Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I

IMECS 2018, March 14-16, 2018, Hong Kong

Efficiency of Single SNP analysis and Sequence
Kernel Association Test in Genome-wide
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Abstract—This research compares the efficiency of
the commonly used single SNP analysis and SNP-
set analysis based on the recently proposed Se-
quence Kernel Association Test (SKAT) in the analy-
sis of genome-wide studies of disease-gene association.
False positive (FP) and true positive (TP) rates are
evaluated for different genetic models of disease with
significance thresholds adjusted for multiple testing
based on the permutation method. Simulation results
shows that although SKAT tends to be slightly more
efficient in identifying true associations, this comes at
the cost of a substantial increase in the false positive
findings over the single SNP method and that this ef-
ficiency gain is also highly dependent on choosing an
appropriate weight and correlation for the SNP sets
in SKAT.

Keywords: Single SNP Analysis, SNP-set Analysis,
SKAT, GWAS, Bonferroni Correction, Permutation
Test

1 Introduction

A genome-wide association study (GWAS) identifies ge-
netic variants associated with disease and other medi-
cal conditions by analysing many ( 10°) variants, such
as single nucleotide polymorphisms (SNPs), distributed
across the genome. Historically the most common hy-
pothesis testing method employed is the single SNP anal-
ysis whereby each variant is singly tested for association
with an adjustment, such as Bonferroni correction, for
controlling the Type I error rate. This approach tend to
be highly conservative and in addition, a large number
of SNPs takes a lot of time to analyze. In attempts to
solve these problems, researchers have investigated ways
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to maintain the efficiency of the test and to reduce the
time to analyze by grouping the SNPs into SNP-sets be-
fore testing. This grouping may be by genomic features
such as a gene or haplotype block and is intuitively ap-
pealing when the belief is that a group of closely linked
SNPs underlies development of the disease.

Gauderman et al. [1] use principal components (PCs)
analysis to compute combinations of SNPs that capture
the underlying correlation structure within the locus then
uses PCs in a test of disease association. Methods based
on PCs include the standard principal components anal-
ysis (PCA) technique, supervised PCA, sparse PCA, and
functional PCA, kernel PCA and sliced inverse regression
(SIR), see [2]-[4]. Wu et al. [5] proposed grouping SNPs
in a gene or haplotype block using a kernel machine and
developed a test for the association between SNP-set and
disease outcome and claim that grouping into SNP-sets
correctly can lead to improving the power of the test.
Currently, there is a tool implemented in R software [6]
for association analysis of a SNP-set and disease status
called Sequential Kernel Association Test (SKAT'). SKAT
tests for association between the set and continuous or
dichotomous phenotypes using a kernel regression frame-
work [7] and is potentially powerful under many differ-
ent scenarios. It does not require any assumptions on
the directionality of effects [8] and there are possible ker-
nel choices for grouping such as linear kernel, weighted
linear kernel, identical-by-state kernel (IBS), weighted
IBS kernel, 2wayIX kernel, quadratic kernel and weighed
quadratic kernel [7].

This research uses simulation data to compare efficiency
and false positive rates of the single SNP analysis via lo-
gistic regression with SNP-set analysis via SKAT. SNP
sets were grouped by gene. The haplotypes used in the
simulations were constructed from the control dataset in
the Welcome Trust Case Control Consortium (WTCCC)
study of Crohn’s disease [9]. It is well known that the
probability of Type I error increases when testing mul-
tiple hypotheses and that Bonferroni correction, which
replaces the original significance level o by a/m where
m is the number of hypothesis tests, is an easy way to
control the family-wise error rate (FWER). However, this
approach leads to a conservative test and a constringent
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threshold when m is large. The gold standard for find-
ing an appropriate significance threshold that controls
the type I error is the permutation method and therefore
this method is instead used in this research for the single
SNP and SNP-set analyses.

2 Methodology
2.1 Single SNP Analysis

Logistic regression models are used to evaluate the rela-
tionship between the disease and each SNP, separately.
Logistic regression is a powerful and flexible technique for
the statistical modeling of a binomial outcome. Logistic
regression [10] is an extension of linear regression where
the outcome of a linear model is transformed using a lo-
gistic function that predicts the probability of having case
status given a genotype class. Logistic regression is often
the preferred approach because it allows for adjustment
for clinical covariates (and other factors), and can provide
adjusted odds ratios as a measure of effect size. Logistic
regression has been extensively developed, and numerous
diagnostic procedures are available to aid interpretation
of the model. The genotypes for an SNP can also be
grouped into genotype classes or models, such as dom-
inant, recessive, multiplicative, or additive models [11].
The additive model is commonly used as it has reason-
able power to detect both additive and dominant effects,
but it is important to note that an additive model may be
underpowered to detect some recessive effects [12]. Sup-
pose that the possible genotypes at a particular locus are
CC, CT and TT and suppose that C' is the rarer of the
two alleles C' and 7. The additive genetic model then
corresponds to TT = 0, CT = 1, and CC = 2, respec-
tively.

