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Abstract—Extracting structural features common to large
tree-structured data is a difficult issue with respect to time.
When the input size decreases by structurally compressing large
tree-structured data without loss of information, it leads to
reduction in running time needed to extract structural features.
Tree-structured data can be described by an edge-labeled
ordered tree. We first introduce a compression tree representing
an edge-labeled ordered tree structurally compressed based on
a Lempel-Ziv compression scheme. Then, given a compression
tree t obtained by structurally compressing an edge-labeled
ordered tree T , we propose a time- and memory-efficient
algorithm for enumerating all frequent paths in T without
decompressing t. Finally, we discuss the implementation of the
proposed algorithm on a computer, explain the experimental
results obtained by applying it to artificial edge-labeled ordered
trees, and provide discussion on its evaluation.

Index Terms—Enumeration algorithm, Structurally com-
pressed edge-labeled ordered tree, Succinct representation

I. INTRODUCTION

Tree-structured data, such as Web documents,
LATEX sources, and natural languages, can be described by
edge-labeled ordered trees. An edge-labeled ordered tree is
a rooted tree whose edges have labels and whose internal
nodes have ordered children. Due to the rapid progress
in networks and information technology, the amount of
such tree-structured data increases daily. To find structural
features common to large tree-structured data, time- and
memory-efficient graph mining algorithms are needed.

To reduce the memory required to store an ordered tree,
succinct data structures for ordered trees have been proposed
[1], [2], [3], [4], [5], [7], [8], [10]. Specifically, a depth-first
unary degree sequence (DFUDS) as a succinct representation
of an ordered tree was proposed [7], [9]. For an ordered tree
T , a DFUDS of T is a string of parentheses constructed in
the depth-first traversal of T , in which the k-th ( and its

subsequent ) are output if the index of a node is k. By

taking ( to be ’0’ and ) to be ’1’, the DFUDS of an
ordered tree can be handled as a bit string.

Itokawa et al. [5] proposed a structural compression
algorithm for effectively compressing tree-structured data
without loss of information that is based on a Lempel-Ziv
(LZ) compression scheme. In an LZ compression scheme
[14] for strings, such as LZSS [12], previously seen text
is used as a dictionary, and phrases in the input text are
replaced with references into the dictionary to achieve
compression. For an edge-labeled ordered tree T and
a its subgraph f having an ordered-tree structure, the
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first occurrence of f in the depth-first traversal of T is
used as an entry of a dictionary, and the subgraphs in T
that are isomorphic to f are replaced with the reference
into the entry of the dictionary to achieve compression.
In this paper, for an edge-labeled ordered tree T , we
introduce a compression tree, which is an edge-labeled
ordered tree obtained by structurally compressing T
based on an LZ compression scheme. We then define a
succinct representation of a compression tree by extending
DFUDS of an ordered tree. Figure 1 shows a compression
tree t and its succinct representation. The compression
tree t uses the subgraph f induced by the edge set
{(1, b, 2), (2, a, 3), (1, a, 4), (4, b, 5), (5, a, 6), (4, b, 7), (1, b, 8)}
as an internal dictionary. The edge-labeled ordered tree T
in Fig. 1 is obtained by replacing nodes represented by the
square and all incident edges with the subgraph f .

Next, given a compression tree t obtained by structurally
compressing an edge-labeled ordered tree T , we propose an
efficient algorithm, called ENUFREQPATHS, for enumerating
all frequent paths in T without decompressing t. ENUFRE-
QPATHS finds frequent paths from each node toward the
root on a level-wise strategy w.r.t. the length of a path.
Since a succinct representation of a given compression tree
is provided using its DFUDS, ENUFREQPATHS can naturally
use the succinct data structures in implementation using
succinct data structure library (SDSL) [11]. Hence, ENUFRE-
QPATHS is time- and memory-efficient for enumerating all
frequent paths from a given compression tree of an edge-
labeled ordered tree.

