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Abstract—The Rayleigh distribution is of paramount im-
portance in signal processing and many other areas, yet an
expression for random variables of arbitrary dimensions has
remained elusive. In this note, we generalise the results of
Beard and Tekinay [1] for quadrivariate random variables to
cases of unconstrained order and provide a simple algorithm
for evaluation. The assumptions of cross-correlation between
in-phase and quadrature, as well as non-singularity of the
covariance matrix are retained throughout our computations.

Index Terms—Complex Gaussian distribution, Multivariate
Rayleigh distribution

I. INTRODUCTION

CORRELATED Rayleigh random variables arise in
signal processing and many other areas: correlated

Rayleigh fading channels, correlated Rayleigh scatter-
ing spectroscopy, correlated Rayleigh envelopes, correlated
Rayleigh co-channel interferers, correlated Rayleigh clutters
and correlated Rayleigh targets; to mention just a few.

For correlated Rayleigh random variables Rice [2] and
Miller [3] obtained probability distribution representations
for the bivariate and trivariate cases. Their method of express-
ing the distribution via an underlying Gaussian distribution
has still been utilised in recent publications and will be
essential to our approach as well.

Based on the previous progressions, Beard and Tekinay
[1] have derived a series representation for a quadrivariate
Rayleigh distribution around a Bessel function expansion. We
believe that the dimensional restriction can be relaxed, while
the original assumption of non-singularity of the covariance
matrix is maintained. In Section II, we circumnavigate the
denomination problem of increasingly many Bessel function
sum terms, as noted by Beard and Tekinay [1], with a
Cauchy sum. The resulting integrals can then be more easily
evaluated via the complex exponential notation of the cosine
function. We also provide a pseudocode for the algorithm.
Some practical applications of the pseudocode including
runtimes are given in Section III. Some final remarks on
what has been done are given in Section IV. Throughout,
only the formulas cited in the text are numbered.

II. MULTIVARIATE RAYLEIGH DISTRIBUTION

We begin by introducing the 2n dimensional random
variable Z = {zI1 , zQ1

, . . . , zI1 , zQ1
}, where Ii represents

the in-phase and Qi the quadrature part of a signal. The joint
distribution is assumed to be a 2n-variate Gaussian (µ = 0,
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σ2 = ζ), with the distribution function given below (as in
Beard and Tekinay [1] or Rice [2]):

f (zI1 , zQ1
, . . . , zI1 , zQ1

) =
1

(2π)n|K|1/2
exp

(
−Z

TK−1Z

2

)
,

(1)

where

K = ζ



1 0 ρ1 · · · · · · ρn−1 0
0 1 0 ρ1 · · · · · · ρn−1

ρ1 0 1
...

... ρ1
. . .

...
...

. . . ρ1

1 0
· · · ρ1 0 1


∈ R2n

(2)

denotes the covariance matrix for 2n dimensions with values
−1 ≤ ρi ≤ 1. The in-phase and quadrature parts are
presumed to be uncorrelated, for example, E [zIizQi ] = 0
without loss of generality. A more general result for corre-
lated random variables can be obtained analogously.

We transform the cartesian coordinates of the input vector
z ∈ R2n into polar coordinates:

z =



r1 cos (θ1)
r1 sin (θ1)

...

...
rn cos (θn)
rn sin (θn)


.

The determinant of the Jacobian for the transformation
|J |= r1 · · · rn can hence be written as a factor outside the
exponential function.

To further expand the matrix vector product, we determine
a general expression for the inverse matrix. We employ
Cramer’s rule utilising the cofactor matrix C such that

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



K−1 = 1
|K|C

T holds:

C =



c0 0 c1 · · · · · · cn−1 0
0 c0 0 c1 · · · · · · cn−1

c1 0 c0
...

... c1
. . .

...
...

. . . c1
c0 0

· · · c1 0 c0


. (3)

We note that the cofactor matrix has to retain the original
shape of K, which aids in the evaluation of the exponent.

