
 

 
Abstract—In this paper, we study the self-blocking queueing 

system consisting of three service stations with infinite capacity. 
Poisson arrivals and exponential service times are assumed. We 
apply matrix-geometric method to evaluate steady-state 
probabilities of the quasi-birth-death process. Performance 
measures include mean number in the system, mean waiting 
time in the system, mean throughput of each service station and 
blocking probability of the service stations in front of the 
terminal service station. The exact formulae of stability 
conditions are derived. We propose general disposition 
strategies for the queueing system with the arbitrary number of 
service stations. 
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I. INTRODUCTION 

elf-blocking queueing systems are common in modern 
service systems. The self-blocking system with three 

service stations is represented in Fig. 1 In this system, if all of 
the service stations are available, every customer has to 
directly enter the terminal service station (e.g. the station-3 in 
our case) to receive the service. The definition of a complete 
service is that when a customer finishes the service at any of 
the service stations. A customer who completes the service 
can leave the system in the condition that there is no customer 
receiving the service in the next service station. This system 
can be applied to model the performance of taxi stand within 
the train stations, computer networks and other similar 
queueing systems. In addition, we successfully derive the 
stability conditions of the system with both the same and 
different service rates. Theoretical results suggest that 
keeping higher service rate for the terminal service station 
and the stations near the terminal station are better strategies 
to increase the total operational efficiency of the system 
results. 

 
Fig 1. Self-blocking queueing system with three service 
stations. 
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Queueing networks with no intermediate waiting queue 
between service stations and blocking phenomena was first 
studied by Hunt [1]. Neuts [2] systematically investigated 
mathematical analysis and related applications of 
matrix-geometric method. The optimal design of unpaced 
assembly lines was developed by Hillier [3]. The joint 
optimization of both the allocation of workload and the 
allocation of buffer spaces simultaneously when the 
objective is to maximize the revenue from throughput minus 
the cost of work-in-process inventory was analyzed.  The 
disposition strategy for a self-blocking queueing system 
consisting of two service stations with different service rate 
was considered by Ke and Tsai [4]. 

II. PROBLEM FORMULATION AND NOTATIONS 

There are three independent service stations in series 
configuration and operates simultaneously in the queueing 
system. Poisson arrival process with mean arrival rate   and 
the time to serve a customer in each service station is 

exponentially distributed with mean service time 
1


. When 

the service stations are all in the idle situation, the customer 
must enter the terminal station to receive the service. There 
are no queues between each service station. A customer can 
finish the service at any stations then leave the system 
directly if the self-blocking phenomenon does not happen. 
The self-blocking phenomenon means that when a customer 
completes the service in a service station, but the another 
customer in the next station has not finished the service yet. 
The customer who is receiving the service blocks the 
customer who has completed the service in the previous 
station. The blocking phenomenon happens in the station-1, 
and the station-2 in this system. We assume an infinite queue 
in front of the first service station. In addition, the service 
station can only serve a customer at a time and the service 
rate is independent of the number of customers. The service 
of the system obeys the first come first serve (FCFS) 
discipline. 

The notation 
1 2, 3 4, ,Pn n n n  is used to denote the steady-state 

probability 
1 2, 3 4, ,Pn n n n of 1n customer in the station-3 and 

2n customer in the station-2 and 3n  customer in the 

station-1 and 4n customer in the queue. 

III. MODELING FRAMEWORK 

 Matrix-Geometric Method 
The steady-state probability vector corresponding to the 
structured generator matrix Q is denoted as 
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[ , , ,...] 0 1 2P P P P . The steady-state probability vector can 

be obtained by solving the system of equations QP = 0 , 

while obeying the normalization condition 1.P1 =  The 
global balance equations of the system can be written as 

0,0 1,0 2 2,0 3 3,0B B B B ,   0 1P P P P 0
               

(1) 

0,1 1 4 4B A A ,  0 1P P P 0
                      

(2) 

i 0 i 1 1 i 4 4A A A ,   P P P 0
       

i 1 .    
(3) 

 
A rate matrix R is introduced to construct the following 
recurrence relations 

i 1
i i 1 1R R ,

 P P P
             

i 1 .    
(4) 

 
Substituting (4) into (3), we can obtain the following 
characteristic equation of the recurrence relation 

 4
0 1 4A RA R A 0   .                         

(5) 

 
Therefore, we solve (5) by iteration method for the rate 
matrix R. 
The matrix equations of (1) and (2) can be further simplified 
as 

2
0,0 1,0 2,0 3,0B (B RB R B ) ,   0 1P P 0

         
(6) 

3
0,1 1 4B (A R A )  0 1P P 0.

                 
(7) 

The normalization condition equation that involves 0P  and 

1P  is given by 
1(I R) 1,  0 1P 1 P 1                         

(8) 

where I is the identity matrix with same size as the rate matrix 
R.

