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Abstract—In TCP communication in wireless multi-hop net-
works, traffic and inference increases relative to the number
of acknowledgment (ACK) packets. PiggyCode, a previously
proposed approach, focuses on the bidirectionality of DATA
and ACK packets, and reduces the number of transmissions
by encoding DATA and ACK packets. However, the effect of
PiggyCode depends on the transmission rate. We propose a
method to enhance the effect of network coding techniques
regardless of transmission rate by inserting wait times into
packet relay processes. Simulation results demonstrate the
effectiveness of the proposed method. In addition, we propose a
method to dynamically adjust wait times relative to hop count
and traffic.

Index Terms—TCP, network coding, wireless multihop net-
works

I. INTRODUCTION

W ITH the evolution and popularity of wireless devices,

wireless mesh networks comprising multiple wire-

less nodes with router functions have attracted increasing

attention. Internet access is a typical wireless mesh network

service. Most Internet communication uses the transmission

control protocol (TCP) as the transport layer protocol be-

cause it is highly reliably. TCP uses an acknowledgment

(ACK) packet to achieve reliable communication. However,

mechanisms based on automatic repeat requests generate

DATA-ACK interference, i.e., inter-flow interference.

PiggyCode[1] is the first approach to propose countermea-

sures against the inter-flow interference problem. PiggyCode

focuses on the bidirectionality of DATA packets and ACK

packets, and uses network coding (NC)[2] to reduce the

number of intermediate node transmissions. An NC module

located in the MAC layer, operates on packets in the wait

state in a MAC layer interface queue. Therefore, PiggyCode

is effective only when the network is close to congestion.

Over an entire network, the number of packet transmissions

should be reduced regardless of the amount of traffic, i.e.,

the effect of NC should be constant.

Thus, we propose two methods to improve the efficiency

of PiggyCode. The first method is delay insertion in the

relay and coding process. The second method is delay time

adjustment that considers the communication environment.
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II. PIGGYCODE

A. Overview

PiggyCode is an NC-based scheme designed to enhance

TCP communication. NC improves transmission efficiency

by encoding packets in a transmission node and relay nodes,

and by decoding in a receiving node. As stated previously,

PiggyCode focuses on the bidirectionality of DATA packets

and ACK packets, and reduces the number of intermediate

node transmissions by NC. Furthermore, improvement of

throughput and round trip time (RTT) are improved due to

the deduced number of transmissions.

PiggyCode adds an NC layer, which provides encoding

and decoding functionalities, between the network layer and

the MAC layer. The NC layer consists of two modules and

a buffer:

• encoding module

• decoding module

• decoding buffer.

The NC layer performs different operations for each

network node role. The NC layer of a TCP sender node

copies a DATA packet and stores the copied packet in the

decoding buffer. The copied packet will be used to decode.

For intermediate nodes, the NC layer in the intermediate node

encodes a DATA packet and an ACK packet and then trans-

mits the encoded packet. The encoding process runs when a

packet is added to the interface queue. If a packet that can be

encoded by the enqueuing packet exists, the coding module

encodes it by XORing and attaches a PiggyCode header,

which indicates that the packet is encoded, to the encoded

packet. Then, the encoding module adds the encoded packet

to the head of the interface queue. When there are multiple

candidates to encode in the interface queue, the packet closest

to head of the queue is selected. Thus, RTT is decreased.

The receiver side NC layer uses the TCP packet stored in

the decoding buffer to decode the receiving encoded packet.

B. PiggyCode Limitations

PiggyCode considers TCP packets in an interface queue as

encoding objects. Therefore, PiggyCode has two limitations.

When the transmission rate is low, the probability of TCP

packets existing in an intermediate node interface queue is

low. Therefore, an intermediate node has no opportunity to

encode.

When the transmission rate is high, nodes cannot transmit

packets immediately due to network congestion. Moreover,

sender and receiver nodes cannot always transmit DATA

and ACK packets, respectively. Thus, packets waiting in
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an interface queue tend to incline DATA or ACK packets.

Therefore, efficient encoding is impossible.

Consequently, PiggyCode cannot maximize the effect of

NC consistently. To improvement PiggyCode, DATA and

ACK packet encoding should not be influenced by the trans-

mission rate. Thus, we propose a method that inserts wait

time for packet forwarding. Furthermore, we also propose

a method to adjust the wait time based on hop count and

the length of the interface queue to suppress increased RTT

caused by wait time insertion.