We introduce (2) and (3) into the 2n-variate Gaussian
distribution in (1), and apply common trigonometric iden-
tities [4] onto the resulting sine and cosine product terms.
This yields the following result for r = (r1, . . . , rn) and
θ = (θ1, . . . , θn):

f (r, θ) =
|J |

(2π)n|K|1/2
exp

(
− 1

2|K|

(
n∑
i=1

r2
i c0

+ 2
∑

(i,k,l∈Pn)

cirkrl cos (θk − θl)

))

=
|J |

(2π)n|K|1/2
exp

(
− 1

2|K|

n∑
i=1

r2
i c0

)
︸ ︷︷ ︸

=γn,K∏
(i,k,l∈Pn)

exp

(
− 1

|K|
cirkrl cos (θk − θl)

)
.

Here, Pn =
{

(i, k, l) ∈ N3| 1 ≤ l < k ≤ n, i =

1, . . . , n− 1, |k− l|= i
}

is the set of all feasible coefficient
combinations of ci and ri as they arise from the vector matrix
product. We relabel the variables according to the counting
scheme of algorithm 1, and dispose of the set Pn in favour
of a summation for t = 1, . . . , n(n− 1)/2 = p = |Pn|.

First we substitute the theta variables by xl−1 − xk−1 =
θk − θl [1], where x0 = 0 needs to be introduced for
consistency.

Result: Retain new variables xt and coefficients at
Renaming t=1
for l = 1, . . . , n do

for k = l + 1, . . . , n do
xt = xl−1 − xk−1;
at = − 1

|K|c|k−l|rkrl;
t++;

end
end

Algorithm 1: Renaming algorithm.

This naturally leaves us with a compacter version of the
Gaussian distribution as we can see below:

f (r1, θ1, . . . , rn, θn) = γn,K

p∏
t=1

exp (at cos (xt)) . (4)

Next we consider n-variate Rayleigh distribution by gener-
ating the marginal probability distribution. Integration over

the angle component of the polar coordinates reduces the
function in (4) to an n-dimensional one, solely dependent
on the radius component:

f (r1, . . . , rn) = γn,K

2π∫
0

· · ·
2π∫
0

p∏
t=1

exp (at cos (xt)) dx1 · · · dxn.

The composition of exponential and cosine functions
proves to be difficult to integrate analytically, we hence use
the following Bessel function expansions [1] [4] to reduce
the problem to a trigonometric integral:

exp [a cos(x)] = I0(a) + 2
∞∑
j=1

Ij(a) cos(jx),

exp [−a cos(x)] = I0(a) + 2
∞∑
j=1

(−1)jIj(a) cos(jx).

Additionally, we rename the appearing coefficients, to
combine both cases, therefore making the series represen-
tation more lucid to us and to reduce the exceptions:

bt,jt =

{
I0 (|at|) , if jt = 0,
2(−1)jtI(at<0)Ijt (|at|) , if jt > 0. (5)

With the series expansion and revised notation in place,
we can move on to the arithmetic:

f (r) = γn,K

2π∫
0

· · ·
2π∫
0

 p∏
t=1

I0 (at)

+
∞∑
jt=1

Ijt (at) cos (jtxt)

 dx1 · · · dxn

(5)
= γn,K

2π∫
0

· · ·
2π∫
0

p∏
t =1

∞∑
jt =0

bt,jt cos (jtxt) dx1 · · · dxn

= γn,K

2π∫
0

· · ·
2π∫
0

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

b1,jp cos (jpx1)

b2,jp−1−jp · · · bp,j1−j2 cos ((j1 − j2)xp) dx1 · · · dxn

jp+1=0
= γn,K

2π∫
0

· · ·
2π∫
0

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,jp−t+1−jp−t+2

cos ((jp−t+1 − jp−t+2)xt) dx1 · · · dxn

= γn,K

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,jp−t+1−jp−t+2

2π∫
0

· · ·
2π∫
0

p∏
t=1

cos ((jp−t+1 − jp−t+2)xt) dx1 · · · dxn.

