
 

 

Abstract— Automatic detection of abnormal 

electrocardiogram (ECG) waves is a key issue in the field of 

medical engineering. Many sever heart diseases show periodic 

abnormal waves in ECG. This provide informative suggestions 

for identifying the staging or abnormal site of heart disease. 

However, so far, few studies have tackled automatic detection of 

periodic abnormal ECG wave. In this paper, we propose a new 

method for detecting periodic abnormal waves in ECG. This 

method is based on the deep neural network model that learns 

wave’s shape and their temporal relevance by combing 

AutoEncoder and Long Short-Term Memory (LSTM). In the 

experiments, using ECG data of a myocardial infarction 

patient, it is shown that our method can identify adequately 

interval of abnormal wave, which the existing method was not 

able to detect. 

 
Index Terms—deep learning, electrocardiogram, abnormal 

wave detection, myocardial Infarction 

 

I. INTRODUCTION 

UTOMATIC diagnosis of heart disease using 

Electrocardiogram (ECG) is a key issue in the field of 

medical engineering. Recently, deep learning has been 

employed as a powerful approach to find abnormality in ECG 

data [1-10]. Some research groups attempted to detect 

arrhythmia in ECG data using deep learning models [1, 2, 5]. 

In these studies, normal ECG data is used as training data, 

and hence irregular ECG data can be judged by the model as 

being abnormal.  

As described above, the existing studies have focused on 

detecting irregularity of ECG data in arrhythmia. On the 

other hand, at present, there exist few studies targeting 

periodic abnormal waves. Periodic abnormal wave is 

typically observed in severe heart diseases. For example, in 

myocardial infarction (MI), abnormal wave within the basic 

wave (see Section II) is periodically observed in ECG data, 

and the characteristics of the wave changes depending on 

where infraction occurs or the period after onset of MI. We 

think that automatic detection of periodic abnormal waves 

will become a promising technique for early detection of 
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severe heart disease. However, since the existing methods 

use the irregularity of the occurrence of the basic wave as a 

clue, there is a possibility that periodic abnormal ECG data is 

incorrectly judged as normal one. 

In this paper, we propose a new method that can detect 

periodic abnormal wave in ECG data. This method learns the 

characteristics of the subsequences within the basic wave by 

combining two neural network models, AutoEncoder and 

Long Short-Term Memory (LSTM). Namely, AutoEncoder 

learns the shape of subsequences, and LSTM learns temporal 

relevance between them. In the experiments, the ECG data of 

a myocardial infarction patient is used to evaluate the 

detection accuracy of abnormal waves.  

 

The remainder of this paper is organized as follows. 

Section II explains ECG data. Section III provides a brief 

description about AutoEncoder and LSTM. Section IV 

describes the proposed method. Section V explains the 

experimental methods for evaluating detection accuracy of 

abnormal waves in ECG data, and Section VI presents the 

experimental results and discusses some observations. 

Section VII provides an overall summary. 

 

II. ELECTROCARDIOGRAM 

Electrocardiogram (ECG) is a graphic recording of the 

heart’s electrical activity. Figure 1 illustrates a basic wave 

appearing repeatedly in ECG data. A basic wave is composed 

of five waves, P, Q, R, S, and T. The 12-lead ECG, which 

measures 12-different sites (leads) of the body, has been 

widely used to diagnose cardiac abnormality or disease. The 

twelve sequences obtained by one measurement are called I, 

II III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6, 

respectively. Among them, in particular, the lead II is most 

commonly used to evaluate behavior of the five waves 

because it shows clear signal compared to other waves. 

Deep Learning-based Detection of Periodic 

Abnormal Waves in ECG Data 

Kaiji Sugimoto, Saerom Lee, and Yoshifumi Okada 

A 

 
Fig. 1.  Basic wave appearing repeatedly in ECG data 
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III. AUTOENCODER AND LSTM 

AutoEncoder is one of the unsupervised deep learning 

models and typically is used to reconstruct original input 

[11]. This model can represent high-dimensional input data 

as low-dimensional features by feature extraction step in the 

hidden layer. 

LSTM is a variant of recurrent neural network (RNN) that 

was designed to model temporal dependency in time-series 

data [12, 13].  In typical RNN, the temporal dependency is 

learned by considering output data from the hidden layer of 

the time immediately before into input data of the current 

time. RNN has been well suited to learn short-term 

dependency in time series data. However, it was difficult to 

learn long-term dependency because the computational 

complexity increases explosively. In contrast, LSTM allows 

learning long-term dependency as well as short-term 

dependency by introducing three gates (input gate, output 

gate and forget gate) in order to select or regulate information 

[13]. 

