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Stabilization of Linear Differential-algebraic
Equations with Time-varying Delay

Grienggrai Rajchakit, Member, IAENG

Abstract—Stabilization involves finding feedback controllers
which stabilize the closed-loop system in the finite-time sense.
Stability and control have been developed in the literature
using Lyapunov-like method. In this paper, we develop a gen-
eral framework for stabilization of linear differential-algebraic
equations with time-varying delay. Based on Lyapunov-like
function method and new bound estimation technique, we pro-
vide sufficient conditions for global stabilization. The proposed
conditions expressed in terms of linear matrix inequalities allow
us to find state feedback controllers which stabilize the closed-
loop system in the interval.

Index Terms—stabilization, differential-algebraic equations,
feedback controller, time-varying delay, linear matrix inequal-
ities

1. INTRODUCTION

Linear differential-algebraic equations are basic models in
control theory (see, e.g., [1,2] and the references therein).
When they are generalized to include state delays, the
resulting models are described by a system of linear delay-
differential-algebraic equations (LDDAESs). Since LDDAEs
are matrix delay differential equations coupled with matrix
difference equations, the study of such systems is much more
complicated than that for standard state-space time-delay
systems or singular systems.

Most of the results in the literature are focused on
Lyapunov stability of LDDAEs [3]. Some early results on
stabilization of linear time-delay systems can be found in
[4]; more recently the concept of stability has been revisited
in the light of recent results coming from linear matrix
inequalities (LMIs) theory [5] which has enabled us to find
less conservative conditions guaranteeing Lyapunov stability
of linear differential-algebraic equations [6].

However, to date and to the best of our knowledge,
the problem of stabilization for linear differential-algebraic
equations with time-varing delay has not fully investigated.
The problem is important and challenging in many practice
applications, which motivates the main purpose of our re-
search.

In this paper, we develop a general framework for stabi-
lization of linear differential-algebraic equations with time-
varying delay. This is the first instance where the lin-
ear differential-algebraic equations is considered with time-
varying delay in the state. Under the practical constraints
that not all of the state variables of the system are avail-
able for feedback control and the real-time knowledge of
the time-varying delay is not available, our objective is to
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design an state feedback controller to finite-time stabilize
the closed-loop system. The main contribution of the paper
is to find a state feedback controller which guarantees
finite-time stability of the resulting closed-loop system. By
using new bound estimation techniques we select a simpler
set of Lyapunov-like functionals to derive delay-dependent
sufficient conditions for designing the state feedback control
stabilizer. The conditions are obtained in terms of LMIs.

The outline of the paper is as follows. Section II presents
definitions and some well-known technical propositions
needed for the proof of the main result. Delay-dependent
sufficient conditions for finite-time stabilization of linear
differential-algebraic equations with time-varing delays with
a numerical example are presented in Section III. Some
conclusions are drawn in Section IV.

II. PRELIMINARIES

The following notations will be used throughout this paper.
RT denotes the set of all nonnegative real numbers; R™ de-
notes the n— dimensional space with the scalar product z " y;
R™ " denotes the space of all matrices of (n x r)— dimen-
sion. AT denotes the transpose of A; a matrix A is symmetric
if A= AT ; I denotes the identity matrix; 0,,,, denotes the
zero matrix in R™*"*; A(A) denotes the set of all eigenvalues
of A; Amax(A) = max{Re(A\) : A € AMA)}; \nin(A4) =
min{Re(\) : A € XA)};CY([~7,0], R") denotes the
set of all R™— valued continuously differentiable functions
on [—7,0]; L2([0,T], R") stands for the set of all square-
integrable R"—valued functions on [0,7]. The symmetric
terms in a matrix are denoted by . Matrix A is positive
defnite (A > 0) if (Az,x) > 0 for all 2 # 0. The following
norms will be used: ||-|| refers to the Euclidean vector norm;
ol = max{ sup ()], sup [@(t)]} stands for the

te[—T,0] te[—7,0]
norm of a function ¢(-) € C'([-7,0], R"). The segment of
the trajectory z(t) is denoted by x; = {z(t+s) : s € [-7,0]}
with its norm ||z¢|| = sup |lz(t+ )]
s€[—T,0]

Consider a linear differential-algebraic equation with time-

varying delay of the form

Ei(t)
t>0,
z(t)

ey

where x(t) is state vector in R™, u(t) € R™ is control vec-
tor, w(t) is the disturbance vector; A, D are constant matrices
in R"™*" B e R""™ By € R"*™2 F € R™ ™ is a singu-
lar matrix, rank E = r < n, 9(t) € C ([=h,0], R"); h(t)
is a continuous function satisfying the condition:

= Ax(t) + Dz(t — h(t)) + Bu(t) + Biw(t),

=(t), Vte][-h,0],

0<h(t)<h, t>0.