Expression (II) was derived by introducing a Cauchy prod-
uct into the equation [5], enabling us to exchange product
and sum of the series expansion, which in turn allows us
then to further simplify the integral (convergence holds as a
result of the expansion).

We then insert Euler representation of the cosine cos(z) =
1
2 [exp(iz) + exp(−iz)] into (II) to alleviate the integral
evaluation. This yields the following result with the now
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modified index j∗t = jp−t+1− jp−t+2 and we can determine
the complex integral:

f (r1, . . . , rn) = γn,K

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,j∗t

2π∫
0

· · ·
2π∫
0

p∏
t=1

cos (j∗t xt) dx1 · · · dxn

= γn,K

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,j∗t

2π∫
0

· · ·
2π∫
0

p∏
t=1

(exp (ij∗t xt) + exp (−ij∗t xt))
2

dx1 · · · dxn

=
γn,K
2p

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,j∗t

2π∫
0

· · ·
2π∫
0∑

ρ∈{−1,1}p

p∏
t=1

exp (ij∗t ρtxt) dx1 · · · dxn

=
γn,K
2p

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,j∗t

∑
ρ∈{−1,1}p

2π∫
0

· · ·
2π∫
0

exp

(
i

p∑
t=1

j∗t ρtxt

)
dx1 · · · dxn

(6)

where ρ = (ρ1, . . . , ρp).
As all the factors j∗t ρt ∈ Z, it is clear that the integral in

(6) is exactly non-zero ((2π)p in fact), when the exponent
itself is zero [6]. This is precisely the case when the sum
over the coefficients corresponding to their xi are zero, for
all xi. To further clarify this, we denote αt = j∗t ρt and design
two upper triangular matrices with xt, t = 1, . . . , p and their
corresponding coefficients as their respective elements:

X =



x1 x1 − x2 · · · xn−2 − xn−1

x2 x1 − x3 0

x3 x1 − x4
...

x4
...

...
...

...
... x1 − xn−1 0

...
xn−1 0 0



,

A =



α1 αn · · · · · · αp−2 αp

α2 αn+1 αp−1 0

α3

... 0
...

...
...

...
... α2n−2 0

...
αn−1 0 · · · 0


.

The matrix entries for A have been generated as Ao,p =
α∑p−1

i=0 (n−i−1) + o (filling the columns with progressively
fewer elements). We can obtain the sum over all coefficients
for one xi with their respective signs by adding the n-
th column to the n-th entry in the first column, and then
subtracting the minor counter diagonal’s negative entries. We
denote the resulting i-th sum as follows:

Σxi = Ai,1 +
n−i∑
w=1

Aw,i −
i−1∑
w=1

Ai−w,1+w.

We can now very simply write the integral as a product
of Kronecker Deltas, dependant on the previously defined
coefficient sums. With this last step we are thus finished:

f (r1, . . . , rn) = πpγn,K

∞∑
j1=0

j1∑
j2=0

· · ·
jp−1∑
jp=0

p∏
t=1

bt,j∗t

∑
ρ∈{−1,1}p

n∏
w=1

δ{Σxw=0}. (7)

Equation (7) enables us to formulate a simple algorithm
to evaluate the Rayleigh distribution for a given vector
r1, . . . , rn in arbitrary dimensions. We provide a pseudocode
below to illustrate the basic principles

on how the series expansion can be evaluated.

Result: n-variate Rayleigh distribution for r1, . . . , rn
temp=0;
for j1 = 0, . . . ,∞ do
· · ·
for jp = 0, . . . , jp−1 do

c =
∏p
t=1 bt,jp−t+1−jp−t+2

;
for ρ ∈ {−1, 1}p do

/* Set up the coefficient
matrix */

for o = 1, . . . , n− 1 do
for p = 1, . . . , n− o do

t =
∑p−1
i=0 (n− i− 1) + o;

