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Abstract—The performance of traditional transmission con-
trol protocol (TCP) suffers from lossy wireless networks be-
cause of its inability to distinguish wireless link errors from
congestion-induced losses. TCP with network coding (TCP/NC)
is a promising solution to for this problem. TCP/NC masks
packet losses from TCP and sends redundant coded packets
to correct erasures instead of TCP. However, acknowledgment
(ACK) packets for the redundant coded packets may lead
to false TCP fast retransmits and degrade performance. To
counter this issue, we propose a modification of the acknowl-
edgment mechanism that can better decide whether to send
an ACK packet. Simulation results showed that our method
reduces fast retransmits by up to about 90% and helps to
achieve near-capacity goodput.

Index Terms—TCP, FEC, coding, wireless network.

I. INTRODUCTION

W IRELESS communication is essential for mobile
devices such as laptops, sensors, or smartphones.

Transmission control protocol (TCP) is the predominant
transport layer protocol on both wired and wireless commu-
nication networks. It is well known that conventional TCP
exhibits two problems in wireless networks. One is erroneous
congestion control: TCP cannot differentiate random loss by
interference or fading on wireless links from packet drop
caused by network congestion. Therefore, TCP erroneously
views a random loss as congestion and decreases its sending
rate. The other issue is an increase in communication delay
caused by retransmission. TCP adopts automatic repeat re-
quest (ARQ) for error correction. In ARQ, when a sink node
detects a lack of packets, it sends acknowledgment (ACK)
packets to the source node with the sequence number of
the packet. The ACKs cause the source node to recognize
the packet loss; consequently, it retransmits the packet. This
procedure requires more than one round-trip time (RTT) to
recover a loss. Therefore, in a lossy wireless environment,
TCP has many delays due to retransmissions.

TCP with network coding (TCP/NC), introduced by Sun-
dararajan et al. [1], is a promising approach to address these
problems. TCP/NC defines a network coding (NC) layer
between TCP and IP, as illustrated in Fig. 1. The NC layer
encodes the original packets coming from the upper TCP
layer and decodes the coded packets it receives from the
lower IP layer. The NC layer adopts forward error correction
(FEC) by sending an extra coded packet (hereafter called a
redundant packet) in advance. In addition, it acknowledges
coded packets instead of TCP. The NC layer masks random
losses from the upper TCP layer so that erroneous congestion
control is suppressed. Moreover, FEC can recover from
packet loss earlier than ARQ.
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Fig. 1. TCP/NC protocol stack.

However, the acknowledgment mechanism of TCP/NC
may degrade performance because of the ACKs for redun-
dant packets. For example, suppose there is an error-free
channel between a source and a sink node. The source NC
creates three coded packets from three original packets and
sends them with three additional redundant packets. Thus,
the sink NC replies with six ACKs, including three duplicate
ACKs, for all received packets. Although neither random
loss nor packet drop have occurred, these duplicate ACKs
cause the source TCP to invoke fast retransmit. Hence, this
unnecessary retransmission and congestion control decreases
the throughput.

To solve this problem, we introduce an acknowledgment
mechanism that cooperates with the source. Through this
mechanism, the source NC specifies whether a coded packet
is a redundant packet using its header field and the sink
NC does not reply with an ACK to packets that are created
as redundant packets and not useful for decoding (hereafter
called useless redundant packets). This mechanism prevents
duplicate ACKs being sent for useless redundant packets so
that erroneous fast retransmits do not occur. As a result,
the NC layer can transmit more redundant packets than
minimally required without fast retransmits. These redundant
packets help speed recover from losses and achieve near-
capacity goodput.

The rest of this paper is organized as follows. An overview
of TCP/NC is described in Section II. The proposed acknowl-
edgment mechanism with TCP/NC is presented in Section I
II . The simulation results are described in Section IV , and
the conclusions and future work are discussed in Section V.

II. TCP/NC
TCP/NC introduces an NC layer between the TCP and

IP, as illustrated in Fig. 1. The source NC generates a
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Fig. 2. Comparison between conventional TCP and TCP/NC in a random loss senario.

coded packet that involves multiple TCP segments for every
arriving segment and transmits it to the sink. The sink NC
performs the decoding operation for each received coded
packet, and then sends back a TCP ACK to the source TCP.
If the sink NC collects enough coded packets to decode the
segments, it sends them to the sink TCP and discards the
ACKs from the sink TCP to the source.

