
 

  
Abstract— Genetic Algorithms have been widely used to 

generate test cases by automatically searching a space for 
suitable solutions to a search problem.  In this paper, we intend 
to produce a set of test cases that effectively find faults in a web 
application from an initial set of test cases. We introduce a 
variant of genetic algorithms, a pseudo-genetic algorithm that 
generates model-based test cases and transforms them into 
executable test cases. We incorporated the pseudo-genetic 
algorithm in a search-based testing tool called MutateIFML.  
We included the web application’s model during the 
optimisation process to ensure that the offspring test cases are 
syntactically sound. Then, we evaluate the effectiveness of the 
test cases using the mutation score of the test cases. We found 
that MutateIFML performs better on a collection of mutant 
systems under test that were created by hand, based on bug 
reports of a web application, compared to mutant systems 
under tests created by a mutation testing tool. Finally, we 
discuss further improvements for MutateIFML. 
 

Index Terms— Search-based testing, model-based testing, 
functional testing, genetic algorithms 
 

I. INTRODUCTION 
ENERATING test cases is challenging, particularly when 
it requires automating the process to produce 

executable test cases. According to Utting [1], the process 
usually involves initialising the system under test (SUT), 
putting the SUT in the required context, creating the test 
input values, passing those inputs to the SUT, recording the 
SUT response, comparing that response with the expected 
outputs, and assigning a pass/fail verdict to each test. 
Researchers have implemented various approaches to 
address these challenges, depending on the type of problem 
that they want to solve, and the type of SUT involved. The 
application of Genetic Algorithms (GAs) is quite prevalent 
in test case generation that involves test case optimisation. 
GAs are applied as part of the search-based testing (SBT) 
approach, which uses metaheuristic search techniques [2] to 
search for the best solution in a search space or population.  

Sometimes, GAs are modified to solve specific search 
problems, such as the Memetic Algorithms that incorporates 
local search operators into GAs [3]. In this paper, we use the 
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term ‘fitness’ to refer to the performance of both the parent 
and offspring test cases. We also use the term ‘population’ 
to refer to the set of test cases. We modify GAs with several 
intentions. Firstly, the initial selection phase of GAs is used 
to evaluate the fitness of the initial set of test cases. The 
fitness of these test cases later provides valuable insight 
regarding the limitations of the initial population, 
specifically concerning the nature of faults in the SUT that 
were not discovered by the test cases. Secondly, we use the 
Interaction Flow Modelling Language (IFML) to represent 
candidates, as opposed to traditional binary string 
representation. IFML has the capability to model the 
content, user interaction and control behaviour of the front 
ends of WAs [4]. We want to produce multiple test cases 
with varied interaction flows, and the IFML elements 
provide a suitable representation for the model-based test 
cases that we are using. Thirdly, the termination of GAs can 
be configured quite easily to satisfy specific search 
problems. In our case, we want to increase the effectiveness 
of the test cases in revealing faults in the SUT. 

Testing web applications (WAs) manually is difficult. 
Today’s fast-paced WA development practices often cause 
testing to be neglected [5]. Automating the test case 
generation and optimisation increases the efficiency of 
testing.  We have developed a prototype SBT support tool 
called MutateIFML. MutateIFML uses the modified GA to 
generate new test cases from the existing pool of test cases.  
MutateIFML also facilitates test execution by controlling 
Humbug [6] a mutation-testing tool that executes test cases 
by using PHPUnit and Selenium WebDriver1. It evaluates 
the fitness of the test cases by calculating the mutation score 
of these test cases. We used two groups of mutant SUTs: (1) 
mutant SUTs that are automatically generated by Humbug 
and (2) mutant SUTs produced by hand based on a fault 
taxonomy for WA’s faults, and a bug report of the SUT.  
The former is produced at code level, whereas the latter is 
performed at a higher level to achieve more diversity in 
terms of the mutant classification. 

The paper is set up as follows. In Section II, we review 
the related literature on SBT, including the use of GAs in 
SBT. In Section III, we present our modified GA. In Section 
IV, we describe the SBT support tool, MutateIFML that we 
developed. In Section V, we explain the validation of 
MutateIFML’s prototype that was performed with 
OpenBiblio, a WA library management system. In Section 
VI, we discuss the results from the validation of 
MutateIFML. In Section VII we elaborate the plan for 
improving MutateIFML. 
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II. RELATED WORK 
This research project builds on earlier work from three 

areas: search-based testing, model-based testing (MBT) and 
fault-seeding. This section discusses the findings from 
earlier work within the scope of WA testing. 

