in the
current population, TS.

MS =100 (
 Number of mutants killed by T) Total number of mutants

gloMS =100 (
 Number of mutants killed by TS) Total number of mutants

The Selenium offspring test cases are executed to retrieve

the fitness of each test case. The execution is achieved by
calling Humbug’s testing component, which in turn calls
PHPUnit to execute Selenium test cases should it finds them
in the test folder. MutateIFML stops after the specified
number of generations is reached.

A. Design
The MutateIFML prototype is designed with several

features. Its main components are the Humbug controller,
the search-based optimisation component, and the Selenium
printer. Fig. 1 illustrates MutateIFML’s architecture.

B. The Humbug Controller
Humbug is a Hypertext Preprocessor (PHP) mutation-

Fig. 1. MutateIFML Architecture

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

testing tool [6] that analyses a PHP source file and mutates it
to produce a mutant of the file, which is then tested against a
test case to determine whether the mutant lives or dies.
Humbug has several components, which are used
exclusively by MutateIFML. The Humbug controller allows
MutateIFML to select between the mutation component or
the testing component of Humbug.

The mutation component analyses the SUT’s source files
and mutates selected files based on a set of mutation
operators predefined in Humbug. This produces several
mutants of the SUT. The number of SUT mutants produced
depends on the analysis performed by Humbug prior to the
mutation of the files.

The testing component is activated by Humbug when it
receives a request from MutateIFML to do so. Humbug will
send a request to its integrated PHPUnit testing framework
to execute the test cases on the mutant SUTs that were
created. PHPUnit reads the required phpunit.xml
configuration file to find the path of the Selenium test cases
created by MutateIFML from the offspring test cases. This is
when the offspring test cases will be tested against the
mutated SUTs, and the fitness of each offspring test case
will be recorded.

C. The Selenium Printer
To test the offspring created by the optimisation

component of MutateIFML, the IFML offspring test cases
need to be transformed into executable test cases. The
Selenium testing framework [51] provides an automated
testing tool called Selenium WebDriver that drives the web
browser during testing, which requires Selenium test scripts
to interact with the SUT.

The Selenium printer component essentially reads the
IFML test case’s file and transforms certain IFML elements
into Selenium commands in Selenese, a HTML-based
language. The Selenium printer will first find an
IFMLWindow element that possesses the default attribute,
isDefault as the starting point. The default window might
contain several input fields, forms, buttons, or links as its
child element. The Selenium printer will systematically find
and transform the child elements of that default window into
Selenium commands. Next, it will find the next window that
is connected to the default window. If the next window
exists, the transformation process is repeated. The Selenium
printer will continue transforming each connected window
until it cannot find further connections.

During the transformation process, the Selenium printer
also includes test assertion statements. These basic Selenium
assertions are added when a certain IFML element is found
in the IFML-based test case. Currently, the
VerifyElementPresent, VerifyNotText, and VerifyText
Selenese commands are used. The Selenium documentation
describes the Selenese VerifyElementPresent command as a
way to “test for the presence of a specific UI element, rather
than its content” [52]. On the other hand, the Selenese
VerifyText and VerifyNotText are used to test the presence of
IFML’s List elements, which contain specific texts or
messages that are usually triggered by the previous action.

D. The Search-Based Optimisation Componentr
The search-based optimisation component uses the

pseudo-GA as its search-based algorithm (see Algorithm 1).

First, the fitness of the individuals in the population is
evaluated. This sub-component works closely with
Humbug’s testing component. Humbug’s testing component
uses PHPUnit to execute the test cases. We manipulate this
feature to our advantage by adding a PHPUnit test script that
executes Selenium test cases. Humbug’s testing component
can record and calculate the test results such as the number
of test cases that pass or fail. Some modifications are made
to Humbug to produce the test results in a log. The log is
then used during the fitness evaluation to calculate the
fitness of each individual and the fitness of the population.

Next, the selection of the individual takes place. The
selected individuals are then optimised to generate new
individuals which are then added to the current population.
The fitness of each individual and the current population are
again evaluated after the generation of new individuals.

