
 

 

Abstract—An algorithm is presented for real time vision-

based lane detection on a Raspberry Pi computer coupled to a 

Raspberry Pi Camera board. The computer-camera unit is 

placed inside a car, next to the windshield, and is powered 

through a regular 12V-to-5V car charger. The algorithm is 

based on the detection of 1D Haar Wavelet spikes in 1D 

ordered Haar Wavelet Transforms of image rows.  The 

algorithm is called GreedyHaarSpiker and is implemented in 

Python 2.7.9 with OpenCV 3. The performance of the 

algorithm was tested in situ on a Raspberry Pi 3 Model B 

ARMv8 1GB RAM computer on two image samples, each of 

which consisted of one thousand 360 x 240 PNG images. The 

images were captured by a Raspberry Pi Camera Board v2 

placed inside a Jeep Wrangler driven on two different days at a 

speed of 60 miles per hour on a Northern Utah highway. On the 

first sample, the accuracies of detecting both lanes and at least 

one lane were 67% and 89.70%, respectively; on the second 

sample, the accuracies of detecting both lanes and at least one 

lane were 47.30% and 77.40%, respectively. The current 

implementation processes 20 frames per second.  

 
Index Terms—computer vision, lane detection, discrete 

wavelet transform, haar wavelets, autonomous cars 

I. INTRODUCTION 

utonomous cars, i.e., cars capable of navigating various 

environments without human input, have featured 

prominently in many research and commercial projects for 

several decades. The CMU Navigation Laboratory (Navlab) 

has built a series of robot cars, SUVs, and buses since 1984. 

The latest robotic car, Navlab 11, is a robot Jeep Wrangler 

equipped with a range of sensors for obstacle avoidance, 

path planning and following, and pedestrian detection [1]. 

The European Technology Platform on Smart Systems 

Integration project has reported significant contributions to 

collision avoidance, fleet management, autonomous cruise 

control, and cooperative driving [2]. Over the past several 

years the Google and Tesla corporations have been 

aggressively commercializing their self-driving platforms [3, 

4].   

Proponents of driverless cars argue that the major benefits 

of driverless cars include, but are not limited to, less traffic 

congestion, enhanced mobility of the elderly and the 

disabled, significant increases in roadway capacity, and 

 

 
  Manuscript received December 5, 2016; revised December 24, 2016.  

 Vladimir A. Kulyukin is with the Department of Computer Science of 

Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax: 

435-791-3265; e-mail: vladimir.kulyukin@usu.edu).  

 Vikas Reddy Sudini is with the Department of Computer Science of 

Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax: 

435-791-3265; e-mail: s.vikasreddy2009@gmail.com). 

  

reduction in traffic accidents [5, 6]. Opponents of driverless 

cars point out that the widespread adoption of autonomous 

vehicles will result not only in major job losses in driving 

jobs, but also will likely lead to loss of privacy and increased 

risks of hacking attacks and terrorism [7]. Some researchers 

argue that lack of stress during driving and more productive 

time on the road may create additional incentives to live 

even further from cities, which will increase the carbon 

footprint of motor transportation systems [8]. 

 While we believe that completely autonomous cars may 

become a reality in the long term, provided that not only 

technical failures [9, 10] but also social and legal 

implications [11] of autonomous car adoption are properly 

addressed, human drivers are, and will remain indispensable 

in the short and medium terms. Consequently, it is important 

to seek solutions that enhance their safety. Robust vision-

based lane detection is one such enhancement. Specifically, 

vision-based lane detection modules will gradually become 

an integral part of autopilots in semi-trucks to improve the 

drivers’ safety on long, monotonous highway stretches with 

low or no traffic. Such autopilots will be similar to the ones 

already in existence in aircraft and ships and will keep the 

human in the loop in that the decision to engage and 

disengage the autopilot will be under the sole control of the 

driver. 

In this paper, an algorithm, called GreedyHaarSpiker, is 

presented for in situ real time vision-based lane detection on 

a Raspberry Pi computer coupled to a Raspberry Pi Camera 

board. The computer-camera unit is placed inside a car, next 

to the windshield, and is powered through a regular 12V-to-

5V car charger. The algorithm is based on the detection of 

1D Haar Wavelet spikes in 1D Ordered Haar Wavelet 

Transforms of image rows.  The algorithm is implemented in 

Python 2.7.9 with OpenCV 3.  

The remainder of this paper is organized as follows. In 

Section II, related work is reviewed. In Section III, the 

concept of a 1D Haar Wavelet Spike (1D HWS) is formally 

developed. Section IV describes our in situ algorithm and 

gives its pseudocode. In Section V, the highway experiments 

are described and analyzed. In Section VI, conclusions are 

drawn. 