IMECS 2017



Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17,2017, Hong Kong

The disturbance w(t) is any continuous function satisfying R"*"™,U € R™*"™ and a positive number 1 > 0 such that

the condition the following LMIs:
>0:  w Bwlt)<d, te0,T. (@) PE=E'P" >0, (5)
Definition 1. (i) System (1) is regular if det(sE — A) is not r— F*l %(21 )(()2 <0, ©

identical zero.

(ii) System (1) is impulse-free if deg(det(sE — A)) =r = -

rankFE. | A5y Das| < 1. )
The singular delay system (1) may have an impulsive Moreover, the state feedback control is defined by u(t) =

solution, however, the regularity and the absence of impulses N—lUx(t)7 where

of the pair (E, A) ensure the existence and uniqueness of an

impulse free solution to this system, which is shown in [7]. j7 — (Ml) M = (OTX"> ,GTPM™ = (Pll P12> ,

* E

Ms M Py P
Proposition 1. [7] Let 7 > 0,0 > 0, € (0,1) and v(t) be Ry Ri» Amin (P11)
. . . . ]\4_TIR]\4_1 = , v = )
a continuous function satisfying Ro1  Rao Amax(R11)
0<ov(t)<~vy sup v(t+s)+o, >0, ~ Amax(Pr1) . h? T
—7<5<0 Q2 = m7 by = gAmax(E QE)|[Y|,
then the following condition holds = ||A521A21 | + ||1212*21D21||7 Yo = ||[12*21D22||7
v(t) <y sup v(s)+ ﬁ t>0. 3) 3= 1455 Bio||Vd,T11 = PA+ ATPT + BU+UTBT
—7<s<0 - 1
— ——-BNB'" —4E"QE,T12 = PD - 2E"QE
2+ h2 Q ;412 Q
Proposition 2. (Generalized Jensen inequality [7]) Given a  — ATWT Toy =h*DTQT + W(I, + M),Ta =
symmetric matrix R > 0 and a differentiable function ¢ :  _8ETQFE — WD

[a,b] — R™, we have S DTWT. Ty = 40, Tus— —h2Q.

b
¢" (u)Ro(u)du > (6(b) = ¢(a)) "R((b) — ¢(a)) Ts5 = —12Q,Tes = —12Q, T = diag(~N, —s—5N),
b—a 2+ h2
12 Pg = dlag(—N, —N, —Igm ),
+—0TRQ, ’
b—a
2ATOHT T
b) + ¢(a 1 i1 T 0 R*ATQ 0 6ETQ
where §) = 9 () 5 9la) _ b_a/ o(u)du. x  Tay —2FTQ Tos 6ETQ 6FETQ
@ F _ * * F35 0 GQ O
1 — 9
III. MAIN RESULT X * Laa FO 8
Consider system (1) with u(t) = Kz(t), since rank E = I : : I 55 r
r < n, then there are two nonsingular matrices M, G such 66
I, 0\
that (0 0)_MEG. PB UT72+1,L2BN
Let - _
M(A+ BK)G = Au Aee 8 8
A Azn)’ X1 = ,
0 0
_ (D11 Di2 0 0
By,
MB; = (312) . 0 0 PB, 0 0
) ] . WB 0 0 WhB 0
Ulrlder coordinate transformation y = G~ 'z := [y1,y2],y1 € Y. — 0 0 0 0 0
B , =1 0 wB 0 0 hQB
ys € R™™7, the system (1) is reduced to the system 0 0 0 0 0
0 0 0 0 0

U1(t) = Ay (t) + Aiaye(t) + Diiya (t — k(1))

