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Abstract—This paper examined how initial values of a
learning algorithm influence the performance of mixture of
linear regressions (MoLR). MoLR employs the EM algorithm
as a learning algorithm. Our experiments used two kinds of
artificial data and one real dataset. Experiments using artificial
data showed MoLR discovered the original lines from data
containing Gaussian or t-distribution noise. Moreover, almost
all our experiments showed the best solution can be easily found
with any initialization method. This suggests MoLR may have
rather weak dependence on initialization.

Index Terms—mixture model, mixture of regressions, EM
algorithm, clustering, information criterion

I. INTRODUCTION

This paper examines how initial values of the learning,
here the EM algorithm [1], influence the final performance
of mixture of linear regressions (MoLR).

First, mixture of regressions (MoR) is briefly reviewed.
Given multivariate data, consider a regression problem, that
is, try to explain the behavior of a target variable using ex-
planatory variables. It may happen that any single regression
function cannot explain well. There can be several reasons for
this: a lack of explanatory variables, the intrinsic randomness
of the target variable, and so on. When data arise from
heterogeneous contexts, it is reasonable to introduce MoR.

There can be two types of the mixture. One is hard mixture
and the other is soft mixture. In the former each data point
is exclusively classified into one of the classes, while in the
latter each data point probabilistically belongs to every class.
Hard mixture has been called regression clustering [2], [3]
or cluster-wise (linear) regression [4]. Soft mixture has been
simply called mixture of regressions.

Research on hard MoR has been less popular, while soft
MoR has the solid background developed as finite mixture
models. Finite mixture models provide a flexible tool for
modeling data that arise from heterogeneous populations.
The book by McLachlan and Peel [5] contains a com-
prehensive review of finite mixture models. Leisch gave a
general framework for MoR in the R statistical computing
environment [6]. Huang, Li, and Wang investigated MoR by
employing kernel regression [7]. The book by Bishop [8]
contains mixture models including MoLR.

Next, how a learning method for MoLR depends on
the initialization is briefly reviewed. As a learning method,
hard MoLR usually employs Späth’s exchange algorithm
[4], while soft MoR usually employs the EM algorithm
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[1]. It is known that the success of the Späth’s exchange
algorithm depends heavily on the initial configuration [2].
Qian and Wu [3] proposed a method to generate an initial
configuration for hard MoLR. On the other hand, the local
optimality of the EM algorithm is well known, and in
general its performance depends heavily on its initial values.
To overcome its optimality, several EM variants have been
proposed, such as DAEM [9] and SMEM [10]. Thus, the
initial configuration for the EM algorithm may play a large
role in soft MoLR.

This paper examines how initial values of the EM al-
gorithm influence the performance of soft MoLR. Section
2 explains the framework of soft MoLR, and Section 3
describes initialization and model selection. In the initial-
ization we propose a new method to generate regression-
oriented initial values for MoLR, and in model selection we
explain information criterion to evaluate the desirability of
MoLR candidates. Then Section 4 describes our experiments
performed to examine how initial values of the EM algorithm
influence the performance of MoLR using two kinds of
artificial data and one real dataset.

II. MIXTURE OF LINEAR REGRESSIONS (MOLR)

Following Bishop [8], this section explains the framework
of soft MoLR, which employs the EM algorithm [1] as a
learning method.

We consider a mixture of C linear regression models. Let
x = (x1, · · · , xK)T be explanatory variables, and y denotes
a target variable. Since we consider a constant term in
each regression function, we extend a vector of explanatory
variables as x̃ = (1, x1, · · · , xK)T .

We assume the value of y is generated by adding a
Gaussian noise to a value of linear regression function
f(x|wc) with wc as its weight vector. A linear regression
function of class c is defined as follows.

f(x|wc) = wT
c x̃ (1)

Although Bishop assumes the common error variance
(equivalently, a precision parameter) for all classes, we
introduce individual variance for each class to enhance the
fitting capability of the model. That is, for class c, an error
εc follows the Gaussian with mean 0 and variance σ2

c .

