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Abstract—A Hamiltonian path (cycle) of a graph is a simple
path (cycle) which visits each vertex of the graph exactly
once. The Hamiltonian path (cycle) problem is to determine
whether a graph contains a Hamiltonian path (cycle). A graph
is called Hamiltonian connected if there exists a Hamiltonian
path between any two distinct vertices. Supergrid graphs were
first introduced by us and include grid graphs and triangular
grid graphs as their subgraphs. The Hamiltonian path (cycle)
problem for grid graphs and triangular grid graphs was known
to be NP-complete. Recently, we have proved that they are
also NP-complete for supergrid graphs. These problems on
supergrid graphs can be applied to control the stitching traces
of computerized sewing machines. Very recently, we showed that
rectangular supergrid graphs are Hamiltonian connected except
two trivial forbidden conditions. In this paper, we will study
the Hamiltonian connectivity of some shaped supergrid graphs,
including triangular, parallelogram, and trapezoid. We prove
that these shaped supergrid graphs are always Hamiltonian
connected except few trivial forbidden conditions.

Index Terms—Hamiltonian connectivity, supergrid graphs,
triangular supergrid graphs, parallelogram supergrid graphs,
trapezoid supergrid graphs, computer sewing machines.

I. I NTRODUCTION

A Hamiltonian path of a graph is a simple path in
which each vertex of the graph appears exactly once.

A Hamiltonian cycle in a graph is a simple cycle with
the same property. TheHamiltonian path (resp., cycle)
problem involves deciding whether or not a graph contains
a Hamiltonian path (resp., cycle). A graph is called to be
Hamiltonian if it contains a Hamiltonian cycle. A graph
G is said to beHamiltonian connectedif for each pair of
distinct verticesu and v of G, there is a Hamiltonian path
betweenu andv in G. If (u, v) is an edge of a Hamiltonian
connected graph, then there must exist a Hamiltonian cycle
containing(u, v). Thus, a Hamiltonian connected graph has
many Hamiltonian cycles, and, hence, the sufficient condi-
tions of Hamiltonian connectivity are stronger than those of
Hamiltonicity. It is well known that the Hamiltonian path
and cycle problems are NP-complete for general graphs [5],
[15]. The same holds true for bipartite graphs [16], split
graphs [6], circle graphs [4], undirected path graphs [1],
grid graphs [14], triangular grid graphs [7], and supergrid
graphs [9]. In the literature, there are many studies for
the Hamiltonian connectivity of interconnection networks.
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Li et al. [17] proved the Hamiltonian connectivity of the
recursive dual-net. The popular hypercubes are Hamiltonian
but are not Hamiltonian connected. However, many variants
of hypercubes, including augmented hypercubes [8], twisted
cubes [13], crossed cubes [12], and Möbius cubes [3], have
been known to be Hamiltonian connected.

The two-dimensional integer gridG∞ is an infinite graph
whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices are
adjacent if and only if the (Euclidean) distance between them
is equal to 1. Thetwo-dimensional triangular gridT∞ is an
infinite graph obtained fromG∞ by adding all edges on the
lines traced from up-left to down-right. Agrid graph is a
finite, vertex-induced subgraph ofG∞. For a nodev in the
plane with integer coordinates, letvx andvy be thex andy
coordinatesof nodev, respectively, denoted byv = (vx, vy).
If v is a vertex in a grid graph, then its possible neighboring
vertices include(vx, vy + 1), (vx − 1, vy), (vx + 1, vy),
and (vx, vy − 1). For example, Fig. 1(a) shows a grid
graph. A triangular grid graph is a finite, vertex-induced
subgraph ofT∞. If v is a vertex in a triangular grid graph,
then its possible neighboring vertices include(vx, vy + 1),
(vx − 1, vy), (vx +1, vy), (vx, vy − 1), (vx − 1, vy +1), and
(vx + 1, vy − 1). For example, Fig. 1(b) depicts a triangular
grid graph. Thus, triangular grid graphs contain grid graphs
as subgraphs. Note that triangular grid graphs defined above
are isomorphic to the original triangular grid graphs studied
in the literature [7] but these graphs are different when
considered as geometric graphs. By the same construction of
triangular grid graphs from grid graphs, we have proposed
a new class of graphs, namelysupergrid graphs, in [9]. The
two-dimensional supergridS∞ is an infinite graph obtained
from T∞ by adding all edges on the lines traced from up-
right to down-left. A supergrid graphis a finite, vertex-
induced subgraph ofS∞. The possible adjacent vertices of a
vertexv = (vx, vy) in a supergrid graph include(vx, vy+1),
(vx − 1, vy), (vx + 1, vy), (vx, vy − 1), (vx − 1, vy + 1),
(vx + 1, vy − 1), (vx + 1, vy + 1), and (vx − 1, vy − 1).
Then, supergrid graphs contain grid graphs and triangular
grid graphs as subgraphs. For example, Fig. 1(c) shows a
supergrid graph. Notice that grid and triangular grid graphs
are not subclasses of supergrid graphs, and the converse is
also true: these classes of graphs have common elements
(points) but in general they are distinct since the edge sets
of these graphs are different. Obviously, all grid graphs are
bipartite [14] but triangular grid graphs and supergrid graphs
are not bipartite.