This paper is organized as follows. In Sec. II, we introduce
a compression tree obtained by structurally compressing
an edge-labeled ordered tree based on an LZ compression
scheme. We also define the succinct representation of a com-
pression tree. In Sec. III, given a compression tree t obtained
by structurally compressing an edge-labeled ordered tree T ,
we present our time- and memory-efficient algorithm for
enumerating all frequent paths in T without decompressing
t. In Sec. IV, we explain the experimental results obtained
by applying the proposed algorithm to artificial big data and
discuss its efficiency. In Sec. V, we conclude this paper.

II. PRELIMINARIES

In this section, we introduce a compression tree, which is
a rooted edge-labeled ordered tree obtained from an edge-
labeled ordered tree by replacing repeated occurrences of
subgraphs having ordered-tree structures with references to a
dictionary, which is a list of first occurrences of the repeated
subgraphs in its depth-first traversal. Moreover, we define a
succinct representation of a compression tree by extending
the depth-first unary degree sequence (DFUDS)[7], [9] for
an ordered tree.
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Fig. 1. Edge-labeled ordered tree T , compression tree t obtained by
structurally compressing T , DFUDS of t and succinct representation of
t. Gray regions in T show repeated occurrences of subgraph having same
ordered-tree structure. Gray region in t shows entry of its dictionary. In
DFUDS of t, number in circle represents node ID of t and “P” denotes
reference (1, 3, 7, 8).

A. Compression Tree

An edge-labeled ordered tree T is a rooted tree whose
internal nodes have ordered children and whose edges have
labels. The node and the edge sets of T are denoted as V (T )
and E(T ), respectively. We denote an edge e ∈ E(T ) as
e = (u, a, v) such that the two endpoints of e are nodes u
and v and the label of e is a.

Let a list (u, L, u1, u2, . . . , uk) consisting of an internal
node u, consecutive children u1, u2, . . . , uk of u and label
L be called a port list of an edge-labeled ordered tree T .
For a port list h = (u, Lh, u1, u2, . . . , uk), u is called a
parent port of h and each node ui (1 ≤ i ≤ k) is called a

child port of h. Two port lists h = (u, Lh, u1, u2, . . . , uk)
and h′ = (v, Lh′ , v1, v2, . . . , vℓ) of an edge-labeled ordered
tree T are said to be disjoint if the following conditions are
satisfied.
(1) {u1, u2, . . . , uk} ∩ {v1, v2, . . . , vℓ} = ∅.
(2) If u and v are the same node, uk is older than v1 or u1

is younger than vℓ.
For an edge-labeled ordered tree T and its internal node

u, we denote the subgraph consisting of all descendants
of u as T [u], that is, T [u] is the subtree of T hav-
ing u as its root. For a subset U ⊆ V (T ), we denote
the subgraph induced by U as T [U ], that is, T [U ] =
(U, {e | both endpoints of e ∈ E(T ) are in U}). For an in-
ternal node u and a descendant v of u, we denote the path
between u and v as Pu,v . Note that Pu,v is only one node
if u and v are the same node. For an edge-labeled ordered
tree T , a reference of T is a list (v, v1, v2, . . . , vn) of nodes
satisfying the following conditions.
(1) For each i (1 ≤ i ≤ n), vi is a descendant of an internal

node v of T .
(2) For any i, j (1 ≤ i, j ≤ n), vi is not a descendant of vj

and vice visa.
(3) For any i, j (1 ≤ i < j ≤ n), vj appears after vi in the

depth-first traversal of T .
We denote the set of all references of T as RT . For a
reference L = (v, v1, v2, . . . , vn) of T , we denote the
subgraph induced by the node set

∪
w∈W V (Pv,w) as

T ⟨L⟩ called by a reference tree, where W is the set of
leaves such that any leaf w ∈ W appears from v1 up to
vn in the depth-first traversal of T but not included in
V (T [vi])− {vi} for any 1 ≤ i ≤ n. In Fig. 1, for reference
(1, 3, 7, 8), we give the reference tree t⟨(1, 3, 7, 8)⟩ =(
{1, 2, . . . , 8}, {(1, b, 2), (2, a, 3), . . . , (1, b, 8)}

)
. A subset

DT of RT is called a dictionary of T if for any
two distinct references L1 = (u, u1, u2, . . . , uℓ) and
L2 = (v, v1, v2, . . . , vr) of DT , V (T ⟨L1⟩) ∩ V (T ⟨L2⟩) = ∅
except u and v. For example, in Fig. 1, for
references (1, 3, 7, 8), (1, 10, 22, 31), (11, 13, 17, 18),
and (22, 24, 28, 30) in T , the reference trees
T ⟨(1, 3, 7, 8)⟩, T ⟨(1, 10, 22, 31)⟩, T ⟨(11, 13, 17, 18)⟩, and
T ⟨(22, 24, 28, 30)⟩ are isomorphic.

