

Abstract— In software development, a software testing

is a mandatory process to indicate the quality level of the
software and to verify that all components have been
working properly. For integration testing, it is a testing
process used to verify the efficiency and to uncover
errors occurring between class interfaces. This error
indicating method may be expensive due to the reason
that each class might have numbers of interfaces that
need to be considered in source code. This paper aims at
proposing an approach to generate test cases in order to
cover all class interfaces, including of branch coverage,
by collecting data from source code and generating a
static call graph, which will represent all class interfaces
found in source code. Moreover, our can gather
appropriate data to support the generated test cases.

Index Terms— Control Flow Graph, Static Call Graph,
Test Case Generation

I. INTRODUCTION
OFTWARE testing is an important process to indicate the
confidence level of Software Under Testing (SUT) by

verifying conformance to Software Requirements
Specification (SRS) and uncovering errors that still remain
in source code [1]. In order to perform a software testing, a
software tester is required to read between the lines of code
to generate a set of test case, test suite, and test data. This is
to cover all interested software components. The software
tester should have numbers of approaches to determine
coverage criteria that are to be achieved.

While the test case generation is performed, the software
tester has to read between the lines of code in order to
understand the source code structure of SUT. There are
several approaches that a software tester can use to represent
the source code structure. Normally, Control Flow Graph
(CFG) is widely used, as it makes source code more
understandable even when the software tester is not familiar
with the language used by developers. In addition, the
software tester will also have to be able to derive test cases
from CFG by picking up interested paths to be the test paths.
Then, the software tester has to generate test data by
considering the test path in order to assure that each test path
is working well along with the generated test cases. Besides,
the software tester has to set the goal before selecting the

S. Laokok and T. Suwannasart are with the Department of Computer
Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok
Thailand e-mail: Sitdhibong.L@student.chula.ac.th, Taratip.S@chula.ac.th

test paths. In path-oriented, the software tester must generate
test cases to cover all branches in the source code structure
(Branch-coverage) or to cover all predicate nodes [2].

For object-oriented programming, software is composed
of classes that work together by sending signal to one
another. The approach to the test case generation cannot
focus on only an individual class, but it has to focus on the
connection between them during the integration testing
process, as errors can occur anytime when objects are
connected.

During the integration testing process, the test case should
cover all components that are found in source code in order
to find errors occurring in each path that is placed between
classes. Test case generation to cover all the existing paths
of the source code structure is an expensive process, because
the software tester has to seek for all paths one by one. The
Static Call Graph (SCG), which is a graph that represents
the connections between classes, will assist the software
tester to generate the test case in order to validate all
connected paths by gathering data from source code.

In this paper, we aim to propose test cases, which is
generated from a call graph retrieved from source code, in
order to represent all of the connections between objects.
Moreover, we also propose test data generation, which
complies with the test paths that the software tester has
picked up.

The rest of the paper is organized as follows. Section II
discusses existing works done based on the path-oriented
method. Section III introduces the background of the
program graph, SCG, CFG, and automated test case
generation techniques. For Section IV presents the approach
to test case generation and test data retrieved from SCG and
CFG. Lastly, Section V concludes all the contents provided
in this paper, altogether with future work.

II. RELATED WORKS
Unit test is a testing process to locate errors in SUT by

focusing only on the interested parts and eliminate
interaction occurred between software components by
creating a drive or stub [1]. In contrast, integration testing is
a process to uncover errors that may occur even though all
the components have been working properly together [6];
however, the test case for this process that has to cover all of
the class interfaces is expensive, as there are a large number
of interfaces between classes that must be considered by the
software tester. V. Panthini and D. Prasad [7] has proposed a
generated test case based on a sequence diagram in order to
identify interactions between objects. However, the
sequence diagram may not reflect the current state of source

An Approach for Test Case Generation from a
Static Call Graph for Object-Oriented

Programming
Sitdhibong Laokok and Taratip Suwannasart

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

code, due to the reason that source code might be changed to
another appropriate development methodology or
techniques. S. Z. Waheed and U. Qamar [8] has proposed
that the test case generation for the integration testing is
based on the flow diagram data and selected DU paths that
are used to be the test path. However, software is a result of
class communication and the test path must be as long as
possible to traverse each component that used to work
together.

According to the references given above, we found that
there is not any approaches that generate a test case that can
be traversed through selected test paths between objects
which have been working together based on object-oriented
development in order to cover all branch interfaces found in
source code. In addition, we are confident that our proposal
will come up with an appropriate data set for the future test
case generations.

III. BACKGROUND

A. Program Graph
Software has been developed with multiple purposes and

made source code become more complicated. The designing
diagram is used here to illustrate how source code works.
However, source code is always changeable to fit with the
language of developers. Therefore, a program graph is a
graph that is used to represent the structure of source code
and to reflect the current version of it.