+D12ya(t = h(t)) + Buw(?) Proof: We first prove the system (1) with the feedback

0 = Ay (t) + Ag2p2(t) + Dongn(t = h(t)) 4 congrol is regular and impulse-free. We obtain from (5) that
+D32y2(t — h(t)) + Biaw(t) - T 1 P Opx(nr)
_ — _ rx(n—r
y(t) = G7() = [da(t), d2(t)], ¢ € [<h,0). ¢ PEG =G PMMEG = <p21 o(n_r)x(n_r))

—G'E'PTG=G'ETM'M'' PTG
Theorem 1. The system (1) is robustly stabilizable if there

T T
exist symmetric positive definite matrices N € R"™>™ () € — < Py Py, > > 0.
R™ " a nonsingular matrix P € R™*", matrices W € On—r)xr Om—r)x(n—r)
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Therefore, Poy = 0, P11 = PlT1 > 0. Since P is nonsingular,

then GTPM~! = Pu P
0 n—r)xr P22
have det(P;1) # 0, hence P;; > 0.

Iy X, )
< 0.
2 V)

is nonsingular, we

Since I' < 0, we obtain diag(— N, — -

Applying Proposition 1, we have
. 1 -1 T
I+ X (dlag(N, mN)) X[ <0 ®

Letting U = N K, we have:

1 I Y
N XIZ(

X1 dlag( 05
nxn

On Xbn ) (9)

05n><5n

where Y = PBN 1pTpT 4
KTNTBT +

+(2+h*)K"NK — BNK —

2+h >BNBT. From (8) and (9), we obtain

1+ PBN'BTPT 4+ (24 h?*)K'NK — BNK

~K'NTBT + <0.

24 h?
Therefore
PA+ATPT+ PBN 'B"TPT+ KTNK —4ETQE < 0.
Using Cauchy matrix inequality for the inequality
K'"B"P"+PBK =2PBK < PBN 'B"PT+KTNK,
we obtain
0>PA+A'PT+PBN'B"PT + KTNK —4E"QE
>PA+A"PT+ K"B"P" + PBK —4E"QF
— PA+ATPT —4FTQE.
Since G is nonsingular, G'T';;G < 0, we have
G'XG=G"(PA+ATP" —4FE"QE)G
=G"PM'MAG+G A" M "M~
—4AGTETMTM-TQM'MEG
_ (Wn Py A + A Ags + A2T1P2T2) <o
*

Ao Py, + Py Ago
where W11 = P11A11 +P12A21 +A Pll +A;—1P1—g 4@11
Therefore, det(Ass) # 0.

Let

- I, —A12A1> - ( I, o)

M = 2 )M G=G| % ).
(0 In_y —AGt Ay A

It is easy to verify that

PTa

I. 0
0 0

(A0
B 0 Infr '

(A+ BK))G = sMEG — M(A+ BK)G
o SIT — All 0
B 0 In—r )

M~*M(sE—(A+BK))GG™")

E=MEG = ( )A:M(A+BK)G

M(sE —

Therefore
det(sE—(A+BK)) = det(

= det(M~V)det(sI, — Ayy)det(G™1).
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Moreover, note that det(sI, — Apy) = S _gaist, ap =1,
and det(M) # 0,det(G) # 0 because of the nonsmgularlty
of M and G, then the polynomial det(sE — (A + BK)) is
not identically zero and

deg (det(sE — (A+ BK))) = r = rank(E),

which implies that the system is regular and impulse-free.
We now prove the finite-time stabilization of system (1).
Consider the following non-negative quadratic functional
V(t,z) = S22, Vi(t, z;), where

Vi(t,ay) = e"a ' (t) PEx(t),

2(t, o) = e"th/ /
t+s

Note that

(1)ET QEi(t)drds.

G'E'TREG=G'TE"M"M-"TRM-'MEG

(I, 0\ (Ri1 Ri2\ (I, 0\ _
(5 o) G w2 (6 0) = o
Ry1 0
0 0
G"PEG =G"PM~'MEG (11)

(P Pu\ (I 0\ (P O
L0 Py 0o o/ \0o o0/

Since M~TRM~! > 0, by Silvester’s criterion the matrix
Ry is positive definite, we then have

(GTETREGz, ) > Apin(R11) ZH&:ZH Vr € R™.