II. RELATED WORK 

Vision-based lane detection has been the focus of many 

R&D projects in the past two decades. Wang et al. [12] 

propose a B-Snake based lane detection and tracking model 

for a range of lane structures. An algorithm, called CHEVP, 

is developed for providing initial positions for the B-Snake 

model. A minimum error method is proposed to determine 

the control points of the B-Snake model by the image forces 
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on both sides of a lane. Experimental results presented in the 

paper suggest that the algorithm is robust against noise, 

shadows, and illumination variations in captured images of 

marked and unmarked roads. 

Kim [13] presents a lane-detection-and-tracking algorithm 

to detect lane curvatures, lane changes, and splitting lanes. 

The detected lane markings are grouped into separate left 

and right lane-boundary hypotheses to handle merging and 

splitting lanes. The hypotheses are evaluated and grouped 

with a probabilistic, Markov-style process framework.  

Hsiao et al. [14] propose an embedded real-time lane 

departure warning system (LDWS) for daytime and 

nighttime driving. The LDWS features a lane detection 

algorithm based on peak finding for feature extraction to 

detect lane boundaries. 1D Gaussian smoothing and global 

edge detection are applied to reduce noise in images. The 

reported lane detection rates were 99.57% during the day 

and 98.88% at night on a sample of highway images. 

Erickson and Landberg [15] proposed a lane detection 

algorithm that uses Hough lines combined with a parabolic 

second degree fitting for curvature detection. On the 

Raspberry Pi (RPi) 2 model the algorithm’s performance 

was found to be inadequate for high speed driving. However, 

when the object detection is removed from the algorithm the 

RPi 2 meets the real time performance requirements. 

Mandlik and Deshmukh [16] have developed a lane 

departure detection system that uses the OpenCV library 

[17] to detect vehicle lane departures on the RPi hardware. 

The algorithm uses the OpenCV implementations of the 

Canny Edge detector [18] and the Hough Transform [19] to 

detect straight and curved lanes. The experiments are 

conducted on a toy vehicle with a USB camera mounted on 

top of it that sends images of white paper lanes on a black 

floor surface to an RPi powered by a laptop. 

The algorithm presented in this paper shares the position 

advocated in [15] and [16] that, to be economically viable 

and broadly shareable, vision-based lane detection 

algorithms must be implemented and tested in situ on off-

the-shelf hardware platforms such as the RPi. The creation 

of replicable hardware and software solutions will enable 

citizen science drivers to build, test, and broadly share 

driver’s safety enhancements. 

III. 1D HAAR WAVELET SPIKES 

The GreedyHaarSpiker algorithm described in Section IV 

depends on the concept of the 1D Haar Wavelet Spike 

developed in this section. In the 1D Haar Wavelet 

Transform (1D HWT), a signal is a vector in 

.,2, NknR kn   Following the formalization in [20], let 

 k

aW be a 
kk 22  matrix for computing k scales of the 1D 

HWT. This matrix can be effectively computed from the n 

canonical base vectors of .nR  If  
120 ,...,


 kxxx  is a 

signal in
nR , then y  is the k-scale 1D HWT of x  defined 

in (1).  
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HWTs are used to detect significant changes in signal 

values [22]. In this paper, we claim that some changes can 

be characterized as signal spikes. Specifically, four types of 

spikes are proposed: up-down triangle, up-down trapezoid, 

down-up triangle, and down-up trapezoid. The difference 

between up-down and down-up spikes is the relative 

positions of the climb and decline segments.  In trapezoid 

spikes, flat segments are always in between the climb and 

decline segments, regardless of their relative positions.   

 

 
Fig. 1. Up-down spikes. 

 

Fig. 1 shows up-down triangle and trapezoid spikes; Fig. 2 

shows down-up triangle and trapezoid spikes. In both 

figures, the lower graphs represent the possible values of the 

corresponding Haar wavelets at a chosen scale k. Up-down 

spikes describe signals that first increase and then, after an 
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optional flat segment, decrease. Down-up spikes describe 

signals that first decrease and then, after an optional flat 

segment, increase. Formally, a spike is a nine element tuple 

whose elements are real numbers given in (5). 

