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Abstract—For a graph G(V, E) with p vertices and q edges, a
bijective function f from V (G)∪E(G) to {1, 2, ..., p+q} is called
a super edge-magic labeling of G if f(V (G)) = {1, 2, ..., p}
and there exists a constant k such that for any edge uv of G,
f(u)+f(v)+f(uv) = k. A graph G is called super edge-magic
if there exists a suber edge-magic labeling of G. In this paper,
we shows that the fan graph Fn,2 and mFn,2 is a super edge-
magic where n is a positive integer, m positive odd number and
m ≥ 3.

Index Terms—super edge-magic graphs, edge-magic label-
ings.

I. INTRODUCTION

THE concept of super edge-magic labeling is motivated
by edge-magic labeling. Let G be a graph with p

vertices and q edges. The edge-magic labeling of G is a
bijective function f from V (G) ∪ E(G) to {1, 2, ..., p + q}
which there exists a constant k such that for any edge uv
of G, f(u) + f(v) + f(uv) = k. In this case, G is said
to be edge-magic. In 1998, Enomoto et al. [2] defined a
super edge-magic labeling of a graph G as an edge-magic
labeling f of G such that f(V (G)) = {1, 2, ..., p} and G is
called super edge-magic if there exists a super edge-magic
labeling of G. In 2001, Figueroa-Centero et al. [3] analysed
a necessary and sufficient condition for a graph to be super
edge-magic and proved that the fan Fn

∼= Pn + K1 is an
edge-magic for every positive integer n and Fn is a super
edge-magic if n ≤ 6.

Lemma I.1. [3] A graph G with p vertices and q edges
is a super edge-magic if and only if there exists a bijective
function f : V (G)→ {1, 2, ..., p} such that the set

S = {f(u) + f(v) | uv ∈ E(G)}

consists of q consecutive integers. In this case, f extends to a
super edge-magic labeling of G with constant k = p+ q + s
where s = min(S) and

S = {f(u) + f(v) | uv ∈ E(G)}
= {k − (p + 1), k − (p + 2), ..., k − (p + q)}.

In 2008, Ngurah et al. [4] proved that the graph K2 + Pn

is a super edge-magic if anf only if n ≤ 2. Later, Ngurah
and Simanjuntak (2014)[5] shown that for any integers m, n
such that m ≥ 3, the graph Km +Pn is super edge-magic if
and only if n ∈ {1, 2}. In this paper, we proved that graph
fan Fn,2 is a super edge-magic for any positive integer n and
mFn,2 is a super edge-magic where n is a positive integer,
m positive odd number and m ≥ 3.
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II. MAIN RESULTS

A fan graph Fn,2 is defined as the graph joint Kn + P2

where Kn is the empty graph of n vertices and P2 is the
path of 2 vertices which is a graph with n + 2 vertices and
2n + 1 edges as follow Fig 1.

Theorem II.1. For any positive integer n, the graph Fn,2 is
super edge-magic with k = 3n + 6.

Proof: Let n ∈ N, V (Fn,2) = {v1, v2, ..., vn+2}
and E(Fn,2) = {v1v2, v1v3, ..., v1vn+1, v1, vn+2} ∪
{vn+2v2, vn+2v3, ..., vn+2vn, vn+2vn+1}.

Fig 1. Fn,2

Define f : V (Fn+2)→ {1, 2, ..., n+2} by f(vi) = i. Hence
f is a bijective function. Then

S ={f(u) + f(v) | uv ∈ E(Fn,2)}
={f(v1) + f(vi) | i ∈ {2, 3, ..., n + 2}}
∪ {f(vn+2) + f(vj) | j ∈ {2, 3, ..., n + 1}}

={3, 4, ..., 2n + 3}

is the set of 2n + 1 consecutive integers which min(S) = 3.
By Lemma I.1, f extends to a super edge-magic labeling of
Fn,2. Hence graph Fn,2 is a super edge-magic with k =
n + 2 + 2n + 1 + 3 = 3n + 6.

Remark. From Theorem II.1, F2,2 is a super edge-magic
with k = 12 as follow Fig 2. and from observation, we have
another super edge-magic labeling of F2,2 as follow Fig 3.