(GTRGz, ) > Amin(GTRG) Z ||zs] |2, Vx e R™
i=1

(GTPEGz, ) < Amax(P11) anm? Vo e R".

Moreover, we have

<[ Amax(f)ll)
Amin(GTRG)

which implies

GRG — G PEG]x, x> >0, VzeR"

>\max (Pll)
Amin(GTRG))

Since G is a nonsingular matrix,
MR and then

Nenin (G TRG)
)\max(Pll) T
w1 qap T (ORY(). (12)
Ain(GTRG) (0 ¥ (ROW)

G'(PE - R)G < 0.

it follows PE <

" (0)PEz(0) <

On the other hand, we have

h3
(1)ETQEi(r)drds s;krrla;((ETQE)HW-

WA

13)
Combining the conditions (12)-(13) gives
V(0,20) < aser + by (14)
We now show that
az' ()ETREz(t) < V(t,x;), Ytel[0,T].  (15)
IMECS 2017
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Indeed, from (11) it follows that

max Rll Z ||‘IE2H2

(GETREGz, z) <

(GTPEGz, x)

i=1
hence

([a;GE"REG — GTPEG|z,z) <0, Vz e R",
which gives

G"(PE —a,E"RE)G > 0.

Since G is a nonsingular matrix, we obtain PE > o F
and hence

V(t,z;) >z (t)PEx(t) > ayz' (t)E REx(t),

> Amin(P11) Z |||, Vz € R™,

TRE,

as desired. Taking the derivative of V'(.) along the solution

of system (1) we have

Vi) = e [xT(t)(PA +ATPT + PBK
+ K"BT"PNa(t) 4+ 2z " (t)PDx(t — h(t))
+ 2xT(t)PBlw(t)} +aVil)
< et [xT(t)(PA +ATPT + PBN"'BTPT
+ KT'NK)z(t) + 2z (t)PDxz(t — h(t))
+ 2xT(t)PBlw(t)} Vil

Va(.) = e [h%T(t)ETQEg'C(t)

t

—h xT(s)ETQEm'(s)ds} +nVa()

t—h
= et [h%‘cT(t)ETQE:'c(t)

_h/

— T T(s)ds 5(.).
T o ETOETQEE ()] 1)

(s)E' QEi(s)ds

(16)

a7)

To estimate V>(.) we apply the Proposition 2 for the follow-

ing inequalities

t—h(t)
—h / il
t—h

—4z(t — h(t)) TETQEx(t — h(t))
—4z(t —h)"ETQEx(t — h)
—dx(t — h(t))"ETQExz(t — h)

t—h(t)
z(s)ds

(s)ETQEi(s)ds <

T h(t)x(t —h(t))TETQE

12
o™
12
~ (h—h(1))?

t—h
t— h(t)

t—h TETQE/ s)ds

t—h(t)
I
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t— h(t

2(s) dsETQE /

— h/t i (s)ETQEx(s)ds <
t—h(t)
—da(t —h(t)) " ETQEx(t — h(t))

—dx(t — h(t)) TETQFEx(t)

—4z(t)" ETQFEx(t)

t

+ Ex(t ~h(t)TETQFE

0 x(s)ds

t—h(t)
t

z(t)'ETQE x(s)ds
t—h(t)

¢ ¢
/ x(s)TdsETQE/ x(s)ds.
t—h(t) t—h(t)

Therefore, from (12)-(15) we obtain

12
o)

12
©h(t)?

(18)

V() <em [h%’:T(t) TQEi(t)

—4a(t — h(t))"ETQEx(t — h(t))
—4a(t —h)"ETQEx(t — h)
(

—4a(t — h(t))"ETQEx(t — h)
t—h(t)
x(s)ds

z(t—h(t)TETQFE
at
z(t—h)'ETQE x(s)ds
12

t—h
t—h(t)
(b= h(t))? /t—h

/ M (8)ds — et — h(t)TETQE(t — h(t))
t—h

—4z(t)" ETQFEx(t)
—4x(t — h(t)) "ETQExz(t)

z(s) ' dsE"QF (19)

+ Ex(t —h(t)TETQFE t
h(t)

12 t

+ %x(t)TETQE " x(s)ds

o 12 /1t 2(s)TdsETQE /t #(s)ds|
h(t)? Jion t—h(t)
(20)