Let T;; be a genotype for the j* SNP (j = 1,2,...,m)
on the i*" individual (i = 1,2,...,n) and let P;; be the
probability of disease for this individual given covariates

C, = (Ci1,Ca, . .., Cyy) and the genotype at the j" SNP.
The logistic regression model is

lOgit(Pij) = Qo + O/Ci + ﬁjnja (1)
where oy is an intercept term and o = [, ..., aq]/ is a

vector of regression coefficients for the ¢ covariates. Here,
Bj = 0 corresponds to the null hypothesis of lack of as-
sociation between the j** SNP and disease. The likeli-
hood ratio test is used in the tests of association in this
paper although either of the three asymptotically equiva-
lent likelihood ratio, score or Wald tests, could have been
used. Under the null hypothesis, any of the three test
statistics has a chi-squared distribution with 1 degree of
freedom.

2.2 Sequence Kernel Association Test

Sequence Kernel Association Test (SKAT) is a supervised
test for the joint effects of multiple variants in a region of
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the genome on the disease or condition of interest. Re-
gions can be defined by genes, haplotype block, principal
component analysis, or sliding window. For each region,
SKAT analytically calculates a p-value for association see
[5], [11] and [12]. The logistic regression model now be-
comes

logit(Pir) = oo + o/ C; + ' T, (2)

where P is the disease probability given the covariates
C; and the p variants Ty, = (Tj1,Ti2, ..., Tip)r in the
kth SNP-set. Here 8 = [, ... ,6,,]’ is a vector of regres-
sion coefficients for the p observed variants and evaluating
whether the variants are jointly associated with the dis-
ease corresponds to testing the null hypothesis Hy : 5 =0
that is f1,82,...,0, = 0. SKAT tests Hy by assuming
each f3, follows an arbitrary distribution with mean of
zero and a variance of w,.7, where 7 is a variance compo-
nent and w, is a pre-specified weight for variant r. The
null hypothesis Hy : § = 0 is equivalent to the hypothesis
Hy:7=0.

The SKAT test statistic can be written as
S=(y—n)Kly—f) (3)

where K = T;WR,WT) is an n x n kernel matrix,
R, = (1 — p)I+ pll’ is an p x p compound symmetric
matrix, 1 = (1,...,1) and fi is the predicted mean of
y under Hy, that is o = logit~*(é&o + Cé&) where ag
and & are estimated under the null model by fitting the
logistic regression model on only the covariates C. Here
T is a n X p matrix with the (i,7) — th element being
the genotype of variant r of the i*” individual in the k"
SNP-set and W = diag(w1, ..., wp) contains the weights
of the p variants. In the case when the correlation p = 0.0
the SKAT test statistic in equation (3) can be simplified
as the weighted sum

P P n 2
Sskar = waDf = wa {ZTiv-(yi - ﬂz)} , (4)
r=1 r=1 =1

whereas when correlation p = 1.0, equation (3) becomes
P 2 p n 2
SBurden - {Zw'rDr} - {Zwrsz‘(yz _ﬂz)} P
r=1 r=1 i=1
(5)