A. Search-based Testing 
The term “search-based testing” is used interchangeably 

with “search-based software testing”. In this paper, the 
following definition of SBT is used: “Applying a 
metaheuristic algorithm to a software testing approach in 
order to optimise a certain testing task that was in focus” 
[7]. The term “metaheuristic” here refers to “all stochastic 
algorithms with randomisation and local search” [8]. The 
randomisation causes the local search to be able to be 
moved to search on the global scale [8]. In software testing, 
SBT is applied with the intention of supporting automation 
as opposed to manual testing [7], and reducing testing effort, 
while at the same time being adaptable to changes [2]. 

Consider Evolutionary Algorithms (EAs) as an example 
of a search algorithm. The search algorithm begins with a 
group of individuals, which are known as the initial 
population. These individuals may represent various objects 
in testing (source code, test data, test cases, or classes), 
depending on the problem that a tester wishes to solve [9]. 
The search process is guided by the fitness function, a 
component that is capable of guiding the search towards 
revealing the potential solution within a practical time limit 
[7]. The fitness function helps the EAs in finding the best 
individual that could solve the problem, by measuring the 
individual’s fitness value. If the best individual is not found, 
the search process will go through a repetitive cycle of 
selecting several individuals in the population, recombining 
their attributes (through operations such as crossover that 
switches attributes between a pair of individuals and/or the 
mutation of some attributes of selected individuals), and will 
then introduce the modified individuals as new members of 
the population (offspring).  To achieve successful 
implementation of SBT, two elements of the SBT 
algorithms need to be accurately defined: representation of 
the search problem, and the fitness function that captures the 
objectives of the search problem and guides the search 
process [9]. 

SBT was introduced by Miller and Spooner with a simple 
technique for generating test data for floating-point inputs 
[10]. However, tool support for SBT remained elusive until 
several years later. The introduction of the GA and EA 
toolbox which helps automate the search process [11] led to 
further developments in SBT. This is evident in several later 
works that introduce the SBT approach with this toolbox to 
solve several software testing problems [12-14]. 

Most SBT contributions focus on test data generation 
[9].  Instead of optimising test data, we focus on optimising 
test cases to improve their effectiveness in testing. Control-
flow coverage is the most commonly used criterion in 
evaluating the effectiveness of SBT algorithms [15]. Instead 
of control-flow coverage, we use mutation score as a 
criterion, since we are focusing our effort on searching 
solutions capable of discovering faults. 

In the area of fault detection, academic contributions are 
limited [15]. Watkins et al. introduce a failure-pursuit 

strategy, based on a GA for system-level testing [16]. 
Tracey et al. propose the use of a Simulated Annealing (SA) 
algorithm to search for test data that reveal specification 
failures [17], demonstrated on three Ada programs.  
Recently, SA was compared with GAs and greedy 
algorithms in terms of test efficiency, t-way coverage and 
fault detection rate through combinatorial interaction testing 
performed on a collection of C and Java programs [18]. 
Learning from the flaws of GAs in previous 
implementations, Baudry et al. introduce Bacteriologic 
Algorithms to automate the test optimisation to increase the 
quality of the test suites [19]. Another method called the U-
method is implemented by Guo et al. to trace faulty 
transitions in Finite-State Machines (FSM) [20]. Chan et al. 
demonstrate the use of EAs to discover unwanted behavior 
in a computer game’s scenario [21]. The application of SBT 
is also reported in discovering faulty scenarios when 
simulating an automobile’s parking, adaptive cruise control 
and anti-lock braking system [12, 14, 22]. In this paper, we 
apply GA, one of the most popular type of EA to automate 
the test optimisation of a WA. We aim to evaluate the 
effectiveness of the test cases in revealing faults related to 
the WA’s interactions with its users. 