+nVa(.).

x(s)ds
t—h(t)

r o Orxn
Let M = <M2 > we have

2¢ 2" (t — h(t))WMEi(t) = 0. (21)

Multiplying both sides of (1) by
2h2eM i (t)TETQ,2eM T (t — h(t))W

from the right, we obtain:

Ei(t) +

+ Da(t — h(t) + Blw(t)) —0,

2T (t — h(t))W(Ex‘(t) — (A+ BK)z(t)

2h26"t9b(t)TETQ( -

— Da(t — h(t)) — Blw(t)) —0,
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Combining the conditions (11), (15)-(19) gives:

V()=nV()<
ez (t)(PA+ATPT + PBNT'BTPT
+ KT'NK)z(t) + 22" (t)PDxz(t — h(t))
+ 22" ())PByw(t) + h*3T () ETQE#(t)
—dz(t—h(t)TET
QFEx(t — h(t)) — 4z(t — h) "ETQFEx(t — h)
—dx(t — h(t)) "ETQEx(t — h)

12 - t—h(t)
T h(t)x(t —h(t)"ETQE

12
h— h(t)

x(s)ds

t—h

t—h(t)
x(t — h)TETQE/ x(s)ds
t—h

+

12 t*h(t)
- / z(s)'dsETQF (22)
t

(h=h(t)? Ji-n

/th(t) (s)ds — da(t — h(t) T ETQEx(t — h(t))
t—h
—4z(t)"ETQEx(t) — 4z(t — h(t)) " ETQFEx(t)

t

+ 2 - h@)TETQE 2(s)ds
h(t) t—h(t)

+ Ex(t)TETQE t x(s)ds
h(t) t—h(t)

- 12/75 x(s) dsETQFE t z(s)ds
h(t)? Jiohe t—h(t)

+ h2( — ()T (2ETQE — ETQBN"'BTQTE)
i(t) +2i(t) " ETQAx(t)

+2' ()K" NKx(t) + 2i(t) T ETQDx(t — h(t))
+ 2j:(t)TETQB1w(t)>

+ 2z (t — h(t)WEL(t) — 22" (t — h(t)W Ax(t)
— 22" (t — h(t)WDz(t — h(t))

+ 2 (t—h(t)WBNBTW Tz(t — h(t))

+ 2T ()K" NKx(t) — 22" (t — h(t))W Byw(t)

+ 22T (t - h(t))WME;t(t)] (23)

Therefore, we obtain from (20) that

V() =0V () < T (OE) + ™2+ h*)w (tuw(t),

vt € [0, 7], 24)
where

§(t) = [x(t), z(t — h(t)), Ex(t — h), Ex(t),

1 t—h(t) 1 t T
—_— Exsd&—/ FEx(s)ds] ',
R P [ B

oy Do 0 h2PATQT 0 6ETQ

x By —2ETQ Doy 6ETQ 6ETQ

I * * Dyy 0 0

* * * * I'ss 0

* * * * * Tg6
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¢y =PA+A"PT + PBN!BTPT
+(2+h?)K"'NK + PB,B] P" —4E"QE
By =PD—-2E"QE - ATWT &y =h?DTQT

+ W+ WM
Pyy=—8E"QE-WD-D"WT + WBN'BTWT
+WBBf W'
Py3 = —4Q, gy = —h*Q + WP’QBN'BTQT
+h2QB B Q.
Using the Proposition 1, the condition & < 0 holds if and
only if
o Qe
0m (™) <o
where
Q1 Qo 0 h2ATQT 0 6ETQ
x Ty —2ETQ Qo4 6ETQ 6ETQ
0, — * * 1—‘33 0 6Q 0
=« * * | 0 0 ’
* * * * T'ss 0
* * * * * g6
PB KT 0 0 PB 0 0
0 0 WB 0 0 WhB 0
Q 0 0 0 0 0 0 0
1o 0 0 RmRB 0 0 hQB |’
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Q5 = dia (—N—#N* ~N, =N, ~ Tz, )
3 — g ) (2 ¥ h2) 9 ) } 3mo