Sequence Choice Iteration
Fig. 1. The Primitive Operations of Structured Programing

1) Control Flow Graph

With difference purposes of software to be developed,
there are several platforms and languages that software
developer use for develop software. Therefore, it might
be difficult for the software tester, as he or she may not
be familiar with all of these differences. CFG is able to
represent the structure of source code in the form of
graph. CFG is Directed Acyclic Graph (DAG) that could
represent the structure of source code and relationship
between the lines of code with nodes and edges. It starts
from the source node to sink node through the sequences
of nodes, which are connected by edges. CFG with its
primitive structure was defined by McCabe [3] as
shown in Fig. 1. The software tester should analyze CFG
and select the test path, which traverses from the source
node through nodes in the graph with a purpose to cover
each branch and exercise all predicate nodes in the
graph.

2) Static Call Graph

Software is composed of classes, which work together
by calling their own methods or other methods from
other classes. SCG, which is a Directed Multiple Graph,
represents the relationships between classes in SUT, in

which each node represents classes and edge represents
calling of method. In general, there can be several
outdegree in a single node. SCG is formed by collecting
calling statements found in source code, in which the
called method has been called from the calling method
for the other classes. Only when SCG illustrates the
current source code structure, the software tester will be
able to analyze the interfaces between classes to generate
a test case that will cover all the interfaces in SUT.

A Bgrading:getGradeLetter

grading:getGPAX

grading:getStudentProfile
Fig. 2. Static Call Graph of Class A and Class B

In Fig. 2 shows an example of SCG that represents the
relationships between class A and class B, Where class A
has 3 calling statements in calling method, grading, that
calls to called method getGPAX, getGradeLetter, and
getStudentProfile in class B. Calling and called method are
separated with “:” and used for label the edge between class
A and B such as “grading:getGPAX”. This relationship
should be formed into G = (V, E, l, p), where G is a Multiple
Call Graph, V is a set of node, E is a set of edge, l is a set of
label, p is a function that maps each edge in E to label in l.
For this pair of nodes, A is the head node and B is the tail
node [4].

IV. PROPOSED APPROACH

«Local Repo»
Source code

Source code
Instrumentation

Collecting
constants

Constructing source
code’s structure

Control flow
graph (CFG)

Static Call Graph
(SCG)

«Database»
Graph’s info.

«Local Repo»
Instrumented
source code

Execute
Software Testing

Adjust expected output

- Primitive data type
- Enumeration

Generating Test case
Test path
selection

Method’s
signature analysis

Random Test data

Test case
generation

Software Tester

Test suite

Compare results with graph

Adjusted
test suite

«Database»
ข้อมูลค่าคงที่

SCG

AA

Software Tester

Test result

Source code
retrieval

«Repository»
Source code

«Database»
Interested package

- Source code repository
- Interested package

Test case generation process

Fig. 3. Methodology of Test Case Generation based on
Static Data

In this section, we present our approach to test case

generation based on SCG. A set of static data is gathered
from source code and formed into SCG and CFG. We assure
that the generated test case conforms to the selected test
path. At the last step, we execute a test case that comes with
instrumentation source code and display the result to the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

software tester. Each step of our approach is explained in
Fig 3.

A. Source Code Retrieval
Source code repository is a place to store source code,

determined by the software tester. At this step, we should
retrieve source code to access the local repository.

B. Constant Collection
An object is composed of a primitive data set (booleans,

numbers, and strings); however, an object which is
composed of random data will normally fail to satisfy the
conditions and is not possible to activate a specific path.
Therefore, we need to find an appropriate value that
possibly satisfies the criteria. We could say that a predefined
primitive value in source code can be used to construct an
object more potentially than the others [5].

This process aims to analyze each class’s files stored
within a certain package designated by the software tester to
collect constant values. The collected primitive values
should also lead to random satisfying values in order to
cover the test paths [5].

C. Constructing Source Code’s Structure
In order to form a satisfying condition for source code,

the software tester has to understand its structure. Therefore,
this process is to create graphs, CFG and SCG, which
represent the structure of source code and eliminate
infeasible paths. When the process ends, source code
structure, the graphs, and all possible paths will be stored in
the database. Soon after, the generated test case will retrieve
data from the database to generate another test case that
conforms to the selected test paths. For more detail, each
step is clearly discussed as follows:

1) Control Flow Graph Construction

Source code within the assigned package is retrieved
from the repository given by a software tester, and
parses each statement into nodes is assigned. Then, it
will assign a relationship of the source node and the
other nodes, which work after the previous node, until
nodes are all connected. Finally, we must keep all the
feasible paths and source node to sync all of them in the
form of graph in the database. For example, if C1, C2,
and C3 are classes within the interested package which
contains method sets: {m11, m12}, {m21, m22, m23}, and
{m31, m32} respectively, CFG will be created from each
method in a certain class.