 

 
Fig. 2. Down-up spikes. 
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The first two elements, su and eu , are the abscissae of the 

beginning and end of the spike’s climb segment, 

respectively, when the wavelet coefficients of the 1D HWT 

increase. If 
 k

scu and 
 k

ecu are the k-th scale wavelet 

coefficient ordinates at su and ,eu  respectively, then the 

climb segment of the spike is measured by the angle 
    .,1tan 1 k

s

k

ese cucuuu     

The decline segment of the spike is characterized by 

,sd ,ed and , where sd and ed are the abscissae of the 

beginning and end of the spike’s decline segment, 

respectively, when the wavelet coefficients decrease. If 
 k

scd and  k

ecd  are the k-th scale wavelet coefficient 

ordinates at sd and ,ed  respectively, then the decline 

segment of the spike is measured by the 

angle     k

s

k

ese cdcddd   ,1tan 1 .  

For a trapezoid up-down or down-up spike, the flat 

segment is characterized by ,sf ,ef and , where sf and 

ef are the abscissae of the beginning and end of the spike’s 

flat segment, respectively, over which the wavelet 

coefficients either remain at the same ordinate or have minor 

ordinate fluctuations. If 
 k

scf and 
 k

ecf  are the k-th scale 

wavelet coefficients corresponding to sf and ,ef  

respectively, the spike’s flatness angle is 
    k

s

k

ese cfcfff   ,tan 1 .  The absolute values of 

 are close to 0. 

 

 
Fig. 3. An RPi monitor attached to an RPi (behind it) and mounted 

next to the windshield of a Jeep Wrangler. 

 

 
Fig. 4. An RPi camera board v2 (red arrow) attached to small cardboard 

box for balance and taped to windshield; RPi computer (green arrow); RPi 

monitor (blue arrow). 

 

 

Fig. 5. As GreedyHaarSpiker runs, lane detection results are graphically 

displayed in bottom right corner of RPi monitor: green arrow points to 

detected left lane; red arrow points to detected right lane. 

IV. GREEDYHAARSPIKER: A LANE DETECTION ALGORITHM 

Figures 3 – 5 show the hardware on which 

GreedyHaarSpiker, our lane detection algorithm, currently 

runs. In Fig. 3, a seven-inch RPi touchscreen display is 

shown. The monitor is attached to a RPi 3 Model B ARMv8 

1GB RAM identified with a green arrow in Fig. 4. The RPi 

computer is attached to the back of the monitor and coupled 

to an RPi Camera Board v2. The camera, identified with a 

red arrow in Fig. 4, is attached to a small cardboard box and 

taped with a small piece of tape to the windshield for 

balance. In the future, more stable structures will be 

designed and deployed. In Fig. 5, the RPi monitor displays 

the left and right lanes as they are being detected by the 

algorithm in real time as the vehicle is driven. The system is 
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powered with a standard 12V-to-5V car charger where the 

USB power line for the RPi is plugged in. 

Figures 6 and 7 give the pseudocode of the DetectLanes 

procedure and the GreedyHaarSpiker procedure called by 

DetectLanes. The procedure DetectLanes takes as input a 

360 x 240 PNG image. Fig. 8 shows a sample input image. 

In line 2 of Fig. 6, a 56 x 200 region of interest (ROI) is 

cropped in the bottom center portion of the image in Fig. 8. 

The cropped ROI is shown in Fig. 9a. 

 

 

 

 

Fig. 6. Pseudocode of DetectLanes procedure. 

 

 

 

 

Fig. 7. Pseudocode of GreedyHaarSpiker. 

Lines 3 – 5 in Fig. 6 specify the image preprocessing steps 

applied to the ROI. The ROI is grayscaled (Fig. 9b), blurred 

with the Gaussian 7 x 7 kernel (Fig. 9c), and thresholded 

with the Otsu thresholding operator (Fig. 9d). In line 6 in 

Fig. 6 the GreedyHaarSpiker algorithm, outlined in Fig. 7, is 

applied to the thresholded image. In Fig. 7, two empty lists, 

LPoints and RPoints, are initialized. LPoints is a list of (x, y) 

tuples used to find the left lane in the image by the fitLine 

procedure in line 6 of Fig. 6. RPoints  is a list of (x, y) tuples 

used to find the right lane in the image by the fitLine 

procedure in line 7 of Fig. 6. This procedure is described at 

the end of this section.  

In lines 3 and 4 of Fig. 7, two variables, LSpike and 

RSpike, are defined where detected spikes are temporarily 

saved to guide the selection of the scanline in the next row 

by the procedures getLeftScaneLine and getRightScanLine 

in lines 7 – 8 of Fig. 7.  

The procedure GreedyHaarSpiker takes a preprocessed 

ROI and three integer parameters. The parameters sr and er 

specify the start and end rows, respectively, in ROI where 

the spikes are detected. The third integer parameter, delta, 

specifies a step value for generating the exact row numbers 

for spike detection.  