The Hamiltonian problems on supergrid graphs can be
applied to control the stitching trace of a computerized
sewing machine as stated in [9]. We have proved that the
Hamiltonian cycle and path problems are NP-complete for
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid graph, where circles represent the vertices and solid lines indicate the edges in
the graphs.

supergrid graphs [9]. Thus, an important line of investigation
is to discover the complexities of the Hamiltonian related
problems when the input is restricted to be in special
subclasses of supergrid graphs. In [10], we showed that
the Hamiltonian cycle problem for linear-convex supergrid
graphs is linear solvable. Recently, we proved that rectan-
gular supergrid graphs are always Hamiltonian connected
except two trivial forbidden conditions [11]. In this paper,
we will show that some shaped supergrid graphs, including
triangular, parallelogram, and trapezoid, are always Hamil-
tonian connected except few trivial forbidden conditions.

II. N OTATIONS AND BACKGROUND RESULTS

In this section, we will introduce some terminologies and
symbols used in the paper. Some previously observations are
also presented. For graph-theoretic terminology not defined
here, the reader is referred to [2].

Let G = (V,E) be a graph with vertex setV (G) and edge
setE(G). Let S be a subset of vertices inG, and letu, v be
two distinct vertices inG. We writeG[S] for the subgraph
of G inducedby S, G− S for the subgraphG[V − S], i.e.,
the subgraph induced byV − S. If (u, v) is an edge inG,
we say thatu is adjacentto v. The notationu ∼ v (resp.,
u ≁ v) means that verticesu andv are adjacent (resp., non-
adjacent). Two edgese1 = (u1, v1) and e2 = (u2, v2) are
said to beincident if u1 ∼ v1 andu2 ∼ v2, denote this by
e1 ≈ e2. The degreeof vertexv, denoted bydeg(v), is the
number of vertices adjacent to vertexv. A pathP of length
|P | in G, denoted byv1 → v2 → · · · → v|P |−1 → v|P |,
is a sequence(v1, v2, · · · , v|P |−1, v|P |) of distinct vertices
such that(vi, vi+1) ∈ E for 1 6 i < |P |. The first and
last vertices visited byP are denoted bystart(P ) and
end(P ), respectively. We will usevi ∈ P to denote “P visits
vertexvi” and use(vi, vi+1) ∈ P to denote “P visits edge
(vi, vi+1)”. A path fromv1 to vk is denoted by(v1, vk)-path.
In addition, we useP to refer to the set of vertices visited
by pathP if it is understood without ambiguity. A pathP is
a cycle if |V (P )| > 3 and end(P ) ∼ start(P ). Two paths
(or cycles)P1 andP2 of graphG are called vertex-disjoint
if and only if V (P1) ∩ V (P2) = ∅.