One of the novelties of TCP/NC is the incorporation of an
end-to-end coding scheme into the TCP without spoiling the
TCP’s functionality. TCP manages the sending rate using the
principle of self-clocking for flow and congestion control.
Encoding and acknowledging coded packets in an online
manner, called online coding [2], enables the NC layer to
be synchronized with TCP ACK-clocking. Therefore, TCP
can transparently use the lower layer without any changes to
the TCP.

The main advantages of TCP/NC are that it masks random
losses from TCP and quickly recovers from losses by FEC.
Fig. 2(a) and (b) depict conventional TCP and TCP/NC,
respectively, are in a scenario in which TCP sends five seg-
ments p1 to p5, of which one is a random loss. Conventional
TCP replies with duplicate ACKs for p3, p4, and p5, because
of the loss of p2. They trigger a fast retransmit with erroneous
congestion control, and it results in performance degradation.
In contrast, TCP/NC sends back ACKs in order of sequence
number for q3, q4, and q5 despite of lack of q2. Therefore,
the random loss is hidden from TCP and the TCP maintains
its sending rate.In TCP/NC, a lack of coded packet stalls
the decoding of segments and this affects the upper layers
as a decoding delay. The source NC periodically sends a
redundant packet as q′5. It increases the opportunities for
the sink NC to gather enough coded packets for decoding.
Therefore, TCP takes one RTT or more for loss recovery,
whereas TCP/NC accomplishes it within one RTT.

We present the details of the coding operation and the
acknowledgment with NC in the rest of this section.

A. Coding Operation

1) Encoding: TCP/NC adopts random linear coding [3]
for the coding scheme. Random linear coding produces a
linear combination of original packets as a coded packet us-
ing randomly chosen coefficients. In TCP/NC, TCP segments
pi, where i ∈ {1, 2, . . . , n}, are combined into qj , where
j ∈ {1, 2, . . . ,m}. This encoding operation is presented
in Eq. 1, where coefficients are given as αji ∈ F2q . The
coded packet consists of header ~αj = (αj1, αj2 . . . αjn) and
payload qj . The whole of encoding operation is given as
Eq. 2, where ~p = (p1, p2, . . . , pn), ~q = (q1, q2, . . . , qm), and
C = (αji) ∈ Fm×n.

qj =
n∑
i=1

αjipi (1)

~q = C~p (2)

Each coefficient is randomly chosen from finite field F2q .
According to [3], If field size F2q is large enough (q = 8
in this paper), this system guarantees that each coded packet
becomes linearly independent, that is, useful for decoding.

2) Decoding: A sink NC can obtain coefficients and linear
combinations from coded packets and construct a linear
equation (Eq. 2). The decoding operation is given as Eq. 3.
The decoder solves the linear equations using Gauss-Jordan
elimination to extract the segments ~p. To solve the equations,
matrix C must be m ≥ n. This indicates that, to be decoded,
the number of coded packets must be larger than the number
of segments involved in them.

~p = C−1~q (3)

3) Forward Error Correction: A source NC includes
redundant coded packets in the coded packets for error
correction. The number of redundant packets is given by
redundancy factor R, which is defined as the proportion of
number of coded packets to original packets, namely, m

n .
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With ρ% loss rate, the theoretical value of R is determined
to be 1

1−ρ .
The maximum count of the original packets involved in a

coded packet is presented by coding window size W . The
value of W affects two kinds of performance, the overhead
of the header and capacity for loss. As mentioned above,
the coded packet’s header contains the coefficients. The
header size becomes large because of the lager number of
coefficients as W is increased. Thus, a very large W increases
the communication overhead of the header. At the same
time, W guarantees that the system can correct losses within
the continuous W losses with redundant packets. Therefore,
larger W enhances the system’s robustness for the losses.

B. Acknowledgment Scheme of the NC Layer

The NC layer has an acknowledgment mechanism for
concealing loss and compatibility with TCP. The source NC
returns TCP ACK packets for every reception of a coded
packet. To acknowledge the coded packet with TCP ACK,
TCP/NC introduces a seen/unseen definition. According
to the definition provided by [4], an original packet pk is
seen by a node if it has enough information to form a linear
equation into (pk + q), where q =

∑n
i=k+1 αipi. Seeing

pk guarantees that the following coded packets do not need
to contain it even if it has not yet been decoded. This can
be regarded as a reception of pk so that the sink NC can
acknowledge the seen packet and send a TCP ACK with the
sequence number of the oldest unseen packet.