 
Taking (6), (7) and the normalization condition (8) into 

account, the steady-state probability vector of 0P  and 1P can 

be obtained by solving following matrix equation 
 

*
0,0 0,1

2 13 *
1,0 2,0 3,0 1 4

B B
( ) ( ,1)

B RB R B (I R)(A R A ) 

 
    

0 1

1
P ,P 0 .

1

          

(9) 

where *(.)  indicates that the last column of the included 

matrix is removed to avoid linear dependency. 
 
 Stability Conditions 
Neuts [2] indicated that the steady-state conditions for the 
ergodicity of steady-state probabilities can be denoted as 
 

A 0 A 2 A 3 A 4A A 2 A 3 A , P 1 < P 1 P 1 P 1            
(10) 

where AP  is the steady-state probability vector 

corresponding to the generator matrix A. 

Theorem 1. Stability conditions of the self-blocking 

queueing system consisting of three service stations. 

The stability conditions for the system consisting of three 
service stations are shown in following 

(1) For 1 2 3      

N
,

D
 

                           
(11) 

 
 
 
where 
 

1 2 3 1 2 1 3 2 3 1 2 3N 3 ( )( )( )( ),            
 

and 
 

4 2 2 3 3 2 2 3
1 2 2 3 3 1 2 2 3 2 3 3

2 4 3 2 2 3 4
1 2 2 3 2 3 2 3 3

4 3 2 2 3 4
1 2 3 2 3 2 3 2 3

2 2 2 3 4
2 2 3 2 3 3

D ( ) (2 4 4 2 )

( 4 5 4 )

( 4 4 )

( 2 )

              

           

          

       .
 

 
(2) Special case: 1 2 3        

18

11
  .                                   (12) 

 
 Performance Metrics and Disposition Strategy 
Performance measures including mean number in the system, 
mean number in the queue, mean waiting time in the system, 
mean waiting time in the queue, blocking probability of the 
service stations in front of the terminal station for the 
self-blocking queueing system consisting of three service 
stations, and mean throughputs are defined. In addition, we 
propose general disposition strategies for the self-blocking 
queueing system consisting of the arbitrary number of service 
stations based on the numerical results in this section. 
 
 Performance Measures 
Performance measures for the system consisting of three 
service stations are defined by 
(1) Mean number of customers in the system – see eq. (13) 

 
 

0,0,1,0 0,1,0,0 1,0,0,0 1,b,0,0 0,1,b,0 0,0,1,1 0,1,1,0 1,0,1,0 1,1,0,0

0,0,1,n 1 0,1,1,n 2 1,0,1,n 2 1,1,1,n 3 1,b,1,n 2 0,1,b,n 1 1,1,b,n 2
n 3 n 2

1,b,b,n 1
n 1

L (P P P P P ) 2 (P P P P )

(P P P P ) n (P P P ) n

(P )

 

      
 






        

        

 

 

n .
      

 (13) 
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(2) Mean number of customer in the queue 

1 2 3

q 0,0,1,1 0,1,1,1 1,0,1,1 0,1,b,1 0,0,1,2

0,0,1,n 0,1,1,n 1,0,1,n 0,1,b,n
n 3 n 2

1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n
n 1

if
1 1

1

L (P P P P ) 2(P )

(P ) n (P P P ) n

(P P P P ) n

[R(I R) (I R) ]

 

 





  
 

    

     

    

   

 



P 1

 (14) 

(3) Mean waiting time in the system 
L

W 


.                              (15)

(4) Mean waiting time in the queue 

q
q

L
W 


.
      

 (16) 

(5) Blocking probability of the customer in the station-1 

b,1 1,b,b,n 0,1,b,n 1,1,b,n
n 0

P P P P




   .            (17) 

 
(6) Blocking probability of the customer in the station-2 

b,2 1,b,b,n 1,b,0,n
n 0

P P P




  .             (18) 

(7) Mean throughputs 

1 0,0,1,n 0,1,1,n 1,1,1,n 1,b,1,n
n 0

2 0,1,0,0 1,1,0,0 0,1,b,n 0,1,1,n 1,1,1,n 1,1,b,n
n 0

3 1,0,0,0 1,1,0,0 1,b,0,0 1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n
n 0

T [ P P P P ]

[P P P P P P ]

[P P P P P P P ]













   

     

      





 .

 

(19) 
 

Proposition 3.1. Disposition strategies for the self-blocking 
queueing system consisting of the arbitrary number of service 
stations with different service rates are same. 
We propose disposition strategies for the system based on 
previous research conducted by Ke and Tsai [4] and this 
work in order to increase the operational efficiency of the 
system. 
(1) Self-blocking queueing system with the arbitrary 
number of service stations 
It is better to arrange higher service rate for the terminal 
service station and the service stations near the terminal 
station compared with other service stations in the system in 
order to obtain the best operational efficiency for the system. 
 