V. VALIDATION OF MUTATEIFML
We performed the validation of MutateIFML’s prototype

on a PHP-based web application. OpenBiblio is a web-based
library management system comprising several library
operations such as bibliography cataloguing, circulation, and
library member’s information management [53]. The
validation process is divided into two parts that uses two
different source of mutant SUTs. The first group of mutant
SUTs was created by Humbug whereas the second group of
mutant SUTs was created by hand, which consist of
artificial faults created based on the mutation operators
proposed by Mansour et al. [54], faults from a bug report of
OpenBiblio [55], and faults that were found while analysing
OpenBiblio.

To validate MutateIFML, we modelled OpenBiblio using
the IFML Editor3. The modelled WA is used as the GM
during the validation process. Next, a set of ten IFML test
cases was created using the IFML Editor to represent the
initial population. These test cases were sequences of user
actions on Login, Cataloging, Circulation, Admin and
Report sections of the SUT. The inclusion of various parts
of the SUT in modelling the initial population was
intentional to minimise the possibility of producing
offspring that cluster around certain parts of the SUT only.
Valid input values were appended as annotations on the
IFML elements that require inputs when executed, so that
when these test cases were transformed into Selenium test
cases, they would be automatically populated with test data.

We began the validation of MutateIFML with 100
generations. Using Humbug’s mutation-testing component,
142 mutants of OpenBiblio were created. Next, the initial
population is tested against these mutant SUTs to obtain the
fitness (global mutation score) of the population.

Currently, MutateIFML has a predefined maximum
number of generations of 100. In each generation,
MutateIFML randomly selected one individual from the
population. Next, either the crossover operator or one of the
mutation operators was selected to optimise the individual.
If the crossover operator was selected, MutateIFML would
search for another individual from the population that could
produce a pair of valid offspring. If one of the mutation
operators (insert, swap, or delete) were selected,
MutateIFML would produce only one offspring. Then the
3 Open source IFML editor – http://ifml.github.io

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

offspring was tested against the first group of 142 mutant
SUTs of OpenBiblio. Later, the offspring was added to the
current population, if it managed to kill a mutant SUT that
survived the existing testing. MutateIFML would reset the
optimisation process everytime it found offspring
individuals that improves the global mutation score (i.e. kill
new mutant SUTs). If this condition was not fulfilled,
MutateIFML will continue until it reaches the maximum
number of generations. We then proceed with the second
group of the mutant SUTs. The same validation strategy was
applied to 23 hand-seeded mutant SUTs.

VI. RESULTS AND DISCUSSION
Fig. 2 presents the result of the validation. The blue line

represents the result of the optimisation using Humbug’s
mutant SUTs (first group), while the red line represents the
result of the optimisation using hand-seeded mutant SUTs
(second group).

Using the first group of mutant SUTS, the first test
generations recorded 4 out of 142 faulty versions or mutants
of OpenBiblio killed by the initial population. This result
translated to 2.82% global mutation score. After 50
generations, a total of 170 offspring test cases were created.
However, only 79 offsprings were found valid after they
passed the test against the SUT. When the testing session is
performed every iteration, the global mutation score only
increased slightly. After 50 iterations, MutateIFML could
only produce offsprings that killed two more OpenBiblio
mutants, with the final global mutation score of 4.23%.

The second group of mutant SUTs performed slightly
better, with 10 mutant SUTs killed by the initial population.
Therefore, the global mutation score of the initial population
is 43.5%. The percentage of mutant SUTs killed continues
to grow as the optimisation continues. When the first
offspring that killed a mutant SUT was found, the
optimisation is reset, with the offspring being included into
the initial population. In the end, 115 offspring were
produced, with 65 valid offspring when tested against the
SUT. The optimisation was iterated 4 times. The final global
mutation score was 69.6%, with an additional 6 mutant
SUTs killed.

The analysis on the first group of mutant SUTs revealed
that out of 142 mutant SUTs of OpenBiblio, two mutant
SUTs are not created from the files of the SUT, and 87 of
them are equivalent mutants. When they were removed, the
number of non-equivalent mutant SUTs is reduced to 53.

The two non-related mutant SUTs are actually mutations of
the PHPUnit setUp() file which has to be placed inside the
SUT’s top directory as a requirement for the PHPUnit’s
Selenium Extension to run the test. The Humbug test
component can avoid specified folders in the SUT during
the test, but it cannot avoid files that are placed in the top
directory of the SUT.