where D, = > | T;.(y; — fu;) is the score statistic for
testing Hp : B, = 0. Finally, it should be noted that K is
an n X n symmetric matrix with elements K(T;, T;/) that
measures genetic similarity between the i —th and i —th
individuals in the study. Many choices for K are possible
such as linear , weighted linear, identical-by-state (IBS),
weighted IBS, 2wayIX, quadratic and weighed quadratic.
The weighted linear kernel K(T;, T;/) = Z§=1 wi; Ti Ty
is used in this study. This kernel assumes that the dis-
ease depends on the variants in a linear fashion and is
equivalent to the classical logistic model.
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Choosing an appropriate weight is very important in
SKAT because a good choice of weights can improve
power of the test. Weight functions can be specified in
the SKAT package in R using the Beta density func-
tion Beta(p, : ai,as), where p, is the estimated mi-
nor allele frequency (MAF) for SNP r in the SNP-set
and a; and as are pre-specified scale parameters of the
Beta distribution. The default in the SKAT package
Beta(p, : 1,25) substantially up-regulates rare variants
and down-regulates common variants. The Madsen and
Browning weight w, = 1/4/p,(1 — p,) is equivalent to
Beta(p, : 0.5,0.5) and can pick up signals from both
common and rare variants but is thought to suffer from
low power. A third option w, = 1/,/p,, which we call the
inverse mean, is equivalent to Beta(p, : 0.5,1). The final
option considered in this paper is Beta(p, : 10, 10) which
gives the appearance of a symmetrical distribution sim-
ilar to the normal distribution. These weight functions
are illustrated in Figure 1.
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Figure 1: Examples of weight functions used in SKAT
analysis.

2.3 Multiple Hypothesis Testing

The multiple hypothesis testing problem occur when we
test many hypotheses simultaneously. For m independent
tests and « the rejection level for each test, the probabil-
ity of falsely rejecting at least one true null hypothesis,
otherwise known at the family-wise error rate (FWER)
increases with m in such a way that for even a moderate
number of tests we will almost surely incorrectly reject at
least one true null hypothesis, see Figure 2. The simplest
method for controlling the FWER so that the probability
of observing at least one significant result remains below
the desired significance level is Bonferroni correction [13].

2.3.1 Bonferroni Threshold

Bonferroni correction adjusts the desired significance
level from « to o/ = a/m where m is the number of sta-
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Figure 2: Probability of at least one false positive find-
ing for different number of hypotheses m and significance
level a.

Table 1: Achieved type I error of single SNP and SKAT
analysis with correlation 0.0 under the null model in tests
with o = 0.05.

Method ]%%rfsrlfgﬁ Thlr\glvold
Single SNP analysis 0.033 0.059
Default 0.041 0.057
Madson and Browning 0.031 0.055
Inverse mean 0.034 0.059
Normal 0.035 0.055

tistical tests conducted. A SNP is then considered to be
significant if its p-value is less than the o’ adjusted signifi-
cance level. As they are 13,479 SNPs and 914 SNP-sets in
the WTCCC dataset of Crohn’s disease, in this paper the
o’ adjustment for the single SNP analysis and SNP-set
analysis when o = 0.05 is 3.71 x 1076 and 5.47 x 1075, re-
spectively. Simulation results of single SNP analysis and
SKAT analysis with p = 0.0 under the null model of no
gene effect in Table 1 confirms that this adjustment leads
to a type I error that is much lower than the desired level
and therefore Bonferroni correction is quite conservative
and constringent.

2.3.2 Threshold based on permutation test

A permutation test is a nonparametric method for esti-
mating the sampling distribution of a test statistic under
the null hypothesis that a set of genetic variants has no
effect on the outcome. This approach provides a highly
reliable distribution of the test statistic but requires many
samples generated under the null model. In this research,
we use 10,000 replicates for computing the multivariate
sampling distribution under the null hypothesis with no
gene effect and to establish significance thresholds giving
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Table 2: The TP and FP rates of single SNP and SKAT
analyses with rs3789038 as disease SNP and effect size 81
= 0.2.

Table 3: The TP and FP rates of single SNP and SKAT
analysis with rs3785142 as disease SNP and effect size [3;
= 0.2.

Correlation | Method New Threshold Correlation | Method New Threshold
FP TP FP TP

- Single SNP 0.00105 | 0.71 - Single SNP 0.00132 | 0.89
p=20.0 Default 0.00154 | 0.80 p=20.0 Default 0.00209 | 0.00
p=20.0 Madsen & Browning | 0.01073 | 0.86 p=0.0 Madsen & Browning | 0.03075 | 0.65
p=20.0 Inverse Mean 0.00981 | 0.86 p=20.0 Inverse Mean 0.02734 | 0.57
p=0.0 Normal 0.00939 | 0.85 p=0.0 Normal 0.00939 | 0.85
p=1.0 Default 0.00209 | 0.83 p=1.0 Default 0.00467 | 0.00
p=1.0 Madsen & Browning | 0.01235 | 0.86 p=1.0 Madsen & Browning | 0.03555 | 0.13
p=10 Inverse Mean 0.01156 | 0.86 p=10 Inverse Mean 0.03298 | 0.09
p=1.0 Normal 0.01164 | 0.86 p=1.0 Normal 0.03176 | 0.29