Let S∞ be the infinite graph whose vertex set consists of
all points of the plane with integer coordinates and in which
two vertices are adjacent if and only if the difference of their
x or y coordinates is not larger than 1. Asupergrid graph
is a finite, vertex-induced subgraph ofS∞. For a vertexv
in a supergrid graph, letvx and vy be respectivelyx and

y coordinates ofv. We color vertexv to be white if vx +
vy ≡ 0 (mod 2); otherwise,v is colored to beblack. Then
there are eight possible adjacent vertices of vertexv including
four white vertices and four black vertices. Obviously, all
grid graphs are bipartite [14] but supergrid graphs are not
bipartite. The edge(u, v) in S∞ is said to behorizontal
(resp.,vertical) if uy = vy andux 6= vx (resp.,ux = vx and
uy 6= vy), and is calledskewedif it is neither a horizontal
nor a vertical edge. In the figures, we assume that(1, 1) are
coordinates of the up-left vertex, i.e., the leftmost vertex of
the first row, in a supergrid graph.

Rectangular supergrid graphs first appeared in [9], in
which we have solved the Hamiltonian cycle problem.
Let R(m,n) be the supergrid graph whose vertex set
V (R(m,n)) = {v = (vx, vy) | 1 6 vx 6 m and
1 6 vy 6 n}. A rectangular supergrid graphis a supergrid
graph which is isomorphic toR(m,n). Then m and n,
the dimensions, specify a rectangular supergrid graph up to
isomorphism. The size ofR(m,n) is defined to bemn,
and R(m,n) is called n-rectangle. Letv = (vx, vy) be
a vertex in R(m,n). The vertexv is called theup-left
(resp.,up-right, down-left, down-right) corner of R(m,n)
if wx > vx and wy > vy (resp.,wx 6 vx and wy > vy ,
wx > vx and wy 6 vy, wx 6 vx and wy 6 vy) for any
vertexw = (wx, wy) ∈ R(m,n). There are four boundaries
(borders) in a rectangular supergrid graphR(m,n) with
m,n > 2. The edge in the boundary ofR(m,n) is called
boundary edge. For example, Fig. 2(a) shows a rectangular
supergrid graphR(10, 10) which is called 10-rectangle and
contains4× 9 = 36 boundary edges. Fig. 2(a) also indicates
the types of corners.

The triangular supergrid graphs are subgraphs of rectan-
gular supergrid graphs and are defined as follows.

Definition 1. Let ℓ be a diagonal line ofR(n, n) with
n > 2 from the up-left corner to the down-right corner. Let
∆(n, n) be the supergrid graph obtained fromR(n, n) by
removing all vertices underℓ. A triangular supergrid graph
is a supergrid graph which is isomorphic to∆(n, n).

For example, Fig. 2(b) shows a triangular supergrid graph
∆(10, 10). Each triangular supergrid graph contains three
boundaries, namelyhorizontal, vertical, and skewed, and
these boundaries form a triangle, as illustrated in Fig. 2(b).
The triangular supergrid graph∆(n, n) is calledn-triangle,
and the vertexv in ∆(n, n) is called triangular corner
if deg(v) = 2 and it is the intersection of horizontal (or
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Fig. 2. (a) A rectangular supergrid graphR(10, 10), (b) a triangular
supergrid graph∆(10, 10), (c) two types of parallelogram supergrid graph
P (5, 4), and (d) two types of trapezoid supergrid graphsT1(6, 4) and
T2(9, 4), where solid arrow lines in (a) indicate a flat path onR(10, 10)
and dashed line in (c) indicates a vertical cut.

vertical) and skewed boundaries.
Parallelogram supergrid graphs are defined similar to rect-

angular supergrid graphs as follows.

Definition 2. Let P (m,n) be the supergrid graph withm >

n whose vertex setV (P (m,n)) = {v = (vx, vy) | 1 6 vy 6

n andvy 6 vx 6 vy+m−1} or {v = (vx, vy) | 1 6 vy 6 n

and −vy + 2 6 vx 6 m − (vy − 1)}. A parallelogram
supergrid graphis a supergrid graph which is isomorphic to
P (m,n).