III. IMPROVEMENT OF THE ACKNOWLEDGMENT
MECHANISM IN TCP/NC

Previous studies [1] have found that TCP/NC can achieve
to close the capacity throughput in a lossy network with an
appropriate R based on loss rate, and the value of R should
slightly exceed the theoretical value on a practical network
from empirical experiments. It can be considered that the ex-
tra redundant packets reduce the decoding delay and enhance
the system robustness. However, the conventional TCP/NC
acknowledgment mechanism may degrade the performance
with the extra redundant packet. The rest of this section
describes the drawbacks of the TCP/NC acknowledgment
mechanism and proposes a solution.

A. Performance Degradation by Unnecessary Fast Retrans-
mits

In TCP/NC, the sink NC acknowledges all received coded
packets, and has no ability to separate redundant packets
from coded packets. Hence, it replies with ACKs to useless
redundant packets that are created as redundant packet at the
source and are discarded at the sink. They become duplicate
ACKs leading fast retransmits even in an error-free environ-
ment. Fig. 3 illustrates such an event. Suppose the source NC
generates a redundant packet for every coded packet (R = 2)
on an error-free channel. The source NC sends redundant
packets q′1, q′2, and q′3 adding to coded packets q1, q2, and
q3. The sink NC discards q′1, q′2, and q′3, regarding them as
useless redundant packets, and returns three duplicate ACKs
to the source. These duplicate ACKs cause the source TCP
to create an unnecessary fast retransmit.
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Fig. 3. TCP/NC with R=2 over a no-loss channel.
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Fig. 4. New acknowledgment mechanism incorporating the flags field into
the existing TCP/NC header.

On account of the drawback of the acknowledgment mech-
anism, TCP/NC may suffer on practical networks for two
reasons. The first reason is that calculating appropriate R on
real networks is a difficult challenge. Since packet loss rates
always fluctuate, sending the minimally required redundant
packets is difficult in practice. Therefore, R is estimated to
be larger than the theoretical value, and it is inevitable that
some redundant packets become useless redundant packets.
The second reason is that a static FEC cannot adapt to
dynamically occurring packet loss. As mentioned earlier, the
source NC periodically sends a redundant packet. However, it
does not always meet an occurrence of packet loss in prac-
tice. Therefore, such differences in timing produce useless
redundant packets.

B. Source Cooperative Acknowledgment Mechanism

To address this limitation of the acknowledgment mech-
anism, we propose an acknowledgment mechanism that
cooperates with a source. In this mechanism, the source
NC explicitly specifies the redundant packet using the coded
packet’s header field. The sink NC determines useless redun-
dant packets using the field and cancels the ACK message.

The proposed mechanism newly reserves a flags field on
the conventional header [1], as depicted in Fig. 4. The source
NC sets a bit on the flags if it is a redundant packet.

The sink NC decides whether to send an ACK using
the flags field. Fig. 5 describes the algorithm of the sink
NC. The sink NC always acknowledges the coded packet
that is used for decoding. The other packets, which are
useless for decoding, are divided into two types. One is that
the flags field indicates the redundant packet, namely, the
useless redundant packet. The sink NC does not acknowledge
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Fig. 5. Sink NC algorithm to determine whether to send TCP ACK.

TABLE I
SIMULATION PARAMETERS

Parameter Value
802.11 protocol (Source-AP) IEEE802.11b
Maximum transmission rate (Source-AP) 11Mbps
Maximum transmission rate (AP-Sink) 10Mbps
Application FTP
Data size (In number of packet) 9.6MB (10,000)
MSS 1,000byte
TCP variants TCP-NewReno
Coding window size (W ) 5
Redundancy factor (R) x ∼ x+ 0.05
Finite field F28

it. The other is neither a redundant packet nor a useful
packet. It corresponds to a retransmitted coded packet that
is retransmitted because of the loss of ACKs. Assume that
all sink ACKs are lost. The source NC resumes sending
coded packets according to TCP’s retransmission time out.
However, the retransmitted coded packet has already been
acknowledged by the sink, so that it will be a useless
coded packet. Such a coded packet must be acknowledged;
otherwise it results in a non-communication state.

IV. SIMULATION RESULTS

We implemented the proposed method in addition to
the TCP/NC on the QualNet network simulator [5]. The
simulation topology was assumed to be a general wireless
LAN network that consists of a mobile (sink) node, AP, and
server (sink) node, as depicted in Fig. 6. The basic simulation
parameters are presented in Table I. The wireless link be-
tween the source and AP had a bandwidth of 11Mb/s and was
set to cause random losses. The wired link between the AP
and sink had a bandwidth of 10Mb/s and a propagation delay
of 10 ms. The source transmitted 9.6 MB (10,000 packets) to
the sink. TCP/NC’s parameter coding window size W was 5
and redundancy factor R ranged from the theoretical value
x, which is calculated using the loss rate, to x + 0.05. The
simulation was repeated ten times to obtain an average value.