a type I error close to 0.05. We use linear interpolation
for finding the thresholds. In this research, we called the
threshold based on the permutation test new threshold.
The —log,, transformation of the new threshold for sin-
gle SNP analysis is 5.140. For SKAT analyses, the new
thresholds for default weight with correlation 0.0 and 1.0
are 4.115 and 4.115 respectively, while the new thresh-
olds for Madson and Browning weight with correlation
0.0 and 1.0 are 4.040 and 3.998. The new thresholds
for inverse mean weight with correlation 0.0 and 1.0 are
4.00 and 3.970 and finally, the new threshold for normal
weight with correlation 0.0 and 1.0 are 3.995 and 3.986,
respectively. Type I error rates based on the new thresh-
olds, shown in Table 1, suggest that the nominal type
I error of 0.05 is achieved in all cases and therefore the
new thresholds based on permutation test were selected
for comparing the efficiency of the single SNP and SKAT
methods.

2.4 The Data and Disease Model Simulation

The genotype data used in this simulations are 13,479
SNPs on Chromosome 16 from 1,504 unaffected individ-
uals in the WTCCC study of Crohn’s disease. Using
3008 haplotypes constructed from the 1504 genomes, new
genotype data were generated and assigned disease sta-
tus based on 2 disease SNPs both of which have very
high MAF’s and are highly correlated with other SNPs
on their respective genes. The first SNP rs3789038 is lo-
cated at position 50711672bp in gene HMOX2 and has
MAF equal to 0.31. The second, SNP rs3785142 has
MAF equal 0.48 and is located at position 50753236bp in
gene CYLD. There are a total of 7 SNPs in the data on
gene HMOX2 with pairwise correlation ranging between
0.93 and 0.99, with median equal 0.99 while there are 8
SNPs in the data on CYLD having pairwise correlations
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between 0.51 and 0.99, with median equal to 0.93.b

The model for one disease SNP used to generate disease
status is
e 61T

P(diseased|T) = W, (6)

where T is the number of copies of the rare allele of the
disease SNP, « is a pre-specified baseline relative risk of
disease and 3y is the gene effect, which in this study was
set equal to 0.2. The disease model for two disease SNP

1S
e0t+B1T1+p2Ts

P(diseased|Ty,Tz) = 1 o BTii BT (7)
This model assumes the two disease SNPs act linearly on
the logit scale and two situation are investigated. The
first is for gene effect 51 = 0.1 and B2 = 0.2 while in the
second case the gene effects are fixed at g1 = 0.2 and S5
=0.1.

3 Result

A total of 1,500 replicate studies, each consisting 3,000
cases and 3,000 controls are simulated and, for each
study, a count is made of the number of SNPs incor-
rectly identified as significantly associated with disease
(false positive) and whether the disease SNP is correctly
identified (true positive) by the single SNP and SKAT
methods described above. Results presented show the
false positive (FP) and true positive (TP) detection rates
for the two methods.

Case 1: One disease SNP

Shown in Table 2 are the TP and FP rates of single SNP
and SKAT analyses of rs3789038 as disease SNP with
gene effect size 1 = 0.2. The FP rate of the single SNP
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Table 4: The TP and FT rates of single SNP and SKAT
analysis with rs3789038 and rs3785142 as disease SNPs
and respective effect sizes of f; = 0.1 and pBy = 0.2.

Table 5: The TP and FT rates of single SNP and SKAT
analysis with rs3789038 and rs3785142 as disease SNPs
and respective effect sizes of 7 = 0.2 and By = 0.1.

Correlation | Method New Threshold Correlation | Method New Threshold
FP TP FP TP

- Single SNP 0.00270 | 0.94 - Single SNP analysis | 0.00290 | 0.88
p=20.0 Default) 0.00482 | 0.38 p=0.0 Default 0.00408 | 0.93
p=20.0 Madsen & Browning | 0.06329 | 0.80 p=20.0 Madsen & Browning | 0.05263 | 0.95
p=20.0 Inverse Mean 0.05624 | 0.74 p=20.0 Inverse Mean 0.04692 | 0.95
p=20.0 Normal 0.04820 | 0.93 p =00 Normal 0.04113 | 0.95
p=10 Default 0.00798 | 0.40 =1.0 Default 0.00708 | 0.94
p=1.0 Madsen & Browning | 0.07008 | 0.51 p=1.0 Madsen & Browning | 0.05875 | 0.95
p =10 Inverse Mean 0.06644 0.49 p =10 Inverse Mean 0.05573 0.95
p=1.0 Normal 0.06204 | 0.60 p=1.0 Normal 0.05222 | 0.95

analysis is seen at 0.00105 to be roughly at least 9 times
lower than the SKAT analyses but this comes at the lower
TP rate of 0.71. Considering the result of SKAT analysis,
all have very similar TP rates with TP between 0.80 - 0.86
when p as 0.0 and TP between 0.83 - 0.86 when p as 1.0.
With SNP rs3789038 as disease SNP, use of the default
weight gives the lowest TP and lowest FP, while there
is very little difference in the rates for the other three
methods, irrespective of the value for the correlation.