B. Application of SBT in Web Application Testing 
Several works extended SBT into WA testing. It has 

been suggested that SBT has a prominent role in future 
Internet applications, since SBT algorithms are adaptive to 
emerging challenges [23]. Extending previous research of 
SBT into WA testing presents challenges in terms of 
defining the representation of the candidates and the fitness 
function. The dynamic structure of web interfaces [24] also 
presents a difficulty. Since WAs are heavily event-driven 
[25], their response is influenced by the user’s choice of 
actions. This causes the WA’s interface to change with 
every interaction. WAs allow semantically long user 
interactions to accomplish complicated tasks, as long as the 
user session remains active. Marchetto et al. propose HILL, 
based on hill-climbing algorithms, to resolve the issue of 
maintaining the fault-detection effectiveness of long 
semantically interacting state-based sequences [26]. HILL is 
applied on the FSM of a WA called FSMWeb, and uses 
three fitness functions to find the most diverse test suite (i.e. 
the test suite that covers the most events in a WA) as the 
optimal solution. HILL compromises the length of the test 
case to find the most diverse test suite, by favouring a test 
suite containing limited test cases of different lengths over a 
huge suite containing test cases of smaller length. 
Manipulating longer test cases requires care as they involve 
higher computational costs, are difficult to interpret 
manually [27] and may lead to test case bloat [28]. Since 
WAs also allow shorter sequences of interactions, it is 
feasible to design a search algorithm that could address both 
kinds of interactions. We consider both kinds of 
interactions. 

Alshahwan et al. [29] extend SBT algorithms [30, 31] and 
fitness functions from previous works [17, 32, 33] to 
develop a partially automated framework called the Search-
Based Web Application Tester (SWAT) for the testing of 
WAs. Even though fault-detection capability is discussed, 
the approach leans towards achieving significant branch 
coverage and optimisation is done at the code-level. Our 
approach measures the effectiveness of the test cases in 
revealing seeded faults, and we perform optimisation at the 
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model level of the WA. 

Another SBT tool called the Web Application 
Evolutionary Testing Tool (WETT) is proposed by Bolis et 
al. [34], in which GAs are used to optimise a collection of 
test cases expressed as Sahi [35] statements. The fitness 
function used in WETT values individuals with higher 
statement coverage and numbers of visited web pages. 
Although the Sahi statements provide a representation from 
the view of end-user interactions, the results showed low 
statement coverage and considerable time overhead. Our 
approach introduces a SBT tool that supports a high-level 
test case representation of a WA’s behaviour, as opposed to 
the low-level representations commonly used in existing 
works. We use mutation score as our fitness function to 
value individuals that kill WA mutants. 

A more recent work implements a GA to select potential 
locations that are most likely to contain failure events [36].  
Instead of optimising test cases, Andrews et al. optimise test 
paths and types of actual failure events (defects). Further, 
the multi-objective fitness function used in their work 
emphasises these objectives: rewarding novelty of an 
offspring that is more distant from the existing population 
(exploring), and measuring the proximity between the 
offspring and the defects that have been discovered in the 
previous generations (prospecting or mining).  

C. Application of MBT in Web Application Testing 
For the purposes of MBT, a model is a representation of 

the SUT’s behaviour [37]. As defined by Utting et al., there 
are four possible approaches for MBT [1]. Our approach 
uses the following interpretation of MBT: “the generation of 
executable test cases that include oracle information, such as 
the expected output values of the SUT, or some automated 
check on the actual output values to see if they are correct” 
[1]. 

To date, MBT in WA testing has been performed using 
C# [38], FSMs [39, 40], statecharts [25], Page Flow 
Diagrams [41], ATS [42], and ReWeb [43]. However, these 
modeling languages use a low-level representation of the 
SUT. Ernits et al. [38] focus on discovering errors in the 
actions of a WA. Using the NModel toolkit, smaller model 
programs are constructed in the C# programming language 
using an on-the-fly testing strategy. The drawback of this 
approach is the large overhead and difficulties experienced 
during the construction of the test harness. Aside from the 
NModel approach, other approaches [25, 39-43] are aimed 
at discovering inconsistencies in transitional paths. We use 
the model to develop a high-level representation of a WA. 
Since our work aims at revealing faults in the WA’s 
behaviour, we focus on diversifying the user interactions of 
a WA by optimising its model-based test cases. 

Recent modeling languages (IFML [44], IAML [45], and 
UWE [46]) have emerged to address the challenges of 
providing a high-level representation of a WA’s interactions 
with the end-user. The standard UML diagrams lack precise 
modeling for critical components in WAs (web pages, form 
elements, hyperlinks and buttons) [13], particularly from the 
end-user’s perspective. IFML is a standard by the Object 
Management Group (OMG), inspired by the Web Modeling 
Language (WebML) notation [44]. In a survey conducted by 
Wright et al. [47], WebML was considered to be the best 
modeling language for interactive WAs as WebML fulfilled 
all the criteria required in modeling interactive WAs. 