A. Effectiveness of the Mechanism

First, we provide comparisons between the original
TCP/NC and the TCP/NC with our proposed method to
establish the effectiveness of the method. A packet loss rate

Source AP Sink

source node intermidiate node sink node

(10ms delay)
wireless link wired link
(5% random loss)

Fig. 6. Simulation topology assuming a wireless LAN system via an access
point (AP).
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with the wireless link was set to 5%. We incremented R from
its theoretical value 1.05 ≈ 1

(1−0.05) by 0.01 each time.
Fig. 7 illustrates the number of duplicate ACKs for each

value of R. In the original TCP/NC, duplicate ACKs linearly
increase with R or redundant packets due to useless redun-
dant packets. In contrast, the number of duplicate ACKs in
the proposed TCP/NC has no tendency to rise because of
proposed method suppresses useless redundant packets. Fur-
thermore, the proposed TCP/NC decreases duplicate ACKs
for larger value of R because the extra redundant packets
help fast recovery and enhance its capability to conceal
losses.

Fig. 8 gives the number of fast retransmits for each value
of R. As duplicate ACKs trigger fast retransmits, the original
TCP/NC increases fast retransmits for larger value of R,
whereas proposed TCP/NC reduces it.

The effect of reducing the fast retransmits is shown in
Fig. 9 and Fig. 10. Fig. 9 plots the TCP congestion window
(cwnd) for each value of R. Since fast retransmits trigger
congestion control to reduce cwnd, the cwnd of the original
TCP/NC declines, whereas the proposed TCP/NC keeps
cwnd high.

Fig. 10 depicts the goodput for each value of R. As
described earlier, unnecessary fast retransmits degrades per-
formance. Therefore, the goodput of the original TCP/NC
shrinks with R, and the goodput of the proposed TCP/NC
increases.

The simulation results confirms that the proposed method
suppresses duplicate ACKs and this reduces the number
of fast retransmits and maintains near-capacity goodput.
Another important finding is that if the problem is solved
with too high a value of R, the proposed TCP/NC enhances
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the effectiveness of FEC.

B. General Performance Evaluation

We evaluated performance with a variable loss rate for
TCP, original TCP/NC, and the proposed TCP/NC. The value
of R of the original TCP/NC was set to high (x + 0.05)
and low (x), and that of proposed TCP/NC was set to
only high since higher R is better as mentioned above. In
the simulations, normal TCP was not able to complete a
simulation with a 10% loss rate due to heavy traffic.

Fig. 11 plots the number of fast retransmits for each loss
rate. We can see that for almost all cases for TCP/NC, this
value is lower than that of TCP because of the loss-masking
function. The original TCP/NC with the high R has a greater
number of fast retransmits than the other cases of TCP/NC
because of the useless redundant packets. In contrast, the
number of fast retransmits of TCP/NC with low R gradually
increases with the loss rate due to a shortage of redundant
packets. The number of fast retransmits for the proposed
TCP/NC remains low in all cases.

Fig. 12 depicts the goodput for each loss rate. The results
are inversely proportional to the fast retransmits. With a 5%
loss rate, the goodput of all cases of TCP/NC exceeds that
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of TCP and that of the proposed TCP/NC increases by 70%
compared with the original TCP/NC. The proposed TCP/NC
exhibits a high goodput at all loss rates.

V. CONCLUSION

TCP/NC was proposed to overcome the performance
degradation of conventional TCP in a lossy network. How-
ever, TCP/NC does not distinguish the redundant packets on
acknowledgment. As a result, duplicate ACKs caused by use-
less redundant packets lead to unnecessary fast retransmits.
To address this problem, we proposed an adequate acknowl-
edgment mechanism using a coded header. The simulation
results show that our method reduces duplicate ACKs and
fast retransmits, and it achieves near-capacity goodput in a
lossy network.

An other approach derived from TCP/NC is dynamic net-
work coding (DNC) [6]. DNC replaced FEC with ARQ as the
error correction on the NC layer. The system uses feedback
that contains the number of required packets and retransmits
the coded packets based on the feedback information. ARQ-
based retransmission can prevent useless redundant packets.
However, this approach does no have benefits of FEC. Our
method can be applied for other proposed TCP/NC variants
that adopt FEC.
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As future work, we will implement the proposed method
in Linux and evaluate its effectiveness and limitations in
practice.
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