In the above definition, there are two types of parallelo-
gram supergrid graphs. We can see that they are isomorphic
although they are different when considered as geometric
graphs. In this paper, we can only consider the parallelo-
gram supergrid graphP (m,n) with V (P (m,n)) = {v =
(vx, vy) | 1 6 vy 6 n and vy 6 vx 6 vy + m − 1}.
Each parallelogram supergrid graph contains four bound-
aries, twohorizontalboundaries and twoskewedboundaries,
and these boundaries form a parallelogram, as illustrated
in Fig. 2(c). The size ofP (m,n) is defined to bemn,
and P (m,n) is called n-parallelogram. The vertexw of
P (m,n) is calledparallel corner if deg(w) = 2. We can see
that a parallelogram supergrid graph contains two parallel
corners and it can be decomposed into disjoint triangular
and rectangular supergrid subgraphs. For instance, Fig. 2(c)
depicts a parallelogram supergrid graphP (5, 4) which can
be partitioned into two triangular supergrid graphs∆(4, 4).

Next, we introduce trapezoid supergrid graphs. Let
R(m,n) be a rectangular supergrid graph withm > n > 2.
A trapezoid graphT1(m,n) or T2(m,n) is obtained from
R(m,n) by removing one or two triangular supergrid graphs
∆(n− 1, n− 1). The definitions ofT1(m,n) andT2(m,n)
are as follows.

Definition 3. Let R(m,n) be a rectangular supergrid graph
with m > n > 2. A trapezoid supergrid graphT1(m,n)

with m > n + 1 is obtained fromR(m,n) by removing
a triangular supergrid graph∆(n − 1, n − 1) from the
corner ofR(m,n). A trapezoid supergrid graphT2(m,n)
is constructed fromR(m,n) with m > 2n by removing two
triangular supergrid graphs∆(n− 1, n− 1) from the up-left
and up-right corners ofR(m,n). Fig. 2(d) illustrates these
two types of trapezoid graphs.

In a trapezoid supergrid graph, a vertexv is calledtrape-
zoid cornerif deg(v) = 2. We can see thatT1(m,n) contains
a trapezoid corner,T2(m,n) contains two trapezoid corners,
T1(m,n) contains two horizontal, one vertical and one
skewed boundaries, andT2(m,n) contains two horizontal
and two skewed boundaries. By definition, each boundary of
T1(m,n) andT2(m,n) contains at least two vertices. On the
other hand,T1(m,n) andT2(m,n) are callednT1

-trapezoid
andnT2

-trapezoid, respectively. For instance, Fig. 2(d) shows
T1(6, 4) andT2(9, 4).

Let G be a rectangular, triangular, parallelogram, or trape-
zoid supergrid graph. A path on one boundary ofG is called
flat if it contains all boundary edges in the boundary. For
example, the solid arrow lines in Fig. 2(a) indicate a flat
path ofR(10, 10).

In proving our results, we need to partition a shaped
supergrid graph into two disjoint parts. The decomposition
is defined as follows.

Definition 4. Let S(m,n) be a triangular, parallelogram, or
trapezoid supergrid graph. Acut operation onS(m,n) is a
line partition through a setZ of edges so that the removal of
Z from S(m,n) results in two disjoint supergrid subgraphs
S1 andS2. A cut is calledvertical (resp.,horizontal) if it is
a vertical (resp., horizontal) line to separateS(m,n) into S1

andS2 such thatS1 is to the left (resp., upper) ofS2, i.e.,
Z is a set of horizontal (resp., vertical) edges.

For instance, the bold dashed line in Fig. 2(c) shows
a vertical cut onP (5, 4) to partition it into two disjoint
triangular supergrid subgraphs∆(4, 4).

In this paper, we will construct a canonical Hamiltonian
path of a triangular, parallelogram, or trapezoid supergrid
graphS(m,n). Let s, t be two distinct vertices ofS(m,n).
A Hamiltonian (s, t)-path ofS(m,n) is calledcanonicalif
it contains at least one boundary edge of each boundary in
S(m,n).