 

 
Fig. 8. A sample input image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 9. (a) ROI from input image; (b) grayscaled ROI; (c) blurred ROI; 

(d) ROI thresholded with OTSU; e) scanlines (white lines) and spikes 

(red and blue lines) used to detect left lanes; (f) scanlines and spikes 

used to detect both lanes. 

 

As indicated in Line 6 of Fig. 7 where the for-loop starts, 

the processing of rows goes from bottom to top. In other 

words, the lane detection starts from the rows closest to the 

moving vehicle.   

In lines 7 and 8 of Fig. 7, two scanlines of 64 pixels are 

chosen on the left and right parts of ROI in row r. If the 

value of LSpike is NULL, the left scanline starts at column 

0; similarly, if the value of RSpike is NULL, the right 

scanline starts at column w-1, where w is the width of the 

ROI, which is equal to 200 in our case. If the value of 

LSpike is NULL, which means that a spike has been 

detected in a row below, the left scanline, saved in the LLine 

variable, is centered on the middle of the two ordinates of 

the detected spike’s climb segment, i.e., the ordinates of  

su and eu  defined in Section III. The flat and down 

segments are currently not taken into account in the 

algorithm. The right scanline is detected and saved in the 

RLine variable in the same way except that the spike saved 

in RSpike is used. In Fig. 9e and Fig. 9f, the scanlines are 

shown as white lines. 

In lines 9 and 10 of Fig. 7, the ordered 1D HWT is 

applied to the left and right scanlines, respectively. In lines 

11 and 12, up-down spikes are shown in Figures 9e and 9f as 

short red-blue lines on white lines. The red segments show 

the climb segments; the blue segments indicate the decline 

segments.  

The procedure DetectSpike uses the present thresholds for 

the angles of climb, flat, and decline spike segments, i.e., α, 

γ, β and returns the leftmost spike that clears the thresholds. 

In the current implementation, α = β = 60° and γ = 5°. In 

other words, in the current implementation of the algorithm, 

the up-down spikes whose climb or decline angles are less 

than 60° are filtered out, and flat segments are detected so 

long as consecutive wave coefficients fluctuate within ±5° of 

0°.  

The algorithm is greedy in that it always returns exactly 

1.  LPoints  =  [ ];  

2.  RPoints  =  [ ]; 

3.  LSpike =  NULL;  

4.  RSpike   =  NULL;  

5.  procedure GreedyHaarSpiker(ROI, sr, er, delta) {    

6.     FOR(r = er; r <= sr; r += delta) 

7.       LLine   =  getLeftScanLine(ROI, r, LSpike); 

8.       RLine   =  getRightScanLine(ROI, r, RSpike); 

9.       LHWT   =  ordered1DHWT(LLine); 

10.     RHWT   =  ordered1DHWT(RLine); 

11.     LSpike   =  DetectSpike(LHWT); 

12.     RSpike   =  DetectSpike(RHWT); 

13.     IF LSpike != NULL  

14.  THEN add mid point of LSpike’s climb to LPoints; 

15.     IF RSpike != NULL 

16.   THEN add mid point of RSpike’s climb to RPoints; 

17.  ENDFOR  

 

1. procedure DetectLanes(Img) 

2.      ROI = cropROI(Img); 

3.    convertToGrayscale(ROI); 

4.  gaussianBlur(ROI); 

5.  thresholdOTSU(ROI); 

6.  GreedyHaarSpiker(ROI); 

7.  fitLine(ROI, LPoints); 

8.  fitLine(ROI, RPoints); 
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one leftmost spike in each left scanline and exactly one 

leftmost spike in each right scanline. All other spikes are 

ignored. If no spikes clear the angle thresholds, the value of 

NULL is returned. 

When the GreedyHaarSpiker procedure finishes running, 

the lists LPoints and RPoints contain (x, y) tuples 

representing the mid points of the climb segments of spikes 

detected in the left and right scanlines in each of the selected 

rows. The procedure fitLine called in lines 7 and 8 takes 

these points and fits lines through them. Currently, no 

standard polynomial fitting procedure, like linear regression, 

is used. Instead, to make the line fitting faster, the procedure 

connects two points, a lower point and an upper point, by 

considering them the end points of a triangle’s hypotenuse 

and connecting them so long as the absolute value of the 

inclination angle of the hypotenuse is within 15° of 35°. Fig. 

10a shows the two lines fit through the points in LLanes and 

RLanes detected in the original image in Fig. 8. In Fig. 10b, 

the ROI, the scanlines, and the detected spikes are explicitly 

shown. 