For a list or set S, we denote the number of elements in
S as |S|.

Definition 1: (Hyper Tree) Let Λ be an alphabet, T =
(VT , ET ) an edge-labeled ordered tree, HT a set of disjoint
port lists of T , and DT a dictionary of T such that Λ∩DT =
∅. Then, a triplet t = (Vt, Et,Ht) is called a hyper tree
obtained from T, HT , and DT , where Vt, Et and Ht are
defined as follows.

(1) Vt = VT，
(2) Et = ET−

∪
(v0,v1,...,vr)∈HT

{(v0, a1, v1), ..., (v0, ar, vr)},
and the label of each edge e ∈ ET is preserved in Et.

(3) Ht = HT and each port list in Ht is labeled with
a reference (w,w1, w2, . . . , wk) ∈ DT such that wk

appears before w1 on the depth-first traversal of T .
By modifying the LZ77 compression scheme for strings

to a hyper tree, a compression tree is a hyper tree defined as
follows.

Definition 2: (Compression Tree) A compression tree is
a hyper tree obtained from T by replacing repeated oc-
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currences of subgraphs having ordered-tree structures with
references to the first occurrence of the subgraphs.

Figure 1 shows the compression tree t =
({0, 1, . . . , 24}, {(0, a, 1), (1, b, 2), . . . , (0, a, 24)},
{(1, P, 10, 16, 22), (11, P, 13, 14, 15), (16, P, 18, 19, 21)})
of the edge-labeled ordered tree T , where P is reference
(1, 3, 7, 8).

B. Succinct Representation of Compression Trees

In this subsection, we explain a succinct representation of
a compression tree.

The DFUDS for an ordered tree T of m edges is defined
inductively as follows [7], [9]. The DFUDS of the tree
consisting of only one node is ( ) . The DFUDS of an
ordered tree T that has k subtrees T1, . . . , Tk is a sequence
of parentheses constructed by concatenating k + 1 ( s, one

) , k DFUDSs of T1, . . . , Tk in this order (the initial ( of
the DFUDS of each subtree has been removed). The resultant
DFUDS is a sequence of balanced parentheses of length
2m. The sequence of parentheses, that is a DFUDS, can be
interpreted as the result of visiting all nodes in preorder and
outputting k ( s for each node, whose degree is k, following

the one ) . The DFUDS is a succinct representation of an

ordered tree with no edge labels. But since ) occupies the
rightmost position for each node in the DFUDS, we can
modify the DFUDS of an ordered tree to the DFUDS of an
edge-labeled ordered tree, using a hash function that returns
the label of the edge incident to the node corresponding
to each ) . To provide a succinct representation of a com-
pression tree, we consider an underlying ordered tree for a
compression tree. For a compression tree t = (Vt, Et,Ht),
we call by an underlying tree of t the edge-labeled ordered
tree obtained from t by applying the following replacements
to all port lists of t. A port list h = (u, u1, u2, . . . , uk) ∈ Ht

is replaced with an edge-labeled ordered tree as follows.
(1) Remove h from t.
(2) Construct an edge-labeled ordered tree s =

({u′, v, u′
1, u

′
2, . . . , u

′
k}, Es) defined as follows.

(a) v has u′ as the parent and u′
1, u

′
2, . . . , u

′
k as the

children in that order. (b) The edge between u′ and v is
labeled with the reference of h and any edge between
v and its child is labeled with the special symbol “$”.

(3) Identify the parent port u and each child port ui (1 ≤
i ≤ k) with the root u′ of s and each leaf u′

i(1 ≤ i ≤ k),
respectively.