Let (G, s, t) denote the supergrid graphG with two given
distinct verticess and t. Without loss of generality, we will
assume thatsx 6 tx, i.e., s is to the left of t, in the rest
of the paper. The notationL(G, s, t) indicates the length
of longest path betweens and t in G, where the length
of a path is defined to be the number of vertices visited
by the path. We denote a Hamiltonian path betweens and
t in G by HP (G, s, t). We say thatHP (G, s, t) exists if
there is a Hamiltonian(s, t)-path of G. By the definition,
L(G, s, t) = |V (G)| if HP (G, s, t) does exist. In [11],
we have proved thatHP (R(m,n), s, t) always exists for
m,n > 3. For (R(m,n), s, t) with m > n > 3, a
Hamiltonian(s, t)-path ofR(m,n) is calledcanonicalif it
contains at least one boundary edge of each side (boundary)
in R(m,n). We then proved the following lemma to show the
Hamiltonian connectivity of rectangular supergrid graphs.

Lemma 1. (See [11]) For(R(m,n), s, t) with m > n > 3,
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Fig. 3. A schematic diagram for (a) Proposition 2, (b) Proposition 3, and
(c) Proposition 4, where bold dashed lines indicate the cycles (paths) and
⊗ represents the destruction of an edge while constructing a cycle or path.

R(m,n) contains a canonical Hamiltonian(s, t)-path, and,
hence,HP (R(m,n), s, t) does exist.

For the 1-rectangle,HP (R(m, 1), s, t) does not exist ifs
or t is not a corner. On the other hand,HP (R(m, 2), s, t)
does not exist if(s, t) is a vertical and nonboundary edge
of R(m, 2). For n = 1 or 2, HP (R(m,n), s, t) does exist
except the above two trivial forbidden conditions [11].

Next, we review some observations on the relations among
cycle, path, and vertex. These propositions are presented in
[11] and will be used in proving our results. LetC1 andC2

be two vertex-disjoint cycles of a graphG. If there exist two
edgese1 ∈ C1 ande2 ∈ C2 such thate1 ≈ e2, thenC1 and
C2 can be combined into a cycle ofG. Thus we have the
following proposition.

Proposition 2. (See [11]) LetC1 and C2 be two vertex-
disjoint cycles of a graphG. If there exist two edgese1 ∈ C1

and e2 ∈ C2 such thate1 ≈ e2, thenC1 and C2 can be
combined into a cycle ofG. (see Fig.3(a))

Let C1 be a cycle and letP1 be a path in a graphG such
that V (C1) ∩ V (P1) = ∅. If there exist two edgese1 ∈ C1

and e2 ∈ P1 such thate1 ≈ e2, then C1 and P1 can be
combined into a pathP of G with start(P ) = start(P1) and
end(P ) = end(P1). Fig. 3(b) depicts such a construction,
and, hence, the following proposition holds true.

Proposition 3. (See [11]) LetC1 andP1 be a cycle and a
path, respectively, of a graphG such thatV (C1)∩V (P1) =
∅. If there exist two edgese1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, thenC1 andP1 can be combined into a path ofG.
(see Fig.3(b))

The above observation can be extended to a vertexx,
whereP1 = x, as shown in Fig. 3(c), and we then have
the following proposition.

Proposition 4. (See [10]) LetC1 be a cycle (path) of a
graphG and letx be a vertex inG− V (C1). If there exists
an edge(u1, v1) in C1 such thatu1 ∼ x and v1 ∼ x, then
C1 and x can be combined into a cycle (path) ofG. (see
Fig. 3(c))

III. T HE HAMILTONIAN CONNECTIVITY OF TRIANGULAR

AND PARALLELOGRAM SUPERGRID GRAPHS

In this section, we will verify the Hamiltonian connectivity
(except few trivial conditions) of triangular and parallelogram
supergrid graphs. For a triangular supergrid graph∆(n, n),
we first observe two conditions forHP (∆(n, n), s, t) does
not exist. These two forbidden conditions are described as
follows:

(a) (b)

s

t

s

t

w

Fig. 4. Triangular supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a) condition (F1), and (b) condition (F2), where dotted lines
indicate the forbidden edges(s, t).

(F1) ∆(n, n) is a 3-triangle, and(s, t) is a nonboundary
edge of∆(n, n) (see Fig. 4(a)).