IV. NUMERICAL RESULTS 

We present numerical experiments for the self-blocking 
queueing system consisting of three stations in this section. 
Performance measures including mean number in the system, 
mean throughput of each service station and mean waiting 
time in the system are illustrated. The better disposition 
strategies to increase operational efficiency for the system are 
suggested according to the simulations. 

 
 

 Same service rates for each service station 
First, we investigate the trends of mean number in the 

system and mean throughput of each service station as a 
function of mean arrival rate  . Mean number in the system 
is plotted in Fig. 2 The upper bound of the stability condition 
of the mean number in the system approaches to 
18

11
( 1.636 ). This numerical result is consistent with the 

exact formula given in the Section 3. Mean throughput of 
each service stations as a function of mean arrival rate is 
shown in Fig. 3 It is investigated that the mean throughput of 
the station-1 is higher than that of the station-2 and of the 
station-3 in the condition that all of the service stations are set 
in the same service rate. 
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Fig 2. Mean number in the system. 
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Fig 3. Mean throughput of each station. 
 
 Controlling the service rates of the two service stations 

We study the disposition conditions that we can 
concurrently control the service rates of two service stations 
and the service rate of only one service station for the system 
consisting of three service stations. 

First, in the cases that we are able to control two service 
rates of the service stations in this system. We set 

1 2 32, 2, 1      and 1 2 32, 1, 2       and 

1 2 31, 2, 2      and then vary the mean arrival rate   

from 0.01 to 2. It is observed that setting higher service rates 
for the station-2, and the station-3 is a better disposition 
strategy than that of other two cases, as shown in Fig 4. We 
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suggest the case 1 2 31, 2, 2       as the best 

disposition strategy, when we are able to control service rates 
of two service stations for the system. 
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Fig 4. (Controlling two service rates) 
Mean waiting time of the system with different service rate. 
 
 Controlling the service rate of only one service station 

Next, the cases of controlling service rate of one 
service station are presented. We set 

1 2 32, 1, 1      and 
1 2 31, 2, 1       and 

1 2 31, 1, 2      , then vary the mean arrival rate   

from 0.01 to 1.6. It is investigated that the mean waiting time 
is the lowest in the case of 1 2 31, 1, 2      compared 

with other two cases as shown in Fig 5. Therefore, the case 

1 2 31, 1, 2       is suggested as the best disposition 

strategy, when we can control service rates of only one 
service station for the system. 

Note that, in both case studies, numerical computations 
of all cases should obey the stability conditions we derived in 
the section 3. in order to satisfy the ergodicity condition of 
the steady-state probabilities. 
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Fig 5. (Controlling only one service rate) 
Mean waiting time of the system with different service rate. 

 
 
 
 
 

V. CONCLUSION 

In this paper, the general disposition strategies for the 
self-blocking queueing system with arbitrary number of 
service stations are suggested. We can effectively increase 
the operational efficiency of the system through applying the 
strategies. We concurrently derive the exact formulae of 
stability conditions for the system consisting of three service 
stations in order to keep the ergodicity of the steady-state 
probabilities established. Numerical simulations also show 
the consistent results with the exact formulae of the stability 
conditions. Steady-state probabilities of the system with 
infinite capacity are evaluated by matrix-geometric method. 
Performance measures including mean number in the system, 
mean number in the queue, mean throughputs, mean waiting 
time in the system and mean waiting time in the queue are 
investigated. We have also derived exact formula for the 
mean number in the queue in the condition that the service 
rate are all equivalent (e.g. 1 2 3     ). 

Theoretical analyses and propositions are expected to be 
validated by real experiments. Transient analysis and 
working breakdown conditions of the system would be 
considered in the future. 

 

ACKNOWLEDGMENT 

This work was supported by JSPS KAKENHI Grant 
Numbers 25287026 and 15K17583. 
 

REFERENCES 
[1] G. C. Hunt, “Sequential arrays of waiting lines,” Operations Research, 

vol. 4, pp. 674–683, 1956. 

[2] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An 
Algorithmic Approach, Revised ed., New York: Dover Publications, 
1995, ch. 1. 

[3] M. Hiller, “Designing unpaced production lines to optimize throughput 
and work-in-process inventory,” IIE Transactions, vol. 45, pp. 
516–527, 2013. 

[4] JB. Ke , YL, Tsai “Measures of self-blocking system with infinite 
sapce,” Journal of Physics: Conference Series, vol. 410, pp. 012114, 
2013. 

[5] G. Bolch, Greiner, Queueing Networks and Markov Chains: Modeling 
and Performance Evaluationa with Computer Science Applications, 
2nd ed., New Jersey: Wiley-Interscience, 1995, pp. 127–140 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017