Fig 2. Super Edge-Magic Labeling of F2,2

Fig 3. Super Edge-Magic Labeling of F2,2
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For any positive integer m, the disjoint union of m copies
of Fn,2 denoted by mFn,2 is a graph with m(n+2) vertices
and m(2n + 1) edges.

Theorem II.2. If m ≥ 3 is an odd number and n is a
positive integer. Then graph mFn,2 is super edge-magic with

k = 3
(

mn +
3m + 1

2

)
.

Proof: Let m, n ∈ N such that m ≥ 3 is an odd number.
Let V (mFn,2) = V1 ∪ V2 ∪ ... ∪ Vm and E(mFn,2) =
E1 ∪ E2 ∪ ... ∪ Em where Vi = {vi
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Fig 4. mFn,2

Define f : V (mFn,2)→ {1, 2, ...,m(n + 2)} as follows :

f(vi
j) =



i if j = 1,

jm + 1− m+i
2 if 2 ≤ j ≤ n + 1

and i is odd,

jm− i−2
2 if 2 ≤ j ≤ n + 1

and i is even,

m(n + 2)− i−1
2 if j = n + 2 and i is odd,

m(n + 2)− m+i−1
2 if j = n + 2 and i is even.

We can see that m(j − 1) < f(vi
j) ≤ mj for all i ∈

{1, 2, ...,m}, j ∈ {1, 2, ..., n + 2} so f is injection. Next,
let k ∈ {1, 2, ...,m(n + 2)}. If 1 ≤ k ≤ m, then k = f(vk

1 ).
Case 1 : m + 1 ≤ k ≤ m(n + 1). Then there are q, r ∈ N,
k = qm + r where 1 ≤ q ≤ n and 1 ≤ r ≤ m.
Subcase 1.1 : 1 ≤ r ≤ m+1

2 . Thus

f(vm+2−2r
q+1 ) = (q + 1)m + 1− m + m + 2− 2r

2
= k.

Subcase 1.2 : m+1
2 < r ≤ m. We have that

f(v2m+2−2r
q+1 ) = (q + 1)m− 2m + 2− 2r − 2

2
= k.

Case 2 : m(n + 1) < k ≤ m(n + 2). Let s = k−m(n + 1)
hence 1 ≤ s ≤ m.
Subcase 2.1 : 1 ≤ s ≤ m−1

2 . Thus

f(vm+1−2s
n+2 ) = m(n + 2)− m + m + 1− 2s− 1

2
= k.

Subcase 2.2 : m+1
2 ≤ s ≤ m. We have

f(v2m+1−2s
n+2 ) = m(n + 2)− 2m + 1− 2r − 1

2
= k.

Thus f is a bijective function. Let i ∈ {1, 2, ..,m}.
Recall that Ei = {vi
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n+2}. Let Si = {f(x) +

f(y) | xy ∈ Ei}. If i is even, then

Si =
{

jm +
i + 2

2

∣∣∣∣ j = 2, 3, ..., n + 1
}

∪
{

jm + m(n + 1) +
m + 1− 2i

2

∣∣∣∣ j = 2, 3, ..., n + 1
}

∪
{

m(n + 1) +
m + 1 + i

2

}
.

If i is odd, we have

Si =
{

jm + 1− m− i

2

∣∣∣∣ j = 2, 3, ..., n + 1
}

∪
{

jm + m(n + 1) +
m + 1− 2i

2

∣∣∣∣ j = 2, 3, ..., n + 1
}

∪
{

m(n + 2) +
i + 1

2

}
.

Therefore the set

S = {f(x) + f(y) | xy ∈ E(mFn,2)}
= S1 ∪ S2 ∪ ... ∪ Sm

=
{

3m + 3
2

,
3m + 5

2
, ..., 2mn +

5m + 1
2

}
is the set of m(2n + 1) consecutive integers and

k = m(n + 2) + m(2n + 1) + min(S)

= m(n + 2) + m(2n + 1) +
3m + 3

2

= 3
(

mn +
3m + 1

2

)
.

By Lemma I.1, f extends to a super edge-magic labeling of

mFn,2 with k = 3
(

mn +
3m + 1

2

)
.
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