III. IMPROVEMENT OF CODING RATIO BY WAIT TIME

INSERTION

To address the problems described in the previous section,

the proposed method inserts a wait time to increase the

coding ratio. When the NC layer in an intermediate node

intends to enqueue a TCP packet to the interface queue,

the NC layer confirms whether a packet that is a candidate

to encode with the TCP packet exists. If not, the NC layer

inserts wait time to the TCP packet to increase the likelihood

of encoding. Thus, PiggyCode can encode more packets

regardless of the transmission ratio. In the following, we

describe the proposed methods and simulations.

A. Proposed Method

The proposed method uses an encoding queue and an

interface queue. When the NC layer receives a DATA packet

from the IP layer, the NC layer searches the interface queue

for an ACK packet. If an ACK packet is found, the NC

layer encodes the DATA packet and the ACK packet and then

inserts the encoded packet at the top of the interface queue.

If an ACK packet is not found, the NC layer enqueues the

DATA packet in the encoding queue rather than the interface

queue. The DATA packet waits for the predefined time in

the encoding queue. If the NC layer receives an ACK packet

from the IP layer before the predefined time expires, the

DATA packet is dequeued from the encoding queue to be

encoded with the ACK packet. After encoding, the encoded

packet is inserted into the head of the interface queue. If

the predefined time expires, the DATA packet is dequeued

from the encoding queue and is enqueued into the interface

queue. When the NC layer receives an ACK packet, the NC

layer first searches the encoding queue for a DATA packet

to encode. If a DATA packet is found, the NC layer encodes

both packets and inserts the encoded packets in the head of

the interface queue. Otherwise, the NC layer searches for a

DATA packet in the interface queue. After the search, the

NC layer process is the same as above.

The proposed method targets only DATA packets because

if both DATA and ACK packets are targeted, the delay caused

by the wait time increases and ACK clocking is hindered.

B. Implementation using ns-2

We implemented the proposed method using ns-2[3], to

verify the effectiveness of the proposed method. Fig. 1 shows

the module structure of the implementation. The NC module

consists of an encoding block, a decoding block and a

decoding buffer that temporarily stores packets to decode

an encoded packet. The encoding block has a queue in

which DATA packets wait the predefined time. Likewise, the
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Fig. 1. Node Architecture

decoding block has a queue in which encoded packets wait

to be decoded.

Each node performs in promiscuous mode because the

encoded packets must be received by both an up-link side

node and a down-link side node. When a node intends to

send a TCP packet, the hook function always hooks the TCP

packet and passes it to the encoding block. The encoding

block processes each packet type differently.

If the TCP packet is a control packet, such as TCP-

SYN, the encoding module does nothing. The module returns

the packet to the original transmission processing flow.

Otherwise, the encoding module copies the TCP packet and

stores the copied packet in the decoding buffer for subsequent

decoding. After buffering the copied packet, the encoding

module of the TCP sender or the destination nodes does

nothing.

On the other hand, the encoding module of the intermedi-

ate node responsible for NC processing has many things to

do. The encoding block confirms whether the TCP packet is a

DATA packet. The encoding block adds DATA packets to the

encoding queue and sets the wait timer. When an ACK packet

is transmitted before the waiting timer expires, the encoding

block dequeues a DATA packet and cancels the wait timer

of the dequeued packet. The dequeued packet is encoded

using the ACK packet. The encoding block adds the coding

header used for decoding to the encoded packet. Then, the

block passes the encoded packet to the lower layer. When the

wait time expires, the encoding block dequeues the DATA

packet related to the wait time from the encoding queue and

passes the packet to the lower layer. If the encoding queue

is full when it receives a DATA packet from the upper layer,

the encoding block forcibly dequeues a packet from the head

of the encoding queue and adds the new DATA packet.

If an ACK packet is sent, the encoding block dequeues

a DATA packet from the head of the encoding queue. The

ACK packet is encoded using the DATA packet and a coding

header is added to the packet. Then, the encoding block

passes the encoded packet to the lower layer. If there is

no DATA packet in the encoding queue, the encoding block

passes the ACK packet to the lower layer as is.