Ao,p = (jp−t+1 − jp−t+2) ρt;
end

end
/* Construct coefficient sums

*/
for i = 1, . . . , n− 1 do

Si =
Ai,1 +

∑n−i
w=1Aw,i −

∑i−1
w=1Ai−w,1+w

end
/* Determine integral and add

non-zero terms to the
return value */

if Si == 0 for all i then
temp = temp + c;

end
end

end
end
return πpγn,K temp

Algorithm 2: Evaluation algorithm with notation as before
and at as introduced in Algorithm 1.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



III. APPLICATIONS

Outage Probabilites

In ‘Infinite Series Representations of the Trivariate and
Quadrivariate Rayleigh Distribution and their Applications‘
Y. Chen and C. Tellambura [7] discuss the application of
multivariate Rayleigh distributions to determine the outage
probability of three and four branch selection combining in
correlated Rayleigh fading.

The outage probability is defined below, where γ is an
output threshold and γ1, . . . , γn are the respective average
outputs.

Pout = FR

(√
γρ1

γ1
, . . . ,

√
γρn
γn

)
(8)

FR is of Rayleigh distribution, with a covariance matrix
K filled with the exemplary random values ρ0 ∼ 0.5, ρ1 ∼
−0.12, ρ2 ∼ −0.09 as covariances (values which we will
recycle for the simulation testing in section 4 later on).
Consider

(√
γρ1/γ1, . . . ,

√
γρn/γn

)
= (1, 1, 1), such that

the outage probability is visualised by the area underneath
our density plot. Alternatively we can write the input as

√
γγ̄

where γ̄ =
(√

ρ1/γ1, . . . ,
√
ρn/γn

)
.

Note that the direction vectors are scaled,hence the cutoff
points for the value

√
γ are (1, 1, 1), (1, 1

2 ,
1
2 ) and (1. 12 ,

1
2 )

for the different directions.
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Fig. 1: Three dim. Rayleigh density, with the area underneath
representing the outage probability

A multivariate Integral over the Rayleigh Distribution then
reveals the cumulative distribution function, e.g. the outage
probability as described in (8). We have formulated the
probabilities as such below.

Pout(γ) =

∫ √
γρ1
γn

0

. . .

∫ √
γρ1
γ1

0

fR(t1, . . . , tn)dt1 . . . dtn (9)

We visualise these results for different configurations of
ρi and γi in figure 2. The x axis holds the given threshold
γ, more specifically

√
γ which we treat as a scalar factor to

the different vectors of γ̄.
As the dimension of 3 was chosen arbitrarily, and can

be done for higher orders simultaneously, we have therefore
found a mode of computation of outage probabilites for
arbitrary branch SC correlated Rayleigh fading.
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Fig. 2: Three dim. Rayleigh density, with CDF for the Outage
Probability marked underneath

AMC Level Change Probabilites

The second application is based on a stochastic channel
model expanded upon by Beard and Tekinay [1]. Here the
authors intend to compute the probability for a channel to
change adaptive modulation and coding levels (AMC) from
one level to another. The introduction of an additional corre-
lation variable (time - frequency) mandated a quadrivariate
Rayleigh distribution representation.
Without the dimensional restriction, we can now evaluate ar-
bitrary Rayleigh distributions, necessitated by models which
use more than fourcorrelated input variables. In figure 3
(see Appendix) we show an example of a six dimensional
Rayleigh distribution, which can be used for stochastic chan-
nel modelling with two or more additional correlated model
variables (for example material constant or transmission type
properties).
The correlation coefficients are ρ0 = 2.5, ρ1 = 0.3, ρ2 =
−0.1, ρ3 = 0.1, ρ4,= −0.15ρ5 = 0.2 In this example. As
mentioned before, two variables can be chosen to model Ωt
and At. We believe that these examples have emphazised
the possible potential uses opened up by the newly gained
representation.

Complexity

We construct an upper limit for the evaluation effort
of algorithm 2, by setting the creation of matrix A and
evaluation of the coefficients at (n−1)(n2 −1) and (n−1)n
operations, respectively. The inner loop over the coefficients
ρ runs 2p iterations, while the outer loop has an upper bound
of Np iterations.