The non-equivalent mutant SUTs did not seem to produce
any differences even after manual testing is performed on
them. We realised that the respective mutant SUTs
contained changes to the presentation level of the SUT only,
thus they did not produce any effect on the SUT when
functional testing is performed by Selenium WebDriver.

The analysis also revealed that some mutant SUTs
clustered around a few locations in the SUT that were not
explored by the test cases. The two most apparent clusters of
mutant SUTs are found at the Offline and the Machine-
Readable Cataloguing (MARC) sections of OpenBiblio.
These two location were not covered by the initial
population. The rest of the mutant SUTs modified the links
to additional pages when there are more than one pages of
search results for the Cataloguing, the Members, or the
Circulation tabs. The offsprings never explore the same
IFMLWindow consecutively. This was a deliberate design
decision of the current MutateIFML prototype.

The analysis then focused on the second group of mutant
SUTs which were created by hand. We discovered a few
mutant SUTs that require advanced strategy in terms of test
data selection. The test cases contained basic test data that is
transformed into Selenium values by the Selenium printer
component. Apparently, some remaining mutant SUTs will
only be triggered by specific test data. A good example
relates to a keyword search performed by OpenBiblio in the
Cataloging tab. The search will produce an error page when
a certain keyword, such as “C++” is submitted. Other
mutant SUTs were simply not killed due to the lack of
coverage from the test cases, since not all forms and links in
a visited web page were explored by the offspring. We
intend to address the lack of coverage in our future work.

In comparing both groups of mutant SUTs, Humbug
produces a lot of equivalent mutants compared to the
handmade mutant SUTs. This is attributed to several
reasons. Firstly, Humbug is made to create mutations for a
PHP software application, but is not specifically for a PHP
WA. Secondly, the mutation operators used by Humbug
focus on code-level mutation of PHP tokens. Further,
Humbug only mutates PHP tokens enclosed within a PHP
function. It ignores PHP tokens residing outside a PHP
function. As for the handmade mutant SUTs, they are
reproduced from three sources selected specifically based on
the SUT and its specification. The first source is a set of
mutation operators proposed for testing WAs [54]. The
second and third sources are real faults discovered from the
SUT. Therefore, the handmade mutant SUTs are more
reliable and produce fewer mutants that are equivalent.
However, Humbug has the advantage of automating the
fault-seeding process, whereas the handmade mutant SUTs
require significant overhead in compiling faults from the
three different sources. Furthermore, since the handmade
mutant SUTs are created by the same tester, there is a
tendency for the test cases to be biased.

Fig. 2. MutateIFML’s result

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Even though MutateIFML was designed to produce valid
offspring, a precautionary measure was implemented to
verify whether this design has flaws. Since the general
model was created with the assumption that the current
version of the SUT is correct, the prototype included the
SUT as a temporary oracle to detect the invalid offspring
that may have been produced. MutateIFML logs all the test
results in a text file. If an offspring test case failed the test
against the SUT, it would be indicated in the log file, and
the failed test case would be treated as an invalid offspring.
The invalid offspring would later be analysed to find the
design flaws in MutateIFML that contributed to the creation
of the invalid offspring. For the time being, this oracle is
quite useful in helping us to understand the causes of the
invalid offspring, and allows targeted debugging to be
performed to improve MutateIFML.

VII. FUTURE WORK
Improvements to MutateIFML will be directed towards

the search-based optimisation component and the Selenium
test case printer component. We propose improvements that
will enhance the result of the optimisation process and
reduce computation time.

The improvements to optimise components will include
the use of the elite selection technique used by other SBT
approaches [34]. With the elite selection technique, the
fittest set of test cases will be moved into another population
called the elite subset. Selection of individuals are then
performed on that subset.

With regards to the mutation operators, the current
MutateIFML moves to the next generation regardless of
whether the parent individual and the gene position could
produce an offspring. Allowing MutateIFML to reselect a
different gene and ultimately a different parent in the same
generation will indirectly save computation time, since
MutateIFML does not have to exit the current generation
and initiate a new selection phase. Another improvement
that will be addressed is incorporating a design solution that
addresses the mutation of the same IFMLWindow element
whenever the user clicks on a self-referencing link or button.
This is common in WAs, especially when a web page
contains a list of search results that spans over several pages.