εc ∼ N (0, σ2
c ) (2)

Class c is a latent variable and cannot be observed. The target
variable y follows the following distribution.

y ∼ N (f(x|wc), σ2
c ) (3)

Let πc be the mixing coefficient of class c. Then, the density
of complete-data is described as follows.

p(y, c|θc) = πc gc(y|f(x|wc), σ
2
c ) (4)
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Here g(u|m, s2) denotes a density function where u follows
one-dimensional Gaussian with mean m and variance s2.

g(u|m, s2) =
1√
2π s

exp

(
− (u−m)2

2 s2

)
(5)

The density of incomplete-data is written as follows.

p(y|θ) =
C∑

c=1

p(y, c|θc) =
C∑

c=1

πc gc(y|f(x|wc), σ
2
c ) (6)

Here θ is a vector comprised of all parameters, while θc is
a vector of class c parameters.

θ = (θT
1 , · · · ,θ

T
c , · · · ,θ

T
C)

T , θc = (πc, wT
c , σ2

c )
T (7)

Now the posterior probability is written as follows, which
indicates the probability that y belongs to class c.

P (c|y,θ) =
p(y, c|θ)∑
c p(y, c|θ)

(8)

Given data D = {(xµ, yµ), µ = 1, · · · , N}, the incomplete-
data log likelihood is defined as below.

L(θ) =
N∑

µ=1

log p(yµ|θ) (9)

When we employ the EM algorithm to estimate MoLR
parameters, the Q-function to maximize is shown as below.
Here θ(t) denotes the estimate at the t step of the EM
algorithm, and let fµ

c ≡ f(xµ|wc).

Q(θ|θ(t)) =
∑
µ

∑
c

P (c|yµ,θ(t)) log p(yµ, c|θ)

=
∑
µ

∑
c

Pµ(t)
c log(πc gc(y

µ|fµ
c , σ

2
c ))

=
∑
µ

∑
c

Pµ(t)
c

(
log πc −

1

2
log(2π)

− log σc −
(yµ − fµ

c )
22

2σ2
c

)
(10)

In the above, we use the following for brevity.

Pµ(t)
c ≡ P (c|yµ,θ(t)) =

π
(t)
c g

µ(t)
c∑

c π
(t)
c g

µ(t)
c

(11)

where gµ(t)c ≡ gc(y
µ|fµ(t)

c , σ2(t)
c ) (12)

When we maximize the Q-function, we use the Lagrange
method since there is an equality constraint

∑
c πc = 1. The

Lagrangian function can be written as follows with λ as a
Lagrange multiplier.

J = Q(θ|θ(t))− λ

(∑
c

πc − 1

)
(13)

The necessary condition for a local maximizer is shown
below.

∂J

∂πc
=

∑
µ

Pµ(t)
c /πc − λ = 0 (14)

∂J

∂wc
=

∑
µ

Pµ(t)
c

(yµ − fµ
c )

σ2
c

∂fµ
c

∂wc
= 0 (15)

∂J

∂σc
=

∑
µ

Pµ(t)
c

(
− 1

σc
+

(yµ − fµ
c )

2

σ3
c

)
= 0 (16)

Since we have λ = N from eq.(14) and the equality
constraint, a new estimate of πc is given below.

π(t+1)
c =

1

N

∑
µ

Pµ(t)
c (17)

From eq.(16) a new estimate of σ2
c is given below.

(σ2
c )

(t+1) =
∑
µ

Pµ(t)
c (yµ − fµ

c )
2

/∑
µ

Pµ(t)
c (18)

From eq.(15) we obtain a new estimate of wc by solving the
following. ∑

µ

Pµ(t)
c (yµ − fµ

c )
∂fµ

c

∂wc
= 0 (19)

Here in this paper we consider linear regression models as
mixture elements. So by substituting eq.(1) into the above,
we have the following.∑

µ

Pµ(t)
c (yµ −wT

c x̃
µ) x̃µ = 0 (20)

This formula is transformed in succession as below.∑
µ

Pµ(t)
c (wT

c x̃
µ) x̃µ =

∑
µ

Pµ(t)
c yµ x̃µ

∑
µ

Pµ(t)
c x̃µ(x̃µTwc) =

∑
µ

Pµ(t)
c yµ x̃µ

∑
µ

Pµ(t)
c (x̃µx̃µT )wc =

∑
µ

Pµ(t)
c yµ x̃µ (21)

Here data of explanatory variables is expressed as the fol-
lowing N × (K + 1) matrix, and data of a target variable is
expressed as the following N × 1 vector.

X̃ = (x̃1, · · · , x̃µ, · · · , x̃N )T (22)
y = (y1, · · · , yµ, · · · , yN )T (23)

For each class c, we consider N × N diagonal matrix
S(t)

c = diag(Pµ(t)
c ), whose µ-th diagonal element is P

µ(t)
c .