N1 =PA+ATPT —4E"QE, Q2 = PD —2ETQE
_ATWT
oy =R2DTQT + W + WM

Define the matrix of full column

I, 0 BN 0
|10 Ispgm, O 0
¢= 0 0 N 0 ’
0 O 0 12m1+3m2
we have
A=CQCT <o,
where A = (Al Az) , and
* A3
A Ao 0 RPATQT 0 6ETQ
x T —2FTQ Aoy 6ETQ 6ETQ
L * * T4y 0 0
* * * * I'ss 0
* * * * * Tsg
Ay =PA+ATPT+ BNK+K'N'B' — o — BNBT

—4ETQE,
AMa=PD—-2E"QE —A"W T, Ay =h?DTQ"
+ W (I, + M),

. 1
AS:dlag(—N7—mN7_N7_N7_ISm2)7
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Let U = NK, then the condition A < 0 holds iff T" < 0.
Thus, if the LMI (6) holds, then A < 0. Therefore, we finally
obtain from (21) that

V(t,xy) —nV(t,x) < ™2+ hH)w (H)w(t),Vt € [0,T].
(25
Multiplying both sides of (22) with e~ and integrating both
side from O to ¢t we obtain
"

e~ MV (t, ) — V(0,20) < (2+ h?) /O/wT(S)w(s)ds,

vt € [0,T7,
and hence using (10) we have

V(t,z:) < e™[V(0,20) + (2 + h2)Td]

< elage; +b1 + (2+RH)Td], Vte[0,T]. (26)
Thus, from (11) and (22) it follows that
z' (t)ETREz(t) =y (t)GTETREGy(t)
=m0 (" 0)w
=yi ()R (t)
<V(27’1xt) <eag, tel0,T).
which implies
sl £ [5Gy e™T < 6T, Ve [0,T)
27

Let us denote
p(t) = =A% A1y (t) — Ay Dorya (t — h(1)).

To estimate ||p(t)||, we consider two cases. First, if
t — h(t) > 0, then by (23) we have

lyr(t = h(®)[| < e
Secondly, if ¢t — h(t) < 0, then
ly2(t — B = o2 ()] < IG7H[[0ll < Be®7T.
Thus, we have obtain that

Ip)]| <N A% Ao [l ()] + | AS5 Daa |||y (t — R(2))]
<(|| A3 A1 || + || A% Do [|) BT

Moreover, from the second equation of (4) we have
y2(t) = p(t) — Ay Dagya(t — h(t)) — Ay Biaw(t).
Therefore,

ly2(®)] < llp@®)] + | Az5 Dazlllly2(t — k(1)
+|A55 Biaw(t)]|, ¥t > 0.

Noting that h(t) < h, we have

ly2(t = h(1))]| <

sup [ly2(t + s)|l,
<s<0

and putting f(t) = |ly2(t)]|, we have

f(t) <7Be®™ T 449 sup  f(t+s)+ s,
—h<s<0
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with 72 = || Ay Dao| < 1,75 = || A3y Biz||Vd. Applying
the Proposition 2, we have
Y174 + 73
2 < E—2
(0 < T

Y174+ V3
—h<s<0 )

ly2(s)

+ 72

+72 sup

—h<s<0
< Y1v4 + V3

1=

Y1v4 + V3

+ye sup ()| < TS

—h<s<0 -2
+72 sup  [[GTR(s)|

—h<s<0

< N + 73
S q
vt € [0,T].

C1

+ )G Mo ()

(28)

(29)
Finally, taking (24), (25) into account, we obtain
' (H)Rz(t) =y ()G TRGy(t)
Dnax(GTRE) (lya (DI + [ly2()[17)
e (GTRG) (73 + (L0
L=
C1

—1 2
Fl67 )
SCQ,Vt € [O,T],

because of the LMI (3) is, by the Schur complement lemma,
equivalent to the inequality

173 - €1
)\max GTRG ( 2 Y174 G 1 2)
(@TRG) (3 + (T2 a6 [ )
S Co.
This completes the proof of the theorem. ]

IV. CONCLUSION

In this paper, we have studied the stabilization of linear
DAEs with interval time-varying delays. The designed state
feedback controller guarantees the closed-loop system to
be stable. By constructing a set of Lyapunov-Krasovskii
functionals, sufficient conditions for the existence of such
controllers are established in terms of LMIs.
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