WebML performs poorly against some criteria such as 
supporting the modeling of some elements in interactive 
WAs (i.e. browser information, user lifecycle or sessions, 
and the user interface), and limitations in meta-modeling 
tools and standards. Although Wright et al. propose IAML 
[45] to overcome WebML’s shortcomings, IAML is openly 
available2, but the lack of sufficient references causes 
uncertainties on the kind of learning curve that it presents.  
On the other hand, IFML has evolved from the ten years of 
experience with WebML [48], and benefits from the 
application of WebML in several projects [49, 50].  IFML 
seems more appropriate based on its ability to model the 
content, user interaction and control behaviour of the front 
ends of WAs [4]. IFML does not require a steep learning 
curve, being an OMG standard that supports visualisation 
styles that are similar to UML. 

III. PSEUDO-GENETIC ALGORITHM 
In this paper, we define a valid offspring as a test case 

that is syntactically correct and satisfies the requirements of 
the SUT when it is executed. An invalid offspring is a test 
case that is syntactically correct. but is flawed in terms of 
the requirements of the SUT (e.g., contains a non-existent 
interaction flow). We present our pseudo-genetic algorithm 
in Algorithm 1. 

 

Algorithm 1. Pseudo-genetic algorithm 
Require: Initial set of test cases TS 
Require: Maximum number of generation max 
Require: Global mutation score gloMS 
Require: General model GM 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

population ¬ TS; 
generation ¬ 0; 
gloMS ¬ (fitness(population)); 
repeat 
while (generation < max) do 

P1 ¬ random(TS); 
if crossover probability then 

genes ¬ random(length(P1)); 
substitutes ¬ findAlternative(GM, genes); 
if !isEmpty(substitutes) then 

selected ¬ findSubstitute(substitutes, TS); 
P2 ¬ random(selected); 
O1, O2 ¬ crossover (P1, P2); 

end if; 
else  

gene ¬ random(length(P1)); 
substitutes ¬ findAlternative(GM, genes); 
if isEmpty(substitutes) then 

selected ¬ random(substitutes); 
O1 ¬ mutate(P1, selected); 

end if; 
MS ¬ (fitness{O1, O2}); 
oldgloMS ¬ gloMS 
gloMS ¬ gloMS È (MS); 
if (gloMS > oldgloMS) then 

population ¬ population È{ O1,O2}; 
until gloMS > 80% or maximum resources spent 

Algorithm 1 is modified from GA. It requires an initial set 
of test cases TS, the general model of the application under 
study GM, and the pre-defined maximum number of 
generations max as input. It optimises the current 
2 Internet Application Modelling Language – http://openiaml.org 
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population, i.e. the initial set of test cases, to produce an 
offspring or a pair of offspring test cases, depending on the 
result of a random selection to perform either a crossover or 
a mutation. The offspring then joins the current population, 
and the algorithm repeats itself until the maximum number 
of generations has been reached. 

SBT algorithms require defining the representation of the 
individuals, and the fitness function that captures the 
objectives of the search problem and guides the search 
process [9]. In MutateIFML, each test case is a sequence of 
actions by the user, represented using an IFML model. Each 
gene represents an IFML element called the IFMLWindow.  

There are several notable differences between Algorithm 
1 and the traditional GA. Firstly, traditional GA consist of a 
single level cycle of evolution, or optimisation. Our 
algorithm consists of a two-level cycle of optimisation, with 
the fitness evaluation phase on a separate level than the rest. 
During the fitness evaluation, only fit individuals are 
selected into the population. Secondly, the GM is consulted 
during the recombination and mutation phase. The GM was 
manually created prior to the application of Algorithm 1.  
We use the GM to guide the search process in selecting valid 
genes when performing crossover or mutation on the parent 
test cases. 

Our algorithm uses the cut and slice crossover technique 
to perform crossover between two parent test cases on a 
randomly chosen crossover position, genes. Starting with a 
parent individual, the crossover operator randomly selects 
the crossover position, genes in that parent individual. Next, 
the algorithm consults the GM to find suitable substitutes. If 
substitutes exist, the algorithm searches the population for 
individual that possesses identical substitutes. If an 
individual with the identical substitutes is found in the 
population, crossover will be performed between that 
individual and the first parent individual to generate two 
new individuals. We implement this measure to minimise 
the possibility of producing invalid offspring. 