Then eq.(21) can be written as follows.

(X̃
T
S(t)

c X̃) wc = X̃
T
S(t)

c y (24)

When there is the inverse matrix of the above equation, we
have the following new estimate of weights.

w(t+1)
c = (X̃

T
S(t)

c X̃)−1X̃
T
S(t)

c y (25)

III. INITIALIZATION AND MODEL SELECTION

A. Initialization of MoLR

We consider two methods for the initialization of MoLR.
One is random initialization (R init), where each data point
is randomly assigned to one of the classes.

The other is a new method which classifies data points into
clusters taking into account the height of target values. The
method is called height-sensitive initialization (HS init). The
procedure goes as follows. First, perform linear regression
using all data points and classify them into upper, lower,
and remaining groups. Then the upper group is grouped into
two sets U1 and U2, and the lower group is also grouped into
L1 and L2. The remaining group R consists of data points
near the regression plane. Finally, by combining these five
sets, we make initial configurations of MoLR. The point of
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this method is to separate data into upper, middle, and lower
groups; such separation is expected be effective to make good
initial configurations of MoLR.

HS initialization making 2 classes：
step 1. Perform linear regression using all data points.
step 2. If a data point is more than tolerance δ higher than
the regression plane, it is assigned to the set U , and if the
point is more than δ lower than the plane, it is assigned to
L, and if it is near the plane, it is assigned to R.
step 3. U is grouped into two sets U1 and U2, and L is
grouped into L1 and L2 as well. We employ Kmeans [11]
for this clustering.
step 4. By combining four sets except seemingly less relevant
R, we make the following 7 initial configurations.

No.1 : {U1, U2} ∪ {L1, L2}
No.2 : {U1, L1} ∪ {U2, L2}
No.3 : {U1, L2} ∪ {U2, L1}
No.4 : {U1} ∪ {U2, L1, L2}
No.5 : {U2} ∪ {U1.L1, L2}
No.6 : {L1} ∪ {U1, U2, L2}
No.7 : {L2} ∪ {U1, U2, L1}

HS initialization making 3 classes：
steps 1, 2 and 3 are the same as the above.
step 4. By combining all five sets with (1,2,2) pattern, we
make the 15 initial configurations such as {R}∪{U1, U2}∪
{L1, L2} and {R} ∪ {U1, L1} ∪ {U2, L2}.

B. Model Selection
In the context of MoR, we consider many candidates

of mixture models; thus, we need a criterion to evaluate
the desirability of each candidate and to select the best
mixture model. For this purpose we make use of information
criterion. Although many information criteria have been pro-
posed so far, we employ the Bayesian information criterion
BIC [12], because BIC stably showed good performance in
our experiments on MLP model selection [13]. BIC was
proposed for regular models, but it also works rather well
for singular models such as multilayer perceptrons (MLPs).

Let p(x|w) be a learning model with parameter vector
w. Given data {xµ, µ = 1, · · · , N}, the log-likelihood is
defined as follows:

LN (w) =
N∑

µ=1

log p(xµ|w). (26)

Let ŵ be a maximum likelihood estimator. BIC is obtained as
an estimator of free energy F (D) shown below. Here p(D)
is called evidence and p(w) is a prior distribution of w.

F (D) = − log p(D), (27)

p(D) =

∫
p(w)

N∏
µ=1

p(xµ|w) dw (28)

BIC is derived using the asymptotic normality and Laplace
approximation.

BIC = −2LN (ŵ) +M logN

= −2
N∑

µ=1

log p(xµ|ŵ) +M logN (29)

BIC can be calculated using only one point estimator ŵ.
Here M is the number of parameters.

As another standpoint, total sum of squares (TSS) indicates
how much variation the data have, residual sum of squares
(RSS) indicates the discrepancy between the data and the
estimates, and explained sum of squares (ESS) indicates how
well a regression model represents the data. These quantities
satisfy the relation TSS = ESS + RSS. Thus, ESS/TSS
indicates goodness of fit for a regression model.

IV. EXPERIMENTS

We performed experiments to examine how initial values
of the EM algorithm influence the performance of MoLR
using two kinds of artificial data and one real dataset. As
artificial data, we utilized Qian-Wu’s one-dimensional data
[3]. Datasets were generated using the following two linear
functions: for each dataset 70 and 50 points were generated
for y1 and y2 respectively with one of two kinds of noise
added.

y1 = 2 + 8x1, y2 = 1 + 5x1 (30)

Moreover, R init was repeated 50 times for each dataset.