(F2) ∆(n, n) satisfiesn > 3, and (s, t) is an edge of
∆(n, n) such that boths and t are adjacent to a triangular
cornerw of ∆(n, n) (see Fig. 4(b)).

The conditions of (F1) and (F2) are calledforbidden for
HP (∆(n, n), s, t). Note that|V (∆(n, n))| = n(n+1)

2 . The
following lemma computes the longest(s, t)-path with length
L(∆(n, n), s, t) when(∆(n, n), s, t) satisfies condition (F1)
or (F2). Due to the space limitation, the proof of the lemma
is omitted.

Lemma 5. Let ∆(n, n) be a triangular supergrid graph
with n > 3, and let s, t be two distinct vertices of
∆(n, n). If (∆(n, n), s, t) satisfies condition (F1) or (F2),
thenL(∆(n, n), s, t) = n(n+1)

2 − 1.

We have computed the longest(s, t)-path of∆(n, n) when
(∆(n, n), s, t) satisfies forbidden condition (F1) or (F2).
When (∆(n, n), s, t) does not satisfy conditions (F1) and
(F2), we will construct a canonical Hamiltonian(s, t)-path of
∆(n, n) in the following lemma. Due to the space limitation,
we omit the proof of the following lemma.

Lemma 6. Let∆(n, n) be a triangular supergrid graph with
n > 3, and let s, t be two distinct vertices of∆(n, n). If
(∆(n, n), s, t) does not satisfy conditions (F1) and (F2), then
∆(n, n) contains a canonical Hamiltonian(s, t)-path, and,
hence,HP (∆(n, n), s, t) does exist.

Next, we will verify the Hamiltonian connectivity
of parallelogram supergrid graphs. In a parallelogram
supergrid graphP (m,n), we can only consider that
V (P (m,n)) = {v = (vx, vy) | 1 6 vy 6 n and
vy 6 vx 6 vy +m− 1}. Note that there are two horizontal
and two skewed boundaries inP (m,n). We first observe
three forbidden conditions forHP (P (m,n), s, t). Then, we
prove thatHP (P (m,n), s, t) does exist except the forbidden
conditions. We first consider 1-parallelogram(P (m, 1), s, t).
The following condition impliesHP (P (m, 1), s, t) does
not exist.

(F3)P (m,n) is a 1-parallelogram, ands or t is not a corner
vertex (see Fig. 5(a)).

Since the possible path betweens and t in P (m, 1) is
unique, the longest(s, t)-path in (P (m, 1), s, t) is unique
and its length equalstx − sx + 1. Note thatsx < tx, i.e.,
s is to the left of t. Then,HP (P (m, 1), s, t) does exist if
(P (m, 1), s, t) does not satisfy condition (F3).
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Fig. 5. Parallelogram supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a) condition (F3), (b) condition (F4), and (c) condition (F5),
where solid lines indicate the longest(s, t)-path.

Next, we consider(P (m, 2), s, t) with m > 2. By
inspection, the following condition impliesP (m, 2)
contains no Hamiltonian(s, t)-path.

(F4) P (m,n) is a 2-parallelogram withm > 2, and(s, t) is
a vertical edge ofP (m,n) (see Fig. 5(b)).

Consider that(R(m, 2), s, t) satisfies condition (F4). In
this case,sx = tx. Note that the left parallel corner is
coordinated as(1, 1). Without loss of generality, assume
that sy 6 ty. We can easily see that the longest(s, t)-path
L(P (m, 2), s, t) is either 2sx − 1 or 2(m − sx + 1) + 1.
Then, L(P (m, 2), s, t) = max{2sx − 1, 2m − 2sx + 3}.
When(P (m, 2), s, t) does not satisfy condition (F4), it is not
difficult to verify thatHP (P (m, 2), s, t) does exist. Thus, we
have the following lemma.

Lemma 7. Let P (m, 2) be a 2-parallelogram withm > 2
and let s, t be its two distinct vertices withsx 6 tx and
sy 6 ty. Then,L(P (m, 2), s, t) = max{2sx − 1, 2m −
2sx + 3} if (P (m, 2), s, t) satisfies condition (F4); and
L(P (m, 2), s, t) = 2m, i.e., HP (P (m, 2), s, t) does exist,
otherwise.