The mutation operators consist of insert, swap, and delete 
mutation operators that modify a selected gene of a parent 
individual. Only one mutation operator is randomly chosen 
at a time. The insert and swap mutation operators consult the 
GM to retrieve a list of suitable mutant genes. If the list is 
not empty, the mutation operator will randomly select a 
mutant gene for the insert or swap operation. As for the 
delete mutation operator, the general model is used to 
determine whether the selected gene is appropriate for 
deletion. If the deletion of the selected gene produces 
invalid offspring, no offspring will be produced. 

IV. MUTATEIFML 
MutateIFML works in collaboration with a mutation-

testing tool called Humbug and the Selenium WebDriver. 
MutateIFML receives a set of web application test cases and 
the general model of a web application, both expressed 
using IFML, and the number of generations as input. Using 
the pseudo-GA presented in Section III, MutateIFML 
optimises the set of test cases. If MutateIFML selects the 
mutation operators of insert, swap, or delete, it produces one 
offspring. If MutateIFML selects the crossover operator, it 
produces two offspring. Either way, these offspring are then 

transformed into an executable Selenium test case. The 
current MutateIFML prototype runs in a given number of 
generations, and stops when the maximum number of 
generations is reached. 

Prior to running MutateIFML, mutants of the SUT were 
produced separately. These mutants were faulty versions of 
the SUT. Some were produced by calling Humbug’s 
mutation component, whereas the rest of these mutants were 
produced by seeding faults into the SUT by hand, based on a 
fault taxonomy and an online bug reports. 

The mutation score of the test case and the mutation score 
of the population define the fitness function for 
MutateIFML. A test case is deemed fit if it manages to 
uncover faults in the SUT. The more faults it uncovers, the 
fitter it becomes in the population. 

The mutation scores are calculated at the test case level, 
MS, and the test suite level, gloMS. The mutation score MS 
determines the fitness of an individual in the population. 
This is calculated the percentage of mutants revealed by the 
individual. The mutation score gloMS determines the fitness 
of the population by calculating the percentage of mutants 
revealed by the union of all individuals (test cases) in the 
current population, TS. 

 

MS =100 ( 
   Number of mutants killed by T )       Total number of mutants 

 

gloMS =100 ( 
 Number of mutants killed by TS )      Total number of mutants 

 
The Selenium offspring test cases are executed to retrieve 

the fitness of each test case. The execution is achieved by 
calling Humbug’s testing component, which in turn calls 
PHPUnit to execute Selenium test cases should it finds them 
in the test folder. MutateIFML stops after the specified 
number of generations is reached. 

A. Design 
The MutateIFML prototype is designed with several 

features. Its main components are the Humbug controller, 
the search-based optimisation component, and the Selenium 
printer. Fig. 1 illustrates MutateIFML’s architecture. 

 
B. The Humbug Controller 
Humbug is a Hypertext Preprocessor (PHP) mutation-

 
Fig. 1.  MutateIFML Architecture 
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testing tool [6] that analyses a PHP source file and mutates it 
to produce a mutant of the file, which is then tested against a 
test case to determine whether the mutant lives or dies. 
Humbug has several components, which are used 
exclusively by MutateIFML. The Humbug controller allows 
MutateIFML to select between the mutation component or 
the testing component of Humbug. 

The mutation component analyses the SUT’s source files 
and mutates selected files based on a set of mutation 
operators predefined in Humbug. This produces several 
mutants of the SUT. The number of SUT mutants produced 
depends on the analysis performed by Humbug prior to the 
mutation of the files. 

The testing component is activated by Humbug when it 
receives a request from MutateIFML to do so. Humbug will 
send a request to its integrated PHPUnit testing framework 
to execute the test cases on the mutant SUTs that were 
created. PHPUnit reads the required phpunit.xml 
configuration file to find the path of the Selenium test cases 
created by MutateIFML from the offspring test cases. This is 
when the offspring test cases will be tested against the 
mutated SUTs, and the fitness of each offspring test case 
will be recorded. 