A. Experiment using Artificial Data 1

In artificial data 1, standard Gaussian noise N(0, 1) was
added to the lines shown in eq.(30). We generated five
datasets for artificial data 1.

Figure 1 shows one dataset, depicting two original lines
and 120 data points.
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Fig. 1. Two Original Lines and Qian-Wu Data Generated with Gaussian
N(0,1) Noise and Seed 3

For all five datasets, criterion BIC for 2 classes (C=2) was
smaller than those for C=3. Figure 2 shows the best results
of our soft MoLR of C=2 for Fig. 1 dataset. We can see two
obtained lines fit well to data points.

Table I compares the original parameters with parameters
obtained by our soft MoLR and hard MoLR by Qian-Wu
[3]. The table shows both soft and hard MoLRs found good
estimates. Moreover both HS and R inits for soft MoLR got
much the same results.

Figure 3 shows the best results of soft MoLR of C=3 for
Fig. 1 dataset. Three lines somehow cover all data points.

Figures 4 and 5 show histograms of BIC values obtained
by soft MoLR using HS init for C=2 and C=3, while Figs.
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Fig. 2. Two Lines of the Best MoLR Model of 2 Classes for Qian-Wu
Data Generated with Gaussian N(0,1) Noise and Seed 3

TABLE I
ORIGINAL AND OBTAINED PARAMETERS

w1 w2

Original (2, 8)T (1, 5)T

soft MoLR(HS, C=2) (2.0408, 8.0410)T (0.8076, 5.2077)T

soft MoLR(R,C=2) (2.0409, 8.0411)T (0.8076, 5.2077)T

Qian-Wu(C=2) [3] (2.12, 8.02)T (0.76, 5.11)T

6 and 7 show histograms of BIC obtained by MoLR using
R init. These figures show that the best solution of C=2 was
better than that of C=3. Moreover, for the best model (C=2),
HS init found the best solution 4 times out of 7, and R init
found the best solution 48 times out of 50. This means for
the best model the best solution can be easily found with
any initialization.

B. Experiment using Artificial Data 2

In artificial data 2, t-distribution noise t(3) was added to
the lines shown in eq.(30). We generated five datasets for
artificial data 2.

Figure 8 shows one dataset, depicting two original lines
and 120 data points. Compared with Fig. 1, data points are
more widely scattered around the lines.

For five datasets, the true model C=2 was selected four
times out of five. In Qian-Wu [3] incorrect C=3 was more
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Fig. 3. Three Lines and the Best MoLR Model of 3 Classes for Qian-Wu
Data Generated with Gaussian N(0,1) Noise and Seed 3
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Fig. 4. BIC Histogram for QW
Data with HS Init, 2 Classes, and
Gaussian N(0,1) Noise
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Fig. 5. BIC Histogram for QW
Data with HS Init, 3 Classes, and
Gaussian N(0,1) Noise
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Fig. 6. BIC Histogram for QW
Data with R Init, 2 Classes, and
Gaussian N(0,1) Noise
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Fig. 7. BIC Histogram for QW
Data with R Init, 3 Classes, and
Gaussian N(0,1) Noise

frequently selected than C=2. Figure 9 shows the best results
of our soft MoLR of C=2 for Fig. 8 dataset. We can see much
the same lines as original were obtained.

Table II compares the original parameters with parameters
obtained by soft MoLR. The table shows soft MoLR found
rather exact estimates. Both HS and R inits reached exactly
the same results.

TABLE II
ORIGINAL AND OBTAINED PARAMETERS

w1 w2

Original (2, 8)T (1, 5)T

soft MoLR(HS, C=2) (1.5266, 8.1031)T (1.1869, 5.1504)T

soft MoLR(R, C=2) (1.5266, 8.1031)T (1.1869, 5.1504)T

Figure 10 shows the best results of soft MoLR of C=3 for
Fig. 8 dataset. Two lines out of three almost overlap each
other.