From this process, we create CFG from source code to
represent the source code structure. Furthermore, we also
gather data from the steps of creating an object. These
steps should be used as a reference in the test case
generation process.

2) Static Call Graph Construction

This process collects the static data from source code
for SCG construction. To perform this process, source
code should be retrieved from the local repository. Then,
calling statements that call to another class should be
collected. A method that contains calling statements
should be assigned to calling method, and a method is
called in calling statement should be assigned to called
method. To create SCG, in which each node represents

classes in SUT and each edge represents the relationship
between nodes. At the final phase, each edge will be
labeled by the calling and called methods as shown in
Fig. 4.

C1 C2 C3

m11:m21

m11:m22

m12:m23

m21:m31

m22:m32

Fig. 4. Relationship between Classes C1, C2 and C3

D. Source code instrumentation
This process adds instrumentation message that displays a

specific message when the test case has exercised through
the lines. To make sure that the generated test cases have
already covered all SCG’s branches (Branch coverage), at
least once. Source code should be instrumented for
monitoring if all branches are covered.

1) Method Entry and Existence

In statement instrumentation, the instrumentation
message is added right after method declaration
statement and before method ending or returning values.
Message from this statement shows that test cases are
able to exercise through methods between classes on test
paths.

2) Predicate Execution

Selected test paths can be consisted of several predicate
nodes. For this statement type, instrumentation message
is added right after predicate statements.

3) Calling Method

Displaying message while methods between classed are
invoked is the main goal of this approach.
Instrumentation message is added right before and after
finding these statements in order to display the message
before and after invoking for method, respectively. For
the message analysis, we analyze message from the entry
method and explain the execution path for both invoking
and invoke method.

After this process, instrumentation source code will be

archived in the local repository.

E. Test Case Generation
In our approach, test cases are generated based on static data
collected from source code. Previously, the constant and
source code structures collected. This process analyze the
data and generates test data and test cases in order to
exercise each SCG’s branch at least one time. The process is
shown as in Fig. 5.

1) Test Path Selection

This process starts with retrieving all test paths of SCG
and CFG structure formed in the database. Then, we
should consider each pair of the SCG nodes. After that,
the calling and called methods should be extracted from
each edge label, one by one. For the next step, we should

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

select CFG for calling node in order to analyze the test
paths by finding the shortest path that contains calling
nodes which represent to calling statements. This means
that the first node pair of the test path is being selected.
Next, the previous tail node is set to be the head node.
Calling method is set to previously called method. Then,
we repeat the test path selection steps in order to find all
of the test paths. This is to achieve the branch coverage.

From SCG of class C1, C2, and C3 as shown in Fig. 4,
we can get started from the nodes of C1 and C2 (C1 is the
head node, while C2 is the tail node). After that, we have
to extract the name of the calling and called methods
from each of the edge labels. Therefore, m11 and m21
retrieved from the above edge should be calling and
called methods respectively. After that, we have to find
calling statements and called method, which are m21, in
m11 from the structure of m11 as shown in Fig. 6, given
that node 16 is invoking node (invoking statement).
Now, we have already generated test paths, 11-12-14-16-
18-19, from m11 to cover all the branches (C1, C2,
m11:m12). Then, the head node will be changed from C1
to C2, and the invoking method will be changed from m11
to m21. When it comes to this final step, we need to
repeat all over again if there are any edge labels that start
with the invoking method. If there are no any edge labels
with the invoking method left, we have to set the
invoking method on another invoking method that is left
on the previous head node.

According to the steps explained above, the test cases
can be generated as shown in Table I.

Selecting test path

«Database»
Graph information

Analyzing method
signature

Input data domain«Database»
Constants

Random input data

Input data

Generating test cases

«Database»
Test paths

Fig. 5. Activities in Test case generation process

TABLE I
GENERATED TEST CASE FROM STATIC CALL GRAPH

ID Test Path
1 (C1, C2, m11:m21) - (C2, C3, m21:m31)
2 (C1, C2, m11:m22) - (C2, C3, m22:m32)
3 (C1, C2, m12:m23)

11

12

13 14

15 16

18

19

T F

T F

Fig. 6. Control Flow Graph of method m11 of class C1

For the test paths retrieved from SCG in Table I we have
to consider CFG of method m11 within class C1, method m21
within class C2, and finally method m31 within class C3. CFG
shown in Fig. 7 is the CFG of m11, m21 and m31 respectively.
The generated test paths should be tuple of ((11, 12, 14,
16)m11, (10, 11, 17)m21, (10, 11, 12, 14, 18, 19)m31, (17, 18,
19)m21, (16, 18, 19)m11). Finally, all test paths are sent to the
signature analysis method for the next process.

11

12

13 14

15 16

18

19

T F

T F

m11

C1 C2

11

12

14

17

18

19

10

T

F

m21

C3

11

12

14

18

19

10

m31

Fig. 7 Calling statement between method m11 of C1,

method m11 of class C2, and method m31 of class C3

2) Signature Analysis Methods
This process is performed in order to guide an input

domain for random input process by signature analysis
method, calling and called methods and test path that are
transferred from the previous process, including the
predicate nodes that are found on the test path [5]. For
example, a selected path (Fig. 7) has 3 predicate nodes
i.e. node 12, node 14 of method m11, and node 11 of
method m21. The random input data are guided by
conditions found in predicate node. Thus, input data
should conform to each predicate node and each
predication node must be in line with the conditions
provided in Fig. 8.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Fig. 8. Conditions in Predicate Nodes

This is where the test data generation has considered each
predicate node provided above. Test data should be
generated to conform with predicated found in node m11:12,
m11:14 and m21:11 in order to activate the test case.

Fig. 9. Method Signatures of m11, m21 and m31

With the signature method m11, m21 and m31 as given in
Fig. 9, when the test data has considered each predicate
above, it is to say that, there is only studentScore that we
have to consider and ignore for hasQuizScore. Because
hasQuizScore does not exists in method signature. Finally,
studentScore should conform predicate node must be lower
than or equal to 80 and 50.

3) Random Input Data

Previously, random data has already randomized the
value, but the method could have been more than one
parameter. That is, each parameter of the method has to
be considered. For the parameter found in the predicate
nodes, it already has a guiding value from the previous
process. On the other hand, parameters that are not found
in the predicate nodes must be randomized by using
constant value gathered from the constant collection
process [5].

4) Test Case Generation

For this process, test path should be converted to a set
of test cases. Test case generation must conform to the
steps of object creation that can be found in the test path,
including of the test data formed in the previous process.

F. Expected Output Adjustment
At this process, test cases are generated; however, they

are not actually executed, because our approach has
gathered only the static data and regardless the behavior
method such as methods of returning values or input values
that do not appear on the test paths. The software tester must
adjust these values to satisfy the test paths, altogether with
considering the behavior method.

G. Software Testing Execution
After expected output adjusted, the software tester has

achieved to adjust expected outputs of the test cases, the test
case must be executed with the instrumented source code
retrieved from the source code instrumentation process in
the local repository. During the execution process of the test,
we should collect instrumentation messages that are
displayed when the test cases traverse through nodes of test
path.

H. Result Comparison to Graph
In order to verify a generated test case, we should create a

traversing path from the instrumentation message that is
collected from the previous process and display the
execution result to the software tester.

V. CONCLUSION AND FUTURE WORK
This paper introduces an approach for test case generation

based on integration testing by considering the static call
graph. The generated test cases exercise all branches in the
static call graph at least one time. Moreover, the test data
must be generated for the test case by collecting static data
from source code to make the test cases exercise through the
selected test paths.

 For future work, we aim to adopt this approach in
creating a tool that is to be used for the future test case
generations in an integration testing.

REFERENCES
[1] P. Jorgensen, Softare Testing: A Craftman’s Approach.

Auerbach Publications, 2013.
[2] W. Luanghirun and T. Suwannasart, “Test cases

generation tool for JavaScript based on statement
coverage criteria,” Lect. Notes Eng. Comput. Sci., vol.
1, pp. 479–482, 2016.

[3] T. J. McCabe, “A Complexity Measure,” IEEE Trans.
Softw. Eng., vol. SE-2, no. 4, pp. 308–320, 1976.

[4] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory,
Algorithms and Applications, 2nd ed. Springer
Publishing Company, Incorporated, 2008.

[5] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R.
Ramler, “GRT: Program-analysis-guided random
testing,” Proc. - 2015 30th IEEE/ACM Int. Conf.
Autom. Softw. Eng. ASE 2015, pp. 212–223, 2016.

[6] P. Jalote, An Integrated Approach to Software
Engineering, 2nd ed. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1997. 

[7] V. Panthi and D. P. Mohapatra, “Automatic Test Case
Generation Using Sequence Diagram,” in Proceedings
of International Conference on Advances in Computing,
A. Kumar M., S. R., and T. V. S. Kumar, Eds. New
Delhi: Springer India, 2012, pp. 277–284.

[8] S. Z. Waheed and U. Qamar, “Data flow based test case
generation algorithm for object oriented integration
testing,” in 2015 6th IEEE International Conference on
Software Engineering and Service Science (ICSESS),
2015, pp. 423–427.

m11(String studentID, float studentScore) : String
m21(String studentID) : float
m31(String studentID) : float

m11:12 studentScore > 80
m11:14 studentScore > 50
m21:11 true == hasQuizScore

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