The hook function passes a receiving packet from the

lower layer to the decoding block. The decoding block

confirms whether the packet is encoded. If the packet is

encoded, the decoding block acquires the packet specified

in the coding header from the decoding buffer. Then, the de-

coding block decodes the encoded packet using the specified
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulator ns-2(version 2.34)
Propagation Model two-ray model
Simulation Time 400s
Distance among nodes 200m
Propagation range 250m
Data Rate 2Mbps
Basic Rate 1Mbps
Application CBR (200 – 1000Kbps)
Packet Size 1024bytes
TCP variant TCP/NewReno
RTS/CTS off

Fig. 2. Throughput in two-hop topology.

Fig. 3. Number of ACKs transmitted by intermediate nodes in two-hop
topology.

packet. The original decoded packet is copied and passed to

the upper layer. The copied packet is stored in the decoding

buffer because this is the first time that the NC layer has

handled the packet. If the specified packet is not in the

decoding buffer, the encoded packet is added in the decoding

queue to wait for the specified packet. The decoding block

periodically checks for the arrival of the specified packet.

C. Simulation Evaluations

1) Simulation Environment: We evaluated the effective-

ness of the proposed method by simulation. We used two,

three, and four-hop chain network topologies. In the simu-

lations, we measured throughput, RTT, and the number of

ACK packet transmissions. The targets for comparison were

normal TCP (NewReno) and PiggyCode. The number of

ACK packet transmissions indicates how many ACK packets

were not encoded out of all ACK packets transmitted by the

destination node. We evaluated the network topologies with

different hop counts and wait times. Other parameters are

shown in TABLE I.

2) Simulation Results:

Fig. 4. RTT in two-hop topology.

a) Two-hop topology: Fig. 2, Fig. 3, and Fig. 4 show

the average receiving throughput, the number of ACK pack-

ets transmitted by intermediate nodes, and RTT, respectively.

The throughput of the proposed method is greater than nor-

mal TCP and PiggyCode. PiggyCode improved throughput

by 5% compared to the normal TCP. The proposed method

improved throughput by 10% compared to the normal TCP.

Relative to wait time, longer wait times improve throughput

because the number of packet transmissions is suppressed As

a result, an encoding block with a long wait time can encode

more packets.

The number of PiggyCode ACK packet transmissions

decreased by approximately 50% when the transmission rate

was greater than 700Kbps. However, the number of Piggy-

Code ACK packet transmissions was the same as the normal

TCP when the transmission rate was less than 700Kbps.

Thus, the effectiveness of PiggyCode only emerges under

congestion conditions. In contrast, the proposed method

further decreased the number of ACK packet transmissions.

The limitation of PiggyCode is the timing of DATA and

ACK packets. The TCP sender node sends multiple DATA

packets in succession according to its congestion window

size. Since the TCP receiver node successively receives

DATA packets, the TCP receiver node also creates successive

transmission of multiple ACK packets. Therefore, the inter-

mediate node cannot encode frequently due to the biased

reception. On the other hand, the wait time of the proposed

method solves this deviation. Thereby, the proposed method

achieved to increase the number of the encoded packets,

particularly for long wait times.

The RTTs of the normal TCP and PiggyCode are ap-

proximately 4ms at a low transmission rate. On the other

hand, the RTT of the proposed method is longer according

to the length of the wait time. When the transmission rate is

greater than 700kbps, the RTT of the normal TCP increases

significantly due to congestion. PiggyCode and the proposed

method suppressed the increase of RTT to less than 40ms.

The suppression effect comes from NC. Thus, the time

DATA packets spend waiting in the encoding queue is short

when the transmission rate is high. Therefore, RTT is not

influenced by wait time. In particular, the simulation results

showed the best when the wait time was 30ms.

b) Three-hop topology: Fig. 5, Fig. 6, and Fig. 7 shows

the average receiving throughput, the number of ACK packet

transmissions of intermediation nodes, and RTT, respectively.

All results decreased relative to increased hop count. In

particular, the throughput of PiggyCode was reduced by
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Fig. 5. Throughput in three-hop topology.

Fig. 6. Number of ACKs transmitted by intermediate nodes in three-hop
topology.

Fig. 7. RTT in three-hop topology.