Figures 11 and 12 show histograms of BIC values obtained
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Fig. 8. Two Original Lines and Qian-Wu Data Generated with t-dist t(3)
Noise and Seed 1
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Fig. 9. Two Lines of the Best MoLR Model of 2 Classes for Qian-Wu
Data Generated with t-dist t(3) Noise and Seed 1
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Fig. 10. Three Lines of the Best MoLR Model of 3 Classes for Qian-Wu
Data Generated with t-dist t(3) Noise and Seed 1

by our MoLR using HS init, while Figs. 13 and 14 show BIC
obtained by MoLR using R init. These figures show that the
best solution of C=2 was surely better than that of C=3.
Moreover, for the best model (C=2), HS init found the best
solution 4 times out of 7, and R init found the best solution
44 times out of 50. Again this means that for the best model
we can easily find the best solution with any initialization.
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Fig. 11. BIC histogram for QW
Data with HS Init, 2 Classes, and
t-dist t(3) Noise
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Fig. 12. BIC histogram for QW
Data with HS Init, 3 Classes, and
t-dist t(3) Noise

C. Experiment using Real Data

As real data we used Abalone dataset from UCI Machine
Learning Repository. We selected this because any single
regression function cannot fit well. The dataset has seven
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Fig. 13. BIC histogram for QW
Data with R Init, 2 Classes, and t-
dist t(3) Noise
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Fig. 14. BIC histogram for QW
Data with R Init, 3 Classes, and t-
dist t(3) Noise

numerical explanatory variables and the number of data
points is 4177 (N = 4177).

As a powerful single regression model, we employ mul-
tilayer perceptron (MLP) and a learning method called SSF
(singularity stairs following) [14], [15]. SSF successively
learns MLP models to find very excellent solutions making
good use of singular regions. SSF guarantees monotonic
decrease of training errors, thus is very suited to model
selection.

Figure 15 shows BIC values for Abalone dataset by SSF.
The figure indicates J =7 is the best model. BIC at J =7 was
15,600. Multiple correlation coefficient at J =7 is 0.7940;
thus, the coefficient of determination is 0.6304, which is not
so high.
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Fig. 15. BIC for Abalone by SSF
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Fig. 16. Training MSE for Abalone by SSF

Figure 16 shows training MSE (mean squared error) of
Abalone dataset by SSF. We can see training error decreased
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monotonically. MSE at J =7 was 0.3695, while minimum
MSEs of best MoLR (C=2) and best MoLR (C=3) were
0.2692 and 0.2018 respectively. This indicates MoLR (C=3)
could fit better than MoLR (C=2), and a mixture of two or
three linear regressions could fit better than a single MLP
with SSF.

Table III compares BIC values and goodness of fit
ESS/TSS for different regression models and different ini-
tialization methods. We can see the init methods of MoLR
made little difference. Moreover, MoLR (C=3) had smaller
BIC than MoLR (C=2), and MoLR had smaller BIC than
MLP with SSF. MoLR (C=3) showed the highest goodness
of fit, higher than very powerful single nonlinear regression
model MLP with SSF.

TABLE III
BIC FOR ABALONE DATASET

Model & Method BIC ESS/TSS
MoLR (C=2) with HS Init 3644 0.7291
MoLR (C=2) with R Init 3644 0.7308

MoLR (C=3) with HS Init 3523 0.7982
MoLR (C=3) with R Init 3523 0.7960
MLP (J =7) with SSF 15600 0.6304

Figures 17 and 18 show histograms of BIC obtained by
MoLR using HS init, while Figs. 19 and 20 show BIC
obtained by MoLR using R init. These figures show that the
best solution of C=3 was better than that of C=2. Moreover,
for the best model (C=3), HS init found the best solution 7
times out of 15, and R init found it 35 times out of 50. Again
this means that for the best model (C=3) we can easily find
the best solution with any initialization.
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Fig. 17. BIC histogram for
Abalone Data with HS Init and 2
Classes
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Fig. 18. BIC histogram for
Abalone Data with HS Init and 3
Classes
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Fig. 19. BIC histogram for
Abalone Data with R Init and 2
Classes
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Fig. 20. BIC histogram for
Abalone Data with R Init and 3
Classes

V. CONCLUSION

This paper examined how initial values of the EM algo-
rithm influence the performance of soft mixture of linear

regressions (MoLR). Our experiments used two kinds of
artificial data and one real dataset. Experiments using ar-
tificial data showed soft MoLR successfully discovered the
original lines from data containing Gaussian or t-distribution
noise. Experiments using real dataset showed soft MoLR had
smaller BIC and higher goodness of fit than single MLP.
This shows the potential of MoLR. Moreover, almost all
our experiments showed the best solution can be found with
more than 50 % using any of two initializations. This may
suggest soft MoLR may have rather weak dependence on
initialization.

In the future we plan to investigate more to verify the
plausibility of this tendency and further extend MoLR to
nonlinearity.
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