Definition 3: (Succinct Representations of Compression
Trees) The succinct representation of a compression tree t is
the DFUDS of the underlying tree of t.
Figure 1 shows the succinct representations of the edge-
labeled ordered tree T and the compression tree t.

Hence, by using a succinct representation of a compres-
sion tree, we can give a compact coding for a structured-
compression of an edge-labeled ordered tree T as follows.

Definition 4: (Compact Coding for an Edge-Labeled Or-
dered Tree) Let T be an edge-labeled ordered tree. Let ELT

be the coding of the list of all edge labels in T which
are sorted by occurrence order in the depth-first traversal
of T . Let DT be the coding of a list of references in
T which are sorted by occurrence order in the depth-first

traversal of T . Let CT be the coding of a compression
tree t of T . Then, a compact coding of T is given by a
sequence of ELT ◦“!”◦DT ◦“!”◦CT , denoted as Code(T ) =
⟨ELT , DT , CT ⟩, where ◦ is an operator of two concatenating
sequences.
Since we create ELT , DT and CT based on the depth-first
traversal of T , we can easily create hash functions that return
the edge label or reference for each edge in the compression
tree t of T . Figure 1 shows the succinct representation of the
compression tree t.

III. ENUMERATION ALGORITHM FOR EXTRACTING
FREQUENT PATHS IN COMPRESSION TREES

For a compression tree t of an edge-labeled ordered tree
T and an integer k (k ≥ 1), a path p in t is k-frequent if p
appears in T k or more times. Such an integer k is called a
minimum occurrence. We define an enumeration problem for
extracting all k-frequent paths in a given compression tree
as follows.

Frequent-Paths Enumeration Problem
Instance: Compression tree t and minimum occurrence
k (k ≥ 1).
Problem: Enumerate all k-frequent paths in t without
decompressing t.

Algorithm 1 presents our enumeration algorithm, called
ENUFREQPATHS, for solving the frequent-paths enumeration
problem. For a sequence S of length n on alphabet Λ,
character c and integer i (0 ≤ i ≤ n − 1), the functions
rank and select used in ENUFREQPATHS are defined as
follows.
(1) rankc(S, i) returns the number of occurrences of c in

subsequence S[0 : i].
(2) selectc(S, i) returns the i-th position of c from the

beginning of S.
By using the SDSL [11], we can compute rank and select
in constant time. When a compression tree t and a minimum
occurrence k are given, ENUFREQPATHS enumerates all k-
frequent paths in t from each node toward the root of t on
a level-wise strategy w.r.t. the length of a k-frequent path.
Figure 2 shows an example of the enumeration process of
k-frequent paths by using ENUFREQPATHS.

ENUFREQPATHS (Algorithm 1) has two procedures
GENOCCPOINTS (Procedure 2) and MAKECANDFREQ-
PATHS (Procedure 3). For an edge e, parent(e) returns the
parent edge of e, and function childrank(e) returns the
index i such that e is the i-th child of the parent edge of
e. For reference L = (v, v1, v2, ..., vk) ∈ DT and an integer
n (1 ≤ n ≤ k), a function dic(L, n) returns the index vn.
By using the SDSL, these operations on a compression tree
can be executed in constant time.

To count the number m of paths, which is isomorphic to a
path p and terminates at an index i of CT , ENUFREQPATHS
uses a triplet (u, p,OPu), where OPu is a multi-set of
indexes in the interval [0, |CT |) and satisfies |OPu| = m.
Such a triplet is called a path-count triplet at index i. Given a
compact coding ⟨ELT , DT , CT ⟩ of an edge-labeled ordered
tree T , ENUFREQPATHS first generates the set Z1 of path-
count triplets at all indexes between 0 and |CT |. Then, it
constructs the set P1 of all k-frequent edges from Z1. That
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Fig. 2. Tree representing process of enumerating k-frequent paths.