 

IV. METHOD 

The method is composed of the three steps, 1) training data 

preparation, 2) model learning, and 3) abnormal wave 

detection. 

 

A. Training data preparation 

Figure 2 illustrates how to create the training data. 

Training data is created using ECG dataset of healthy 

subjects. Hereafter, this ECG data is referred as healthy data. 

First, detrending process and smoothing process are 

performed to remove trend and noise of the healthy data. 

Next, basic waves are extracted from the healthy data. Each 

basic wave includes 650 data points that cut out from 250 

points and 399 points before and after the R wave. 

Subsequently, the amplitude values of each basic wave are 

normalized by Z-score. After that, for each basic wave, 

subsequences are generated by shifting the window with the 

width W by S points from the start point. Each subsequence is 

represented by a W-dimensional vector concerning the closed 

interval of [(i-1)*S, (i-1)*S+W] (i=1, 2,…, (650-W)/S+1). In 

this vector, each dimension shows a time point in a closed 

interval, and each element corresponds to normalized 

amplitude in a time point. The W-dimensional vectors are 

used as the training data of the model. 

 

 

B. Model learning 

Our aim is to divide an ECG data into subsequences and 

simultaneously learn the shapes and those temporal changes. 

This is realized by the introducing LSTM into AutoEncoder. 

Namely, AutoEncoder (the convolution layer) extracts the 

shape feature of the subsequences, and LSTM learns the 

temporal relevance between continuous subsequences. This 

model is composed of the feedforward process and the 

backpropagation process as described below.   

Figure 3 illustrates the schematic diagram of the model 

learning. Input to the model is a W-dimensional vector, i.e., a 

subsequence cut out from a basic wave. The feedforward 

process is executed in the following procedure. First, the 

convolution layer is performed for the dimension reduction 

and feature extraction. Next, the output from the convolution 

layer is input to the LSTM layer, where the relevance with the 

preceding subsequences is also considered. The fully 

connected layer receives the output from the LSTM layer and 

outputs a W-dimensional vector. Subsequently, the mean 

squared error between the input vector and the output vector 

is calculated in order to utilize in the backpropagation 

process. The backpropagation process is performed after the 

feedforward process of subsequences for each basic wave. In 

this process, first, the sum total E of the mean squared errors 

is calculated. Next, E is minimized by the back propagation 

process in order to bring output vector closer to input vector.  

 

 
Fig. 2.  Training data preparation. 

  

 

 
Fig. 3.  Model learning 
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C. Abnormal wave detection 

Figure 4 illustrates the procedure of detection of abnormal 

waves in ECG data. Test data for abnormal wave detection is 

created in the following procedure. First, detrending process 

and smoothing process are performed to remove the trend 

and noise of the test ECG data. Next, the amplitude values of 

the ECG data are normalized by Z-score. After that, 

subsequences are generated by shifting the window with the 

width W by S points from the start point of the ECG data. 

Each subsequence is represented by a W-dimensional vector 

concerning the closed interval of [(i-1)*S, (i-1)*S+W] 

(i=1,2,…,(TestData.length-W)⁄S+1). In this vector, each 

dimension shows a time point in a closed interval, and each 

element corresponds to normalized amplitude in a time point. 

The W-dimensional vectors are input one by one to the model 

as a test data. Output from the model is also W-dimensional 

vector.  

Subsequently, for each output vector, similarity score with 

input vector is calculated. If the similarity score is under a 

threshold θ, then the output vector (the subsequence) is 

judged as being abnormal. In the creation of the test data, 

there exist intervals in which subsequences overlaps for each 

other by the window shift. Thus, different judgement results 

might be obtained between two subsequences. In this case, if 

either or both of two subsequences are normal, the interval is 

judged as being normal. 

V. EXPERIMENTS 

A. Datasets 

ECG data was acquired from the public database, 

PhysioBank [14]. As the training data, 20 healthy data was 

collected from the database, and 200 basic waves were 

extracted. As the test data, an abnormal ECG data of a 

myocardial infarction (MI) patient was used. This data shows 

repetitive abnormality called T-wave inversion in the basic 

waves [15]. In this experiment, we used ECG data of the lead 

II that shows clear signals and is commonly used for 

diagnosis of heart disease.  