This gives a total upper limit of O(pN2pn2) computational
operations. For four dimensions this gives us a maximum
computation time increase by factor eight per order, which
fig.2 shows we remain below. However this does lessen
the practical application of the series expansion, as the
additional contribution of the Bessel function addends are
negligible. Virtually without loss of accuracy we can fix the
maximum term order to naught, eliminating the need for a
coefficient matrix (the approximation consists only of the
bt,0 = I0(at) factors now, along with the lead coefficient
πpγn,K). This equates to a maximum computational effort
of Θ(p) = Θ(n2). We have therefore used order zero
approximations exclusively for the following sections.
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Runtime Contribution
Highest order Average Total Min Average Max

0 0.048 0.48 - - -
1 0.316 3.16 0 0 0
2 1.258 12.58 0 0 0
3 3.874 38.74 1.21E-15 1.28E-08 3.48E-08
4 10.007 100.07 0 9.64E-11 3.32E-10
5 22.865 228.65 0 2.22E-13 9.74E-13
6 47.234 472.34 0 5.55E-17 2.78E-16
7 95.969 959.69 0 2.78E-18 2.78E-17
8 171.666 1716.66 0 0 0
9 297.695 2976.95 0 0 0

Fig. 3: Runtimes and summand contribution for n = 10
evaluation points.

Unfortunately we could not realise the pseudocode given
by Tekinay and Beard [1] as a functioning program. The
Bessel expansion used does implicitly assume only positive
values, since no distinction is made with respect to the
argument sign. This means that Bessel functions of negative
arguments are undefined in [1]. Furthermore we believe that
some of the terms looped over in the method Beard and
Tekinay put forth are not correctly specified. For example in
algorithm 1 line 4 introduces a triple sum, with addends not
containing the sum variables. This makes the loop over these
terms somewhat pointless.

IV. SIMULATION

It is known that Rayleigh distributed random variables
can be simulated through normally distributed RVs. We are
therefore able to simulate a Rayleigh distributed random
sample (similarly to the ansatz of our approximation) with
X ∼ Nn(0, S) and Y ∼ Nn(0, S) where S ∈ Rn×n. The
covariance matrix is equivalent to the Matrix K defined in
section 2, with the zero value diagonals removed.

We generate a random sample of normal RVs and convert
them to Rayleigh RVs. The resulting samples can then
be used to form empirical density functions via an n-
dimensional grid of cubes, containing different amounts of
the sample. We have assumed the three dimensional case to
lower the computational effort (which grows to the power of
the dimension) from the channel modeling example in section
3. We generated 109 samples for each vector for optimal
results, e.g. 3 Billion three dimensional samples altogether,
with an adaptive grid mesh ranging between 0.01 and 0.001,
depending on the local sample count.

Additionally we applied a kernel density estimator to the
epdf to compensate for random peaks within the sample
(dotted red). The plots below show the results along different
vector directions, giving the approximation (solid black)
along with both density estimation and epdf cell values (grey
bars), as well as the interpolated absolute deviation between
epdf and expression (7) (dotted blue).

We can clearly see that the shape of the approximation
holds up, and the probabilities of the empirical, kernel den-
sity estimation and series approximation show only marginal
deviations from one another. This gives strong indication for
the correctness of the approximation.
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Fig. 4: Histogramm of simulated data with kernel estimator
and approximation of order naught.

V. CONCLUSIONS

We have considered computing Rayleigh distributions with
arbitrary dimensions. By revising the algorithm to determine
the non-zero series contributions of the complex integral
addends, we were able to compute the series’ terms more
efficiently. With expression (7) we have therefore devised
a new, more general series representation for now arbitrary
dimensions.

Besides the covariance matrix assumptions about uncorre-
lated in-phase and quadrature parts [1] no further restrictions
have to be considered. The provided pseudocode gives a
blueprint on how to implement computations for practical
applications.
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Fig. 5: 6 dim. Rayleigh Density along 6 different directional vectors.
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