7% compared to the normal TCP. In contrast, the proposed

method improved throughput by 5% compared to the normal

TCP. These results can be attributed to packets losses caused

by the hidden terminal problem and increased inter-flow

interference. The impact of packet losses are significant

when a lost packet is an encoded packet. The dissipation

of an encoded packet equals two packet losses, i.e., a DATA

packet loss and an ACK packet loss. Therefore, the effect

of packet loss for PiggyCode and the proposed method is

more significant. Furthermore, when an intermediate node

sends an encoded packet, the transmission mode is unicast

and the destination MAC address in the MAC header of

the encoded packet is the MAC address of the next hop

node of the DATA packet included in the encoded packet.

The node nearest to the TCP receiver node receives the

encoded packet in a unicast manner. Thus, when the encoded

packet dissipates under the MAC layer, the MAC layer

retransmits the packet according to the IEEE802.11MAC

standard[4]. Since the opposite side node is not designated in

the MAC header, the node receives the encoded packet using

promiscuous mode. When the opposite side node can not

Fig. 8. Throughput in four-hop topology.

Fig. 9. Number of ACKs transmitted by intermediate nodes in four-hop
topology.

Fig. 10. RTT in four-hop topology.

receive the encoded packet, the packet is never retransmitted.

Therefore, packet losses increase with PiggyCode and the

proposed method, both of which are based on NC techniques.

PiggyCode decreased throughput significantly. Even though

the proposed method is based on PiggyCode, it was not

influenced by packet losses. The proposed method reduces

the influence of packet losses by decreasing of the number of

packet transmissions by inserting wait times. This can also be

confirmed by the performance improvements obtained with

longer wait times.

Thus, the RTTs of PiggyCode at a high transmission rate

are the same as those of the normal TCP. In contrast, the

RTTs of the proposed method were low. However, the RTTs

of the proposed method were worse at a low transmission

rate because of the wait time insertion. When the wait time

was 90 ms, the RTTs of the proposed method were the

shortest. The number of ACK transmissions was the same

as the results obtained in the two-hop simulation.

c) Four-hop topology: Fig. 8, Fig. 9, and Fig. 10

show the average receiving throughput, the number of ACK

packet transmissions of intermediation nodes, and RTT,
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respectively. All results worsened relative to increased hop

count. Among the three methods, PiggyCode demonstrated

the highest throughput. The improvement achieved by the

proposed method was minimal, due to the frequent occur-

rence of packet losses caused by inter-flow interference and

the hidden terminal problem. As hop count increases, the

phenomenon becomes more remarkable.

D. Discussion

The proposed method improved throughput up to a maxi-

mum of 10% with three hops. However, with four hops, the

PiggyCode throughput was the best. The proposed method

efficiently encoded a DATA packet and an ACK packet with

the wait time insertion. Thus, the proposed method increased

usable bandwidth and improved throughput. When the hop

count is less than three, the proposed method with the long

wait time was more efficient.

The RTTs of the proposed method increased with a low

transmission rate due to the insertion of wait times. However,

the RTTs of the proposed method with a high transmission

rate decreased significantly because the proposed method

encodes many TCP packets and the encoded packets are

transmitted immediately. Thus, wait times should be short to

suppress the impact on RTTs for low transmission rates and

should be long to reduce RTTs for high transmission rates.

The number of ACK transmissions is improved significantly

in all scenarios. The results of the proposed method with the

four-hop topology demonstrated a different tendency than the

other scenarios, i.e., longer wait times decreased throughput.

The simulation results demonstrate that it is important to

configure the length of the wait time relative to hop count

and transmission rate in order to improve the efficiency of

the proposed method. The proposed method is most efficient

with a short-hop topology. Conversely, in the case a long-hop

topology, the wait time should be zero, i.e., PiggyCode is

suitable. Moreover, a short wait time will be more efficient

with a low transmission rate and a long wait time will be

more efficient with a high transmission rate.

IV. WAIT TIME CONFIGURATION METHOD BASED ON

HOP COUNT AND QUEUE LENGTH

As mentioned in the previous section, the effect of the

proposed method is influenced by hop count and transmission

rate. Therefore, appropriate configuration of the wait time

will achieve the efficiency of the proposed method. In this

section, we described the wait time configuration method and

simulation evaluations.

A. Configuration Method Details

The simulation results (Section 3) demonstrate that Piggy-

Code improved throughput more than the proposed method

in the four-hop topology. Based on the results, the wait time

was set to zero to achieve the same results as PiggyCode

when the hop count of the topology was greater than four.