Refinement to the fitness evaluation will also be
performed. Currently, the fitness evaluation only considers
the global mutation score of the population. We plan to add
a coverage criterion that not only favours individuals that
improve the global mutation score, but also favours
individuals that have greater coverage of the SUT.

We discovered that some mutant SUTs created by
Humbug were equivalent mutants. The issue of equivalent
mutants was limited in the handmade mutant SUTs since
they are selected after careful consideration on how they
affected the SUT’s functionalities. We plan to investigate
the handmade mutant SUTs, and find strategies to automate
the generation of similar mutant SUTs.

Aside from this, we will investigate on adding more
Selenese assertion commands during test case
transformation to examine whether more assertions can
improve the effectiveness of the offspring test case.

The next case study selected for MutateIFML validation
is RosarioSIS, a school management WA system [56].

RosarioSIS is selected based on the active participation of its
developers in both updating the WA and recording bugs
reported by its users [57]. The validation results from both
case studies will then be analysed and the results published.

VIII. CONCLUSION
We introduced a modified GA called the pseudo-genetic

algorithm, which was incorporated into an automated WA
testing tool called MutateIFML. We described the design of
MutateIFML. We validated MutateIFML on OpenBiblio.
We found that MutateIFML works better with handmade
mutant SUTs that were partly replicated from the
OpenBiblio’s bug report and partly created based on a fault
taxonomy for WA. We also identified several limitations of
MutateIFML, which will be addressed in future work.

REFERENCES
[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[2] M. Harman, "The Current State and Future of Search Based Software
Engineering," in 2007 Future of Software Engineering (FOSE), pp.
342-357.

[3] G. Fraser, A. Arcuri, and P. McMinn, "A Memetic Algorithm for
whole test suite generation," Journal of Systems and Software, vol.
103, pp. 311-327, May 2015.

[4] M. Brambilla and P. Fraternali, "Large-scale Model-Driven
Engineering of Web User Interaction: The WebML and WebRatio
Experience," Science of Computer Programming, vol. 89, Part B, pp.
71-87, 1 September 2014.

[5] E. Hieatt and R. Mee, "Going Faster: Testing the Web Application,"
IEEE Software, vol. 19, no. 2, pp. 60-65, Mar/Apr 2002.

[6] P. Brady. (2014, November 23). Humbug. Available:
https://github.com/padraic/humbug

[7] P. McMinn, "Search-based Software Testing: Past, Present and
Future," in 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops (ICST), pp. 153-163.

[8] X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Frome,
United Kingdom: Luniver Press, 2010.

[9] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, "Search Based
Software Engineering: Techniques, Taxonomy, Tutorial," in
Empirical Software Engineering and Verification. vol. 7007, B.
Meyer and M. Nordio, Eds. Springer, 2012, pp. 1-59.

[10] W. Miller and D. L. Spooner, "Automatic Generation of Floating-
point Test Data," IEEE Transactions on Software Engineering, vol.
SE-2, no. 3, pp. 223-226, May 1976.

[11] H. Pohlheim, "Genetic and Evolutionary Algorithm Toolbox for
Matlab," in Evolutionäre Algorithmen. Springer Berlin Heidelberg,
2000, pp. 157-170.

[12] O. Bühler and J. Wegener, "Evolutionary Functional Testing,"
Computers & Operations Research, vol. 35, no. 10, pp. 3144-3160,
October 2008.

[13] J. Conallen, "Modeling Web Application Architectures with UML,"
Communications of the ACM, vol. 42, no. 10, pp. 63-70, 1999.

[14] J. Wegener, "Automatic Testing of an Autonomous Parking System
using Evolutionary Computation," STZ Sofwaretechnik, SAE 2004
World Congress & Exhibition 2004-01-0459, 2004.

[15] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A
Systematic Review of the Application and Empirical Investigation of
Search-based Test Case Generation," IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742-762, 21 August 2009.