C. The Selenium Printer 
To test the offspring created by the optimisation 

component of MutateIFML, the IFML offspring test cases 
need to be transformed into executable test cases. The 
Selenium testing framework [51] provides an automated 
testing tool called Selenium WebDriver that drives the web 
browser during testing, which requires Selenium test scripts 
to interact with the SUT. 

The Selenium printer component essentially reads the 
IFML test case’s file and transforms certain IFML elements 
into Selenium commands in Selenese, a HTML-based 
language. The Selenium printer will first find an 
IFMLWindow element that possesses the default attribute, 
isDefault as the starting point. The default window might 
contain several input fields, forms, buttons, or links as its 
child element. The Selenium printer will systematically find 
and transform the child elements of that default window into 
Selenium commands. Next, it will find the next window that 
is connected to the default window. If the next window 
exists, the transformation process is repeated. The Selenium 
printer will continue transforming each connected window 
until it cannot find further connections. 

During the transformation process, the Selenium printer 
also includes test assertion statements. These basic Selenium 
assertions are added when a certain IFML element is found 
in the IFML-based test case. Currently, the 
VerifyElementPresent, VerifyNotText, and VerifyText 
Selenese commands are used. The Selenium documentation 
describes the Selenese VerifyElementPresent command as a 
way to “test for the presence of a specific UI element, rather 
than its content” [52]. On the other hand, the Selenese 
VerifyText and VerifyNotText are used to test the presence of 
IFML’s List elements, which contain specific texts or 
messages that are usually triggered by the previous action. 

D. The Search-Based Optimisation Componentr 
The search-based optimisation component uses the 

pseudo-GA as its search-based algorithm (see Algorithm 1). 

First, the fitness of the individuals in the population is 
evaluated. This sub-component works closely with 
Humbug’s testing component. Humbug’s testing component 
uses PHPUnit to execute the test cases. We manipulate this 
feature to our advantage by adding a PHPUnit test script that 
executes Selenium test cases. Humbug’s testing component 
can record and calculate the test results such as the number 
of test cases that pass or fail. Some modifications are made 
to Humbug to produce the test results in a log. The log is 
then used during the fitness evaluation to calculate the 
fitness of each individual and the fitness of the population. 

Next, the selection of the individual takes place. The 
selected individuals are then optimised to generate new 
individuals which are then added to the current population.  
The fitness of each individual and the current population are 
again evaluated after the generation of new individuals. 

V. VALIDATION OF MUTATEIFML 
We performed the validation of MutateIFML’s prototype 

on a PHP-based web application. OpenBiblio is a web-based 
library management system comprising several library 
operations such as bibliography cataloguing, circulation, and 
library member’s information management [53]. The 
validation process is divided into two parts that uses two 
different source of mutant SUTs. The first group of mutant 
SUTs was created by Humbug whereas the second group of 
mutant SUTs was created by hand, which consist of 
artificial faults created based on the mutation operators 
proposed by Mansour et al. [54], faults from a bug report of 
OpenBiblio [55], and faults that were found while analysing 
OpenBiblio.  

To validate MutateIFML, we modelled OpenBiblio using 
the IFML Editor3. The modelled WA is used as the GM 
during the validation process. Next, a set of ten IFML test 
cases was created using the IFML Editor to represent the 
initial population. These test cases were sequences of user 
actions on Login, Cataloging, Circulation, Admin and 
Report sections of the SUT. The inclusion of various parts 
of the SUT in modelling the initial population was 
intentional to minimise the possibility of producing 
offspring that cluster around certain parts of the SUT only. 
Valid input values were appended as annotations on the 
IFML elements that require inputs when executed, so that 
when these test cases were transformed into Selenium test 
cases, they would be automatically populated with test data.  

We began the validation of MutateIFML with 100 
generations. Using Humbug’s mutation-testing component, 
142 mutants of OpenBiblio were created. Next, the initial 
population is tested against these mutant SUTs to obtain the 
fitness (global mutation score) of the population. 