The third forbidden condition forHP (P (m,n), s, t) is
as follows:

(F5) P (m,n) satisfiesm > n > 2, and(s, t) is an edge of
P (m,n) such thats ∼ w and t ∼ w for any parallel corner
w of P (m,n), wheres 6= w, t 6= w, anddeg(w) = 2 (see
Fig. 5(c)).

When(P (m,n), s, t) satisfies condition (F5), we can com-
pute the longest(s, t)-path by removing the vertexw from
the Hamiltonian cycle ofP (m,n). Note that the Hamiltonian
cycle of P (m,n) can be constructed in [9]. Thus, we have
the following lemma.

Lemma 8. Let P (m,n) be a parallelogram supergrid
graph with m > n > 2, and let s, t be its two dis-
tinct vertices. If(P (m,n), s, t) satisfies condition (F5), then
L(P (m,n), s, t) = mn − 1, and the longest(s, t)-path
contains at least one boundary edge of each boundary in
P (m,n) whenn > 3.

In the following, we consider that(P (m,n), s, t) does
not satisfy conditions (F3)–(F5). Then, we will construct
a canonical Hamiltonian(s, t)-path of P (m,n). We first
consider 3-parallelogramP (m, 3) as follows. Due to the
space limitation, we omit its proof.

Lemma 9. Let P (m,n) be a 3-parallelogram withn = 3
andm > 3, and lets, t be two distinct vertices ofP (m,n)
with sx 6 tx. If (P (m,n), s, t) does not satisfy condition
(F5), thenP (m,n) contains a canonical Hamiltonian(s, t)-

(b)

m n-2 +2

m

n

D
=
D

-

-

2

(
1,

1)

n

n

s

t

D =D1 ( , )n n R
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-
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Fig. 6. The Hamiltonian(s, t)-path for (a) a parallelogram supergrid graph
P (7, 5) and (b) a trapezoid supergrid graphT2(9, 4), where the solid lines
indicate the Hamiltonian(s, t)-path and⊗ represents the destruction of an
edge while constructing such a Hamiltonian path.

path, and, hence,HP (P (m, 3), s, t) does exist.

We next verify the Hamiltonian connectivity of parallelo-
gram supergrid graphP (m,n) with m > n > 4 as follows.
Due to the space limitation, we omit the proof of the lemma.

Lemma 10. Let P (m,n) be a parallelogram supergrid
graph with m > n > 4, and let s, t be two distinct
vertices ofP (m,n) with sx 6 tx. If (P (m,n), s, t) does
not satisfy condition (F5), thenP (m,n) contains a canonical
Hamiltonian(s, t)-path, and, hence,HP (P (m,n), s, t) does
exist.

For instance, Fig. 6(a) depicts the Hamiltonian(s, t)-
path for a parallelogram supergrid graphP (7, 5), where
P (7, 5) is decomposed into two triangular supergrid sub-
graphs∆(5, 5),∆(4, 4) and one rectangular supergrid sub-
graphR(2, 5).

It immediately follows from Lemmas 9 and 10 that we
conclude the following theorem.

Theorem 1. Let P (m,n) be a parallelogram supergrid
graph withm > n > 1, and lets, t be two distinct vertices of
P (m,n). If (P (m,n), s, t) does not satisfy conditions (F3)–
(F5), thenP (m,n) contains a canonical Hamiltonian(s, t)-
path, and, hence,HP (P (m,n), s, t) does exist.

IV. T HE HAMILTONIAN CONNECTIVITY OF TRAPEZOID

SUPERGRID GRAPHS

In this section, we will verify the Hamiltonian connectivity
(except two trivial conditions) of trapezoid supergrid graphs.
There are two types of trapezoid supergrid graphsT1(m,n)
andT2(m,n). Let T (m,n) be a trapezoid supergrid graph,
whereT (m,n) = T1(m,n) or T2(m,n). We first observe
the conditions so thatHP (T (m,n), s, t) does not exist. For
a 2T1

-trapezoid or2T2
-trapezoid, the following condition

implies thatHP (T (m, 2), s, t) does not exist.