The TP and FP rates of the single SNP and SKAT anal-
yses with rs3785142 as disease SNP and gene effect 51 =
0.2 are provided in Table 3. Here it can be seen that the
single SNP analysis outperforms SKAT under all condi-
tions. The FP rate of 0.00132 is comparable to that for
rs3789038 and is at least 60% lower than for the SKAT
analyses while the TP of 0.89 is substantially higher than
all the SKAT methods, except the normal method with
correlation 0.0 which has TP of 0.85 but also has an FP
rate 9 times higher.

Considering only the results of the SKAT analyses in Ta-
ble 3, the dependence on the correlation is highly evident
with p equal to 0.0 tending to lead to higher TP rates
than when it takes the value 1. The exception to this
is the default method which has no power to detect the
disease SNP, irrespective of the correlation used and illus-
trates the influence of the weights used on the findings;
the minor allele of rs3785142 is not rare (MAF=0.48)
and therefore is not consistent with the default weight
which up-weighs rare variants and down-weighs common
variants. An appropriate weight in this case is the nor-
mal and this is confirmed by the simulation results which
shows that analysis under the normal weight is optimal
with highest TP and lowest FP.
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Case 2: Two disease SNPs

Shown in Table 4 are comparisons of TP and FP rates for
single SNP and SKAT analyses using the new threshold
and computed from 1,500 replicates with a gene effect
size for disease SNP rs3789038 of 5; = 0.1 and effect size
for rs3785142 of B3 = 0.2. Here the single SNP method is
found to be optimal with the highest TP rate (0.94) and
lowest FP rate (0.00270) of all methods considered. This
is consistent with the findings in Table 3 above and con-
firms that the single SNP analysis is preferable to SKAT
when the disease SNPs have high MAF. Considering the
results of the SKAT analyses only, the dependence on
correlation is again clearly seen with the assumption of
uncorrelated SNPs in the SNP-set leading to higher TP
and slightly lower FP rates in all but the default method.

Comparisons of single SNP analysis and SKAT analy-
ses using the new threshold for respective gene effects of
[1 = 0.2 and By = 0.1 for disease SNPs rs3789038 and
rs3785142 are shown in Table 5. The results show that
the single SNP analysis FP rate of 0.00290 is once again
much lower than for any of the SKAT analyses but her
the TP rate of 0.88 is also slightly lower. Considering the
SKAT analysis only, a high TP rate independent of the
correlation is observed. This is consistent with the find-
ings in Table 2 which is not surprising as SNP rs3789038
is driving the disease-gene relationship in the simulation
model.

4 Conclusions and Future Work

The findings confirm that the single SNP analysis is con-
sistent in producing lower numbers of false positives than
SKAT while also having a competitive and fairly consis-
tent true positive rate. On the other hand, efficiency of
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the SKAT analysis for genome-wide association analysis
is highly dependent on the disease causing SNPs. It is
clearly seen that the choice of weight is very important
and so must be carefully selected but how this can be
achieved is uncertain as very little is known about the
disease predisposing loci in a genome-wide study. In ad-
dition, as the value of the correlation used impacts on
the SKAT results in the sense that the assumption of
no correlation of the SNPs in a SNP set can lead to a
higher true positive rate when in fact the SNPs on the
disease causing gene are highly correlated, the decision
as to what value of correlation to use will require careful
thought.

Currently, there are many genomic datasets that need
to be analyzed for fast, accurate and efficient answers
and SKAT is an interesting tool in the repertoire of sta-
tistical analysis methods with the advantage that it is
potentially powerful, provided the correct assumptions
are made. However the high false positive rate remains
a concern and methodology for reducing this is currently
being developed and evaluated. Additionally this paper
only considered the weighted linear kernel; planned fur-
ther work will evaluate use of different kernels within the
genomic setting.
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