Currently, MutateIFML has a predefined maximum 
number of generations of 100. In each generation, 
MutateIFML randomly selected one individual from the 
population. Next, either the crossover operator or one of the 
mutation operators was selected to optimise the individual. 
If the crossover operator was selected, MutateIFML would 
search for another individual from the population that could 
produce a pair of valid offspring. If one of the mutation 
operators (insert, swap, or delete) were selected, 
MutateIFML would produce only one offspring. Then the 
3 Open source IFML editor – http://ifml.github.io 
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offspring was tested against the first group of 142 mutant 
SUTs of OpenBiblio.  Later, the offspring was added to the 
current population, if it managed to kill a mutant SUT that 
survived the existing testing. MutateIFML would reset the 
optimisation process everytime it found offspring 
individuals that improves the global mutation score (i.e. kill 
new mutant SUTs). If this condition was not fulfilled, 
MutateIFML will continue until it reaches the maximum 
number of generations. We then proceed with the second 
group of the mutant SUTs. The same validation strategy was 
applied to 23 hand-seeded mutant SUTs. 

VI. RESULTS AND DISCUSSION 
Fig. 2 presents the result of the validation. The blue line 

represents the result of the optimisation using Humbug’s 
mutant SUTs (first group), while the red line represents the 
result of the optimisation using hand-seeded mutant SUTs 
(second group). 

 

Using the first group of mutant SUTS, the first test 
generations recorded 4 out of 142 faulty versions or mutants 
of OpenBiblio killed by the initial population. This result 
translated to 2.82% global mutation score. After 50 
generations, a total of 170 offspring test cases were created.  
However, only 79 offsprings were found valid after they 
passed the test against the SUT. When the testing session is 
performed every iteration, the global mutation score only 
increased slightly.  After 50 iterations, MutateIFML could 
only produce offsprings that killed two more OpenBiblio 
mutants, with the final global mutation score of 4.23%.  

The second group of mutant SUTs performed slightly 
better, with 10 mutant SUTs killed by the initial population. 
Therefore, the global mutation score of the initial population 
is 43.5%. The percentage of mutant SUTs killed continues 
to grow as the optimisation continues. When the first 
offspring that killed a mutant SUT was found, the 
optimisation is reset, with the offspring being included into 
the initial population. In the end, 115 offspring were 
produced, with 65 valid offspring when tested against the 
SUT. The optimisation was iterated 4 times. The final global 
mutation score was 69.6%, with an additional 6 mutant 
SUTs killed. 

The analysis on the first group of mutant SUTs revealed 
that out of 142 mutant SUTs of OpenBiblio, two mutant 
SUTs are not created from the files of the SUT, and 87 of 
them are equivalent mutants. When they were removed, the 
number of non-equivalent mutant SUTs is reduced to 53. 

The two non-related mutant SUTs are actually mutations of 
the PHPUnit setUp() file which has to be placed inside the 
SUT’s top directory as a requirement for the PHPUnit’s 
Selenium Extension to run the test. The Humbug test 
component can avoid specified folders in the SUT during 
the test, but it cannot avoid files that are placed in the top 
directory of the SUT. 

The non-equivalent mutant SUTs did not seem to produce 
any differences even after manual testing is performed on 
them. We realised that the respective mutant SUTs 
contained changes to the presentation level of the SUT only, 
thus they did not produce any effect on the SUT when 
functional testing is performed by Selenium WebDriver. 

The analysis also revealed that some mutant SUTs 
clustered around a few locations in the SUT that were not 
explored by the test cases. The two most apparent clusters of 
mutant SUTs are found at the Offline and the Machine-
Readable Cataloguing (MARC) sections of OpenBiblio. 
These two location were not covered by the initial 
population. The rest of the mutant SUTs modified the links 
to additional pages when there are more than one pages of 
search results for the Cataloguing, the Members, or the 
Circulation tabs. The offsprings never explore the same 
IFMLWindow consecutively. This was a deliberate design 
decision of the current MutateIFML prototype. 

The analysis then focused on the second group of mutant 
SUTs which were created by hand. We discovered a few 
mutant SUTs that require advanced strategy in terms of test 
data selection. The test cases contained basic test data that is 
transformed into Selenium values by the Selenium printer 
component. Apparently, some remaining mutant SUTs will 
only be triggered by specific test data. A good example 
relates to a keyword search performed by OpenBiblio in the 
Cataloging tab. The search will produce an error page when 
a certain keyword, such as “C++” is submitted. Other 
mutant SUTs were simply not killed due to the lack of 
coverage from the test cases, since not all forms and links in 
a visited web page were explored by the offspring. We 
intend to address the lack of coverage in our future work.  