(F6) T (m,n) is a 2T1
-trapezoid or2T2

-trapezoid, and(s, t)
is a vertical and nonboundary edge ofT (m,n) (see Fig.
7(a)).

For a trapezoid cornerw of T (m,n), we can easily
see thatHP (T (m,n), s, t) does not exist whens, t 6= w,
s ∼ w, andt ∼ w.

(F7) T (m,n) is a trapezoid supergrid graph forn > 2, w is
a trapezoid corner ofT (m,n), s, t 6= w, s ∼ w, andt ∼ w

(see Fig. 7(b)).
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Fig. 7. Trapezoid supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a) condition (F6), and (b) condition (F7), where solid lines
indicate the longest(s, t)-path.

By similar arguments in proving Lemma 5, we can prove
the following lemma.

Lemma 11. Let T (m,n) be a trapezoid supergrid graph
with n > 2, and lets, t be two distinct vertices ofT (m,n).
Then, the following statemsts hold true:
(1) if (T (m,n), s, t) satisfies condition (F6), then
L(T1(m,n), s, t) = max{2(m − sx + 1) − 1, 2sx}
andL(T2(m,n), s, t) = max{2(m− sx + 1)− 1, 2sx + 1}.
(2) if (T (m,n), s, t) satisfies condition (F7), then
L(T (m,n), s, t) = |V (T (m,n))| − 1.

In the following, we will assume that(T (m,n), s, t)
does not satisfy conditions (F6) and (F7). Then, we will
construct a Hamiltonian(s, t)-path of T (m,n). We first
prove T1(m,n) to be canonical Hamiltonian connected as
follows. Due to the space limitation, its proof is omitted.

Lemma 12. Let T1(m,n) be a trapezoid supergrid graph
with m − 1 > n > 2, and let s, t be two distinct vertices
of T1(m,n). If (T1(m,n), s, t) does not satisfy conditions
(F6)–(F7), thenT1(m,n) contains a canonical Hamiltonian
(s, t)-path, and, hence,HP (T1(m,n), s, t) does exist.

Next, we consider the other type of trapezoid supergrid
graphT2(m,n) as follows. Due to the space limitation, we
omit the proof of the lemma.

Lemma 13. Let T2(m,n) be a trapezoid supergrid graph
with m

2 > n > 2, and let s, t be two distinct vertices of
T2(m,n). If (T2(m,n), s, t) does not satisfy conditions (F6)–
(F7), thenT2(m,n) contains a canonical Hamiltonian(s, t)-
path, and, hence,HP (T2(m,n), s, t) does exist.

For instance, Fig. 6(b) depicts the Hamiltonian(s, t)-path
for a trapezoid supergrid graphT2(9, 4), whereT2(9, 4) is
decomposed into two triangular supergrid subgraphs∆(3, 3)
and one rectangular supergrid subgraphR(3, 4). It immedi-
ately follows from Lemmas 12–13 that the following theorem
holds true.

Theorem 2. Let T (m,n) be a trapezoid supergrid graph
with n > 2, and let s, t be two distinct vertices of
T (m,n), where T (m,n) = T1(m,n) or T2(m,n). If
(T (m,n), s, t) does not satisfy conditions (F6)–(F7), then
T (m,n) contains a canonical Hamiltonian(s, t)-path, and,
hence,HP (T (m,n), s, t) does exist.

V. CONCLUDING REMARKS

In this paper, we provide constructive proofs to show
that some shaped supergrid graphs, including triangular,

parallelogram, and trapezoid, are Hamiltonian connected
except few trivial conditions. These constructive proofs give
linear time algorithms to construct the longest paths or
Hamiltonian paths between two distinct vertices of shaped
supergrid graphs. A supergrid graph is called alphabet if
its boundaries form an alphabet. There are 26 types of
alphabet supergrid graphs. We can see from the structures of
alphabet supergrid graphs that they can be decomposed into
triangular, parallelogram, or trapezoid supergrid subgraphs.
In the future, we would like to apply our results to study the
Hamiltonian connectivity of alphabet supergrid graphs.
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