Algorithm 1 ENUFREQPATHS

Require: A compact coding ⟨ELT , DT , CT ⟩ of an edge-
labeled ordered tree T and a minimum occurrence
k (k ≥ 1)

Ensure: The set F of all k-frequent paths in T
1: Z1 = genOccPoints(⟨ELT , DT , CT ⟩)
2: for all a is in ELT do
3: if

∑
(i,a,OPi)∈Z1

|OPi| ≥ k then
4: P1 = P1 ∪ {a}
5: end if
6: end for
7: F = P1 and ln = 1
8: while Pln ̸= ∅ do
9: Pln+1 = ∅

10: Cln+1 = makeCandFreqPaths(Zln, Pln, P1)
11: for all p ∈ Pln and a ∈ P1 do
12: if

∑
(i,p◦a,OPi)∈Cln+1

|OPi| ≥ k then
13: Pln+1 = Pln+1 ∪ {p ◦ a}
14: Zln+1 = Zln+1 ∪ {(i, p ◦ a,OPi)}
15: end if
16: end for
17: F = F ∪ Pln+1

18: ln++
19: end while
20: return F

is, P1 is the set of all k-frequent paths, the length of each
is 1. Next, by using Procedure MAKECANDFREQPATHS,
ENUFREQPATHS recursively generates the set Cln+1 of all
path-count triplets having candidate paths, the length of each
is ln+ 1 from set Z1 and set Zln each of which has a path
whose length is ln. From Cln+1, ENUFREQPATHS constructs
the set Pln+1 of k-frequent paths, the length of each is ln+1
and set Zln+1 = {(i, p, OPi) ∈ Cln+1 | p ∈ Pln+1}. Finally,
ENUFREQPATHS returns the set F of all k-frequent paths
appearing in T from t.

In Procedure MAKECANDFREQPATHS, when we construct
a candidate path whose length is ln+1 by expanding the k-
frequent path whose length is ln, four cases are considered

Procedure 2 GENOCCPOINTS
Require: The compact coding ⟨ELT , DT , CT ⟩
Ensure: The set Z1 of all path-count triplets, each of which

has a path whose length is 1.
1: Z1 = ∅ and OPi = ∅ for i (0 ≤ i < |CT |)
2: for all i (0 ≤ i < |CT |) do
3: if CT [i] is in ELT then
4: OPi = OPi ∪ {i}
5: end if
6: if CT [i] is in DT then
7: for all an edge j of reference tree T ⟨CT [i]⟩ do
8: OPj = OPj ∪ {j}
9: end for

10: end if
11: end for
12: for all i (0 ≤ i < |CT |) such that CT [i] is in ELT do
13: Z1 = Z1 ∪ {(i, CT [i], OPi)}
14: end for
15: return Z1

(see Fig. 3). If we try to expand a path by appending an
edge to the edge e incident to the root of a reference tree,
we must consider two cases in which the label of parent(e)
is ’$’ (case 1) or is included in ELT (case 2). Otherwise, if
e is not incident to the root of any reference tree, we must
also consider two cases in which the label of the parent edge
parent(e) is ’$’ (case 3) or is included in ELT (case 4).

For example, in the compression tree t of Fig. 1, we
consider the path from index 44 (the edge (19, a, 20)) to
index 3 (the root of t). Since reference having index 44 as the
first argument does not exist in DT , we determine whether
or not CT [parent(44)] is ’$’. From parent(44) = 43,
CT [parent(44)] = CT [43] =’$’. We can see that expanding
from the edge at index 44 is case 3. Hence, we obtain j = 43,
u = dic(CT [parent(43)], childrank(43)) = dic(P, 2) =
18, and OP ′[18] = OP ′[18] ∪ (18, ab, {40}). Because
parent(14) is the root of the reference tree referred from
the port list at index 40 and CT [parent(40) = 36] =’$’,
we can apply the expansion of case 2. Next, we obtain q =
dic(CT [parent(36) = 23], childrank(36)) = dic(P, 2) =
18 and OP ′[18] = OP ′[18]∪ (18, ab, {23}). Finally, we can
obtain the path ’ababaa’ as the path from index 44 to the
root.

We explain ENUFREQPATHS when a compression
tree t in Fig. 1 and the minimum occurrence
k = 5 are given. In line 1 of ENUFREQPATHS,
Procedure GENOCCPOINTS generates the following set Z1.

Z1 = {(8, a, {8}), (10, b, {10, 23, 31, 40}),
(11, a, {11, 23, 31, 40}), (14, a, {14, 23, 31, 40}),
(16, b, {16, 23, 31, 40}), (17, a, {17, 23, 31, 40}),
(18, b, {18, 23, 31, 40}), (19, b, {19, 23, 31, 40}),
(27, b, {27}), (44, a, {44}), (48, a, {48}), (49, a, {49})}

Moreover, ENUFREQPATHS generates P1 = {a, b}
as the set of 5-frequent paths whose length is 1. By
recursively applying Procedure MAKECANDFREQPATHS,
ENUFREQPATHS generates the path-count triplets Z4 =
{(8, baba, {8}), (11, baba, {23, 23}), (14, baba, {31, 31})},
and P4 = {baba}. Since t has no5-frequent path whose
length is 5, ENUFREQPATHS terminates after outputting the
set F = {a, b, ab, ba, aba, bab, baba} of all 5-frequent paths
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Procedure 3 MAKECANDFREQPATHS

Require: A set Zln of path-count triplets, each of which has
a path with length ln, set Pln of k-frequent paths, the
length of each is ln, and set P1 of k-frequent edges

Ensure: The set Zln+1 of path-count triplets each of which
has a path whose length is ln+ 1

1: OP ′
i = ∅ for i (0 ≤ i < |CT |)

2: U = ∅
3: for all p ∈ Pln do
4: for all (i, p, OPi) ∈ Zln do
5: if (rank(i) + 1, v1, ...vk) ∈ DT then
6: for all w ∈ OPi do
7: u = parent(w)
8: if CT [u] =

′ $′ then
9: /* case 1 */

10: q = dic (CT [parent(u)], childrank(u))
11: U = U ∪ {q}
12: OP ′

q = OP ′
q ∪ {parent(u)}

13: else
14: /* case 2 */
15: U = U ∪ {u}
16: OP ′

u = OP ′
u ∪ {u}

17: end if
18: end for
19: else if CT [parent(i)] =

′ $′ then
20: /* case 3 */
21: for all w ∈ OPi do
22: j = parent(i)
23: u = dic (CT [parent(j)], childrank(j))
24: U = U ∪ {select(u+ 1)}
25: OP ′

u = OP ′
u ∪

∪
w∈OPi

{select(u+ 1)}
26: end for
27: else
28: /* case 4 */
29: e = parent(i)
30: U = U ∪ {e}
31: OP ′

e = OP ′
e ∪OPi

32: end if
33: end for
34: end for
35: for all w ∈ U do
36: Zln+1 = Zln+1 ∪ {(w, p ◦ CT [w], OP ′

w)}
37: end for
38: return Zln+1

in t.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To discuss the efficiency of ENUFREQPATHS, we explain
the experimental results obtained from applying ENUFREQ-
PATHS to artificial big data, which were randomly generated,
and discuss its efficiency.

A. Experimental Environments and Setting

We implemented ENUFREQPATHS on a PC with macOS
10.12 Sierra and 32GB memory and 4-GHz Intel Core i7
by using C++. In implementing ENUFREQPATHS, we use
the SDSL[11] as the data structure for compression trees.
We randomly created a set D of 1000 edge-labeled ordered

reference tree
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l

Case 4

reference tree

l $
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reference tree

l

e

Case 2

e

Fig. 3. All case of extending path

trees containing from 2000 to 14000 nodes and having two
edge labels. For each edge-labeled ordered tree T in D, we
created a compression tree t of T that had 5 entries in the
dictionaries. We denote the set of these 1000 compression
trees as CT (D).

B. Experimental Results and Discussion

Figure 4 shows a comparison of the running time of
ENUFREQPATHS when each T ∈ D and t ∈ CT (D), which
is the compression tree of T , are given as inputs. We can see
that ENUFREQPATHS given the compression tree t ∈ CT (D)
of T is always faster than that given an edge-labeled ordered
tree T ∈ D. Figure 5 shows that the running time of
ENUFREQPATHS is proportional to the number of occurrence
points of frequent paths. Figure 6 shows a comparison of
the running time needed to find all frequent paths. For
i ≥ 1, ENUFREQPATHS constructs candidate paths pi+1,
whose lengths are i + 1, from all frequent paths pi whose
lengths are i by expanding at the occurrence points of pi.
From Fig. 5, we can see that ENUFREQPATHS is a sequential
linear time algorithm w.r.t. the number of found occurrence
points. From Fig. 6, for a compression tree t of an edge-
labeled ordered tree T , we can see that the running time
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required for extracting all k-frequent paths from t is faster
than that from T by about 4.11 times.

Paths occurring in an entry l of a dictionary always occur
in all port lists having L as the edge label. Hence, if the
compression ratio becomes higher, the number of occurrence
points of frequent paths in a compression tree decreases.
This leads to reduction in memory usage and increase in
enumeration speed of frequent paths in compression trees.

V. CONCLUSION

We have introduced a compression tree, which is obtained
by replacing repeated occurrences of subgraphs having or-
dered tree structures with references to the first occurrence
point based on an LZ compression scheme, and presented
a succinct representation of a compression tree. We then
have proposed a time- and memory-efficient algorithm for
enumerating all frequent paths in a given compression tree
without decompression. To discuss the efficiency of the
proposed algorithm, we explained the experimental results

obtained from applying the algorithm to artificial big data,
which were randomly generated.

For future work, we will apply the proposed algorithm
to real-world big data. By extending the proposed algo-
rithm, we will develop more time- and memory-efficient
algorithms for enumerating all frequent subgraphs having
ordered-tree structures for a large set of compression trees
and for enumerating all characteristic tree patterns having
structured variables common to a given large set of edge-
labeled ordered trees by extending the pattern the matching
algorithm proposed by Itokawa et al. [6] and Suzuki et al.[13]
for edge-labeled ordered trees to a matching algorithm for
compression trees.

ACKNOWLEDGMENTS

This work was partially supported by Grant-in-Aid for
Scientific Research (B) (Grant Number 26280087) and (C)
(Grant Number 15K00313) from the Japan Society for the
Promotion of Science (JSPS), Japan.

REFERENCES

[1] J. Barbay, L.C. Aleardi, M. He, J.I. Munro. Succinct representation
of labeled graphs International Symposium on Algorithms and Com-
putation, pp.316-328, 2007.

[2] D. Benoit, E. D. Demaine, J. I. Munro, and R. Raman. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

[3] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring
labeled trees for optimal succinctness, and beyond. In Proceedings of
IEEE Symposium on Foundations of Computer Scie nce (FOCS), pages
184–196, 2005.

[4] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal
representation for balanced parentheses. In CPM, pages 159–172,
2004.

[5] Y. Itokawa, K. Katoh, T. Uchida, and T. Shoudai. Algorithm using
Expanded LZ Compression Scheme for Compressing Tree Structured
Data, pages 333–346. Lecture Notes in Electrical Engineering.
Springer, 2010.

[6] Y. Itokawa, M. Wada, T. Ishii, and T. Uchida. Pattern Matching Al-
gorithm Using a Succinct Data Structure for Tree-Structured Patterns,
pages 349–361. Lecture Notes in Electrical Engineering 110. Springer,
2012.

[7] J. Jansson, K. Sadakane, W.-K Sung. Ultra-succinct representation
of ordered trees with applications Journal of Computer and System
Sciences 78, pp.619631, 2012.

[8] H.-I. Lu, C.-C. Yeh. Balanced parentheses strike back. ACM
Transactions on Algorithms: Volume 4 Issue 3, 2008.

[9] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–
776, 2001.

[10] R. Raman, S.S. Rao. Succinct representations of ordinal trees. Space-
efficient data structures, streams, and algorithms, Vol. 8066 of the
series LNCS, pp.319-332, 2013

[11] SDSL: Succinct data structure library. http://simongog.github.io/sdsl/
[12] J. A. Storer and T. G. Szymanski. Data compression via textual

substitution. Journal of the ACM, 29(4):928–951, 1982.
[13] Y. Suzuki, T. Shoudai, T. Uchida and T. Miyahara. An efficient pattern

matching algorithm for ordered term tree patterns. IEICE Trans.
Fundamentals, E98-A(6):270–284, 2015.

[14] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, IT-23(3):337–
343, 1977.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017