[16] A. Watkins, E. M. Hufnagel, D. Berndt, and L. Johnson, "Using
Genetic Algorithms and Decision Tree Induction to Classify Software
Failures," International Journal of Software Engineering and
Knowledge Engineering, vol. 16, no. 02, pp. 269-291, April 2006.

[17] N. Tracey, J. Clark, and K. Mander, "Automated Program Flaw
Finding Using Simulated Annealing," in Proceedings of the 1998
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pp. 73-81.

[18] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, "Practical
Combinatorial Interaction Testing: Empirical Findings on Efficiency
and Early Fault Detection," IEEE Transactions on Software
Engineering, vol. 41, no. 9, pp. 901-924, Sepetember 2015.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

[19] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, "Genes and
Bacteria for Automatic Test Cases Optimization in the .Net
Environment," in Proceedings of the 13th International Symposium
on Software Reliability Engineering (ISSRE), pp. 195-206.

[20] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, "Heuristics for
Fault Diagnosis when Testing from Finite State Machines," Software
Testing, Verification and Reliability, vol. 17, no. 1, pp. 41-57, March
2007.

[21] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan,
"Evolutionary Behavior Testing of Commercial Computer Games," in
Congress on Evolutionary Computation, 2004. (CEC), pp. 125-132.

[22] T. E. Vos, F. F. Lindlar, B. Wilmes, A. Windisch, A. I. Baars, P. M.
Kruse, et al., "Evolutionary Functional Black-Box Testing in an
Industrial Setting," Software Quality Journal, vol. 21, no. 2, pp. 259-
288, June 2013.

[23] A. I. Baars, K. Lakhotia, T. E. Vos, and J. Wegener, "Search-Based
Testing, the Underlying Engine of Future Internet Testing," in
Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 917-923.

[24] M. Benedikt, J. Freire, and P. Godefroid. (2002). VeriWeb:
Automatically Testing Dynamic Web Sites. in Proceedings of the
11th International World Wide Web Conference (WWW'2002)
[Online]. Available: https://vgc.poly.edu/~juliana/pub/veriweb-
www2002.pdf

[25] H. Reza, K. Ogaard, and A. Malge, "A Model Based Testing
Technique to Test Web Applications using Statecharts," in Fifth
International Conference on Information Technology: New
Generations (ITNG), pp. 183-188.

[26] A. Marchetto and P. Tonella, "Search-Based Testing of Ajax Web
Applications," in 1st International Symposium on Search Based
Software Engineering (SSBSE), pp. 3-12.

[27] G. Fraser and A. Gargantini, "Experiments on the Test Case Length in
Specification Based Test Case Generation," in ICSE Workshop on
Automation of Software Test (AST'09), pp. 18-26.

[28] G. Fraser and A. Arcuri, "It is Not the Length That Matters, It is How
You Control It," in IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST), pp. 150-159.

[29] N. Alshahwan and M. Harman, "Automated Web Application Testing
using Search Based Software Engineering," in Proceedings of the
2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 3-12.

[30] M. Harman and P. McMinn, "A Theoretical & Empirical Analysis of
Evolutionary Testing and Hill Climbing for Structural Test Data
Generation," in Proceedings of the 2007 International Symposium on
Software Testing and Analysis (ISSTA), pp. 73-83.

[31] B. Korel, "Automated Software Test Data Generation," IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp. 870-879,
1990.

[32] M. Alshraideh and L. Bottaci, "Search-Based Software Test Data
Generation for String Data using Program-Specific Search Operators,"
Software Testing, Verification and Reliability, vol. 16, no. 3, pp. 175-
203, September 2006.

[33] R. Zhao, M. R. Lyu, and Y. Min, "Automatic String Test Data
Generation for Detecting Domain Errors," Software Testing,
Verification and Reliability, vol. 20, no. 3, pp. 209-236, September
2010.

[34] F. Bolis, A. Gargantini, M. Guarnieri, and E. Magri, "Evolutionary
Testing of PHP Web Applications with WETT," in Search Based
Software Engineering, G. Fraser and J. T. d. Souza, Eds. Springer,
2012, pp. 285-291.

[35] T. S. Pvt. (2013, November 20). Sahi. Available: http://sahi.co.in/
[36] A. Andrews, S. Boukhris, and S. Elakeili, "Fail-safe testing of web

applications," in 2014 23rd Australian Software Engineering
Conference, pp. 200-209.

[37] I. K. El-Far and J. A. Whittaker, "Model-Based Software Testing," in
Encyclopedia of Software Engineering, J. Marciniak, Ed. John Wiley
& Sons, Inc., 2001.

[38] J. Ernits, R. Roo, J. Jacky, and M. Veanes, "Model-based Testing of
Web Applications using NModel," in Testing of Software and
Communication Systems. vol. 5826, M. Núñez, P. Baker, and M. G.
Merayo, Eds. Springer, 2009, pp. 211-216.

[39] H. Achkar, "Model Based Testing of Web Applications," in
Proceedings of 9th Annual Science Technicians Association of New
Zealand Conference (STANZ), pp. 1-28.

[40] A. A. Andrews, J. Offutt, and R. T. Alexander, "Testing Web
Applications by Modeling with FSMs," Software & Systems
Modeling, vol. 4, no. 3, pp. 326-345, July 2005.

[41] Z. Qian, H. Miao, and H. Zeng, "A Practical Web Testing Model for
Web Application Testing," in Third International IEEE Conference

on Signal-Image Technologies and Internet-Based System (SITIS'07),
pp. 434-441.

[42] J. Offutt and Y. Wu, "Modeling Presentation Layers of Web
Applications for Testing," Software & Systems Modeling, vol. 9, no.
2, pp. 257-280, April 2010.

[43] F. Ricca and P. Tonella, "Analysis and Testing of Web Applications,"
in Proceedings of the 23rd International Conference on Software
Engineering (ICSE), pp. 25-34.

[44] OMG. (2014, January 10). IFML Specification Beta version (OMG
document ptc/2013-03-08). Available:
http://www.omg.org/spec/IFML/

[45] J. M. Wright, "A Modelling Language for Interactive Web
Applications," in Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 689-692.

[46] N. Koch and A. Kraus. (2002, June). The Expressive Power of UML-
Based Web Engineering. in Second International Workshop on Web-
oriented Software Technology (IWWOST02) [Online]. 16, 105-120.
Available: http://users.dsic.upv.es/~west/iwwost02/papers/koch.pdf

[47] J. Wright and J. Dietrich, "Survey of Existing Languages to Model
Interactive Web Applications," in Proceedings of the Fifth Asia-
Pacific Conference on Conceptual Modelling (APCCM), pp. 113-123.

[48] WebRatio. (2013, April 18). OMG adopts the IFML standard,
designed by WebRatio. News and Events - WebRatio, [Online].
Available: http://www.webratio.com/site/content/en/news-detail/omg-
adopts-ifml-standard-designed-by-webratio

[49] L. Baresi, P. Fraternali, M. Tisi, and S. Morasca, "Towards Model-
Driven Testing of a Web Application Generator," in Web
Engineering. vol. 3579, D. Lowe and M. Gaedke, Eds. Springer,
2005, pp. 75-86.

[50] P. Fraternali and M. Tisi, "Multi-level Tests for Model Driven Web
Applications," in Proceedings of the 10th International Conference
on Web Engineering (ICWE), pp. 158-172.

[51] OpenQA. (2013, November 23). Selenium - Web Browser
Automation. Available: http://docs.seleniumhq.org/

[52] OpenQA. (2015, January 5). Selenium-IDE — Selenium
Documentation. Available:
http://www.seleniumhq.org/docs/02_selenium_ide.jsp

[53] B. D. S. Inc. (2013, November 20). The OpenBiblio Open Source
Project on Ohloh. Available: http://www.ohloh.net/p/openbiblio

[54] N. Mansour and M. Houri, "Testing Web Applications," Information
and Software Technology, vol. 48, no. 1, pp. 31-42, January 2006.

[55] M. Stetson. (2013, November 20). mstetson / obiblio - Bitbucket.
Available: https://bitbucket.org/mstetson/obiblio

[56] F. Jacquet. (2016, March 6). RosarioSIS Student Information System.
Available: https://www.rosariosis.org/

[57] F. Jacquet. (2016, March 6). RosarioSIS GitHub. Available:
https://github.com/francoisjacquet/rosariosis

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