 

B. Parameter settings 

The model was constructed using the free software 

Chainer [16]. Table 1 shows the parameters and functions of 

the model. Window width W and shift width S were set to 50 

and 25, respectively. 

 

C. Evaluation 

In this evaluation, the interval of T-wave was regarded as 

abnormal wave. Detection accuracy of the abnormal waves 

was computed by the following three indexes. 

 

Precision = CDP / DDP (1) 

Recall = CDP /EDP (2) 

F-measure =  (3) 

Here, CDP is the number of correctly detected abnormal 

intervals, DDP is the number of abnormal intervals detected 

by the method, and EDP is the total number of abnormal 

intervals. 

Judgement of abnormality was performed based on the 

Euclidian similarity between input subsequence and output 

subsequence. Euclidian similarity Sim( )  is calculated as 

follows. 

 (4) 

 

Here,  and  are input vector and output vector, 

respectively, and d( ) is the Euclidian distance between   

and . 

In this evaluation, we show the results of detection 

accuracy when changing in the range from θ = 0.1 to θ = 0.9. 

 

VI. RESULTS AND DISCUSSION 

A. Visualization of abnormal wave detection 

In this section, we compare the output results between our 

method and an existing LSTM-based method [1]. Figure 5 

shows the visualization results of the two methods. Figure 5a 

is the result when a normal ECG data is input. From this 

figure, we see that the normal ECG data can be almost 

reconstructed in the both methods, i.e., no abnormal waves 

are detected. Figure 5b is the result when an ECG data with 

abnormality (T-wave inversion) is input. In this figure, we 

can see that our method outputs distorted waves around the 

T-wave. This is because our model is designed so as not to 

reconstruct abnormal waves. Thus, it enables us to 

discriminate   interval of   abnormal   waves.   In contrast, the 

TABLE I 

PARAMETERS AND FUNCTIONS 

Types of 

Layers 

# of Nodes 

(Input layer) 

# of Nodes 

(Output layer) 

Activation 

Function 

Filter 

size 

Convolution 

Convolution 

Convolution 

Convolution 

LSTM 

FC 

1ch×50 
4ch×47 
8ch×44 
4ch×41 

38 
38 

4ch×47 
8ch×44 
4ch×41 
1ch×38 

38 
50 

ReLU 

ReLU 

ReLU 

Sigmoid 

- 

- 

4 

4 

4 

4 

- 

- 

Loss Function : Mean Squared Error 

Optimizer : Adam 

 

 

 
Fig. 4.  Abnormal wave detection 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



 

 

LSTM-based method reconstructs abnormal ECG data as it 

is. This means that the abnormal waves cannot be recognized.   

 

B. Detection accuracy 

 Figure 6 shows the detection accuracy of abnormal waves 

by our method. The horizontal axis is θ, and the vertical axis 

is accuracy score of each index. Precision decreases with 

increase of θ. This is because, in larger θ, normal waves are 

incorrectly detected as abnormal waves. Recall increases 

with increase of θ. This is because, in larger θ, abnormal 

waves are easy to be detected. F-measure is an index showing 

balance of precision and recall and takes the maximum value 

(= 0.57) in θ = 0.6. In this condition, the precision and the 

recall are 0.50 and 0.66, respectively. Namely, there exist 

misdetections of 50% for precision and 34% for recall. This 

reason is discussed below. Figure 7 visualizes the detection 

result in θ = 0.6. The shaded part is the region detected as 

abnormal waves. As seen in this figure, all the R waves, 

which are normal waves, are incorrectly judged as abnormal 

waves. It is one of the major causes of decreasing the 

precision. Such misdetection is caused due to large 

dispersion of amplitude of R wave among subjects/patients. 

To solve this problem, it is necessary to introduce the 

preprocessing of R wave. In this study, abnormal wave in the 

test ECG data is defined as the interval of T-wave. Namely, 

abnormal interval is widely set than actual one. This is one of 

the major causes of decreasing the recall. Hence we think that 

recall can be improved by reconsidering the evaluation 

method. 

 

VII. CONCLUSION 

In this paper, we proposed a new method for detecting 

interval of abnormal wave from ECG data. This method was 

based on the deep neural network model that performs 

learning of wave’s shape by AutoEncoder and learning of 

temporal relevance between waves by LSTM. In the 

experiments, the ECG data of a myocardial infarction patient 

was used to evaluate the detection accuracy of abnormal 

waves. As a result, the following conclusions were obtained; 

1)