 

 
(a) 

 
(b) 

Fig. 10. (a) Two lanes drawn in the original image in Fig. 8; (b) the 

white rectangular ROI, scanlines, spikes, and lanes drawn on the 

original image. 

V. EXPERIMENTS 

The images for the experiments were captured by the 

hardware shown in Figures 3 – 5 installed inside a Jeep 

Wrangler. The car was driven on two different days in 

September and November 2016 at a speed of 60 miles per 

hour on a two-lane Northern Utah highway. Each drive was 

approximately 35 miles long. A sample of one thousand 360 

x 240 PNG images was selected from the captured video.  

The evaluation of the algorithm was done manually by the 

authors. The authors visually compared the lane lines drawn 

in the image by the algorithm and the actual lines. The 

images were placed into one of three accuracy categories: 

both lanes detected, at least one lane detected, and no lanes 

detected. An actual lane was considered detected if the lane 

line drawn by the algorithm was exactly aligned with it.  

 
Table I 

Lane detection accuracy. 

Sample Num. Images Both Lanes (%) At least 1 Lane (%) 

1 1,000 67.00% 89.70% 

2 1,000 47.30% 77.40% 

 

Table I shows the accuracy results for both samples of 

images. As the results in Table I indicate, in sample 1, both 

lanes were accurately detected in 67% of the frames and at 

least one lane was detected in 89.70% of the images. The 

detection results on the second sample of 1,000 images were 

lower. Both lanes were detected in 47.30% of the images 

and at least one lane was detected in 77.40% of the images, 

which indicates bad weather had a negative impact on the 

algorithm’s accuracy. 

 

 
Fig. 11. Two false positives. 

 

Fig. 11 illustrates two common problems that had a 

negative impact on the algorithm’s accuracy. Both the left 

and the right lanes are detected inaccurately. The left lane, a 

small bright green line in Fig. 11, is accurately aligned with 

a real road lane. The problem is that it is a wrong lane. This 

misalignment shows a problem with the greedy approach in 

that the algorithm always chooses the leftmost spike in each 

scanline. The red line, drawn above and almost 

perpendicular to the bright green line, is a false positive.  

We are currently implementing improvements to 

overcome both problems. The first improvement is to use 

not just the climb segment of each detected spike but also 

the flat and decline segments when computing the 2D points 

of a potential line either on the left or on the right. The 

second improvement is to use a standard polynomial curve 

fitting algorithm, such as linear regression, to find the best 

line that fits a set of points. A potential drop in the number 

of frames processed per second may be compensated by 

more accurate line detection. The third improvement is to 

use simple geometrical constraints to filter out invalid 

matches like the right lane false positive in Fig. 11. For 

example, one possible constraint can be that the left and 

right lane lines may not intersect within the region of 

interest.  

While algorithms’ accuracy is important, it should be 

pointed out that the algorithm was implemented in Python 

2.7.9 with OpenCV 3.0 on a RPi 3 Model B with an ARMv8 

processor and 1GB of RAM. The current implementation of 

the algorithm processes 20 frames per second. Thus, there is 

sufficient potential to add more sophisticated algorithms, 

e.g., polynomial curve fitting, without sacrificing the real 

time performance of the algorithm.  

VI. CONCLUSION 

An algorithm, called GreedyHaarSpiker, was presented for 

in situ real time vision-based lane detection on a RPi 

computer coupled to a Raspberry Pi Camera board. The 

system’s hardware can be placed inside a car, next to the 

windshield, and be powered through a regular 12V-to-5V 

car charger. Since the algorithm can operate on low voltage 

devices with smaller RAMs, it is more suitable for 

ecologically sustainable computing. The hardware and 

software components of the presented algorithm can be 
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replicated with off-the-shelf hardware components and open 

source software.  

The algorithm is based on the detection of 1D Haar 

Wavelet spikes in 1D Ordered Haar Wavelet Transforms of 

image rows.  The algorithm is currently implemented in 

Python 2.7.9 with OpenCV 3. The performance of the 

algorithm was tested in situ on a Raspberry Pi 3 Model B 

ARMv8 1GB RAM computer on two image samples, each 

of which consisted of one thousand 360 x 240 PNG images. 

The images were captured by a Raspberry Pi Camera Board 

v2 placed inside a Jeep Wrangler driven by the first author 

on two different days at a speed of 60 miles per hour on a 

Northern Utah highway. On the first sample, the accuracies 

of detecting both lanes and at least one lane were 67% and 

89.70%, respectively; on the second sample, the accuracies 

of detecting both lanes and at least one lane were 47.30% 

and 77.40%, respectively. The current implementation 

processes 20 frames per second.  
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