Once a path from a TCP sender node to a TCP receiver node

is established, an intermediate node can know the hop count

to the TCP sender node and to the TCP receiver node by

referring to its forwarding table. Thus, the intermediate node

acquires the hop count of the path by adding the hop count to

the TCP sender node and the hop count to the TCP receiver

Fig. 11. Throughput in two-hop topology.

Fig. 12. Number of ACKs transmitted by intermediate nodes in two-hop
topology.

node. Thus, the proposed method configures wait time based

on the hop count among TCP end nodes.

Under the three-hop topology in which the wait time of the

proposed method performs efficiently, the proposed method

configures the wait time relative to the transmission rate.

• At a low transmission rate, the proposed method sets a

shorter wait time.

• At a high transmission rate, the proposed method sets

a longer wait time.

The proposed method determines, whether the transmis-

sion rate is high or low based on the length of the interface

queue. When the transmission rate is low, the interface queue

is nearly empty. In contrast, the interface queue is filled with

packets at a high transmission rate. Thus, when the interface

queue is almost empty, the proposed method decides as the

transmission rate is low. Likewise, when the interface queue

is filled with packets, the proposed method decides as the

transmission rate is high.

From the simulation results, the appropriate wait time for

two or three-hop topologies and the low transmission rate is

10 ms. At high transmission rate, 30 ms is a suitable wait

time for the two-hop topology, and 90 ms is suitable wait

time for the three-hop topology.

B. Simulation Evaluations

We also evaluated the proposed method, which combines

wait time insertion and wait time configuration. This simula-

tion configuration was the same as the previous simulation.

Fig 2, Fig 3, and Fig 4 show the two-hop results of the

average receiving throughput, the number of ACK packet

transmissions of intermediate nodes, and RTTs, respectively.

In addition, Fig 2, Fig 3, and Fig 4 show the three-hop

average receiving throughput, the number of ACK packet
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Fig. 13. RTT in three-hop topology.

Fig. 14. Throughput in three-hop topology.

Fig. 15. Number of ACKs transmitted by intermediate nodes in three-hop
topology.

transmissions of intermediate nodes, and RTTs, respectively.

All results worsened relative to increased hop count.

The maximum throughput improved by the wait time

configuration based on the hop count with the three-hop

topology. The threshold that the PiggyCode scheme became

effective was 700Kbps when the hop count was two. In

contrast, the threshold of the proposed method was 300 Kbps.

Moreover, the threshold of PiggyCode, when the hop count

was three was 400 Kbps. On the other hand, the proposed

method started to encode packets when the transmission rate

is greater than 250 Kbps. Therefore, the proposed method

gained NC efficiency at a lower transmission rate than

PiggyCode. In addition, the proposed method encoded more

packets at a high transmission rate.

The RTTs with a low transmission rate were suppressed by

reducing the wait time. The RTTs with a high transmission

rate were less than that of PiggyCode and the normal TCP

because the wait time was long.

Fig. 16. RTT in three-hop topology.

C. Discussion

The effectiveness of the proposed method has been con-

firmed by simulation result. As mentioned previously, Pig-

gyCode has two drawbacks, i.e., it can only perform under

congested conditions and the deviation of packet type reduces

the probability for encoding. The proposed method addresses

these issues by wait time insertion and wait time config-

uration. At a low transmission rate, the proposed method

suppresses increasing RTT by shortening the wait time. At

a high transmission rate, the proposed method prolongs the

wait time to increase the probability of encoding. As a result,

the number of ACK transmissions is reduced and RTT is also

suppressed compared to PiggyCode. However, the proposed

method reduces throughput when the hop count is greater

than three. The wait time configuration based on hop count

is a countermeasure against this limitation.

The proposed method does not support the “Delayed

ACK” mechanism[5]. Delayed ACK is widely used in TCP

implementations. The implementation of Delayed ACK re-

duces the number of ACK transmissions and the symmetry

of DATA and ACK packets, on which PiggyCode and the

proposed method rely, collapses. We intend to address the

Delayed ACK mechanism in future work.

V. CONCLUSION

In this paper, we revealed the problems of PiggyCode and

proposed the method to solve them. We also confirmed the

efficiency of our proposed method by simulation evaluations.

The proposed method inserts the wait time to increase the

chance for encoding, moreover, the wait time is configured

based on the hop count and transmission rate to pick the best

of the both the proposed method and PiggyCode. Simulation

evaluations shows that the proposed method achieves the

throughput improvement by 10%.
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