In comparing both groups of mutant SUTs, Humbug 
produces a lot of equivalent mutants compared to the 
handmade mutant SUTs. This is attributed to several 
reasons. Firstly, Humbug is made to create mutations for a 
PHP software application, but is not specifically for a PHP 
WA. Secondly, the mutation operators used by Humbug 
focus on code-level mutation of PHP tokens. Further, 
Humbug only mutates PHP tokens enclosed within a PHP 
function. It ignores PHP tokens residing outside a PHP 
function. As for the handmade mutant SUTs, they are 
reproduced from three sources selected specifically based on 
the SUT and its specification. The first source is a set of 
mutation operators proposed for testing WAs [54]. The 
second and third sources are real faults discovered from the 
SUT. Therefore, the handmade mutant SUTs are more 
reliable and produce fewer mutants that are equivalent. 
However, Humbug has the advantage of automating the 
fault-seeding process, whereas the handmade mutant SUTs 
require significant overhead in compiling faults from the 
three different sources. Furthermore, since the handmade 
mutant SUTs are created by the same tester, there is a 
tendency for the test cases to be biased. 

 
Fig. 2. MutateIFML’s result 
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Even though MutateIFML was designed to produce valid 
offspring, a precautionary measure was implemented to 
verify whether this design has flaws. Since the general 
model was created with the assumption that the current 
version of the SUT is correct, the prototype included the 
SUT as a temporary oracle to detect the invalid offspring 
that may have been produced. MutateIFML logs all the test 
results in a text file. If an offspring test case failed the test 
against the SUT, it would be indicated in the log file, and 
the failed test case would be treated as an invalid offspring. 
The invalid offspring would later be analysed to find the 
design flaws in MutateIFML that contributed to the creation 
of the invalid offspring. For the time being, this oracle is 
quite useful in helping us to understand the causes of the 
invalid offspring, and allows targeted debugging to be 
performed to improve MutateIFML. 

VII. FUTURE WORK 
Improvements to MutateIFML will be directed towards 

the search-based optimisation component and the Selenium 
test case printer component. We propose improvements that 
will enhance the result of the optimisation process and 
reduce computation time. 

The improvements to optimise components will include 
the use of the elite selection technique used by other SBT 
approaches [34]. With the elite selection technique, the 
fittest set of test cases will be moved into another population 
called the elite subset. Selection of individuals are then 
performed on that subset. 

With regards to the mutation operators, the current 
MutateIFML moves to the next generation regardless of 
whether the parent individual and the gene position could 
produce an offspring. Allowing MutateIFML to reselect a 
different gene and ultimately a different parent in the same 
generation will indirectly save computation time, since 
MutateIFML does not have to exit the current generation 
and initiate a new selection phase. Another improvement 
that will be addressed is incorporating a design solution that 
addresses the mutation of the same IFMLWindow element 
whenever the user clicks on a self-referencing link or button. 
This is common in WAs, especially when a web page 
contains a list of search results that spans over several pages. 

Refinement to the fitness evaluation will also be 
performed. Currently, the fitness evaluation only considers 
the global mutation score of the population. We plan to add 
a coverage criterion that not only favours individuals that 
improve the global mutation score, but also favours 
individuals that have greater coverage of the SUT. 

We discovered that some mutant SUTs created by 
Humbug were equivalent mutants. The issue of equivalent 
mutants was limited in the handmade mutant SUTs since 
they are selected after careful consideration on how they 
affected the SUT’s functionalities. We plan to investigate 
the handmade mutant SUTs, and find strategies to automate 
the generation of similar mutant SUTs. 

Aside from this, we will investigate on adding more 
Selenese assertion commands during test case 
transformation to examine whether more assertions can 
improve the effectiveness of the offspring test case. 

The next case study selected for MutateIFML validation 
is RosarioSIS, a school management WA system [56]. 

RosarioSIS is selected based on the active participation of its 
developers in both updating the WA and recording bugs 
reported by its users [57]. The validation results from both 
case studies will then be analysed and the results published. 

VIII. CONCLUSION 
We introduced a modified GA called the pseudo-genetic 

algorithm, which was incorporated into an automated WA 
testing tool called MutateIFML. We described the design of 
MutateIFML. We validated MutateIFML on OpenBiblio.  
We found that MutateIFML works better with handmade 
mutant SUTs that were partly replicated from the 
OpenBiblio’s bug report and partly created based on a fault 
taxonomy for WA. We also identified several limitations of 
MutateIFML, which will be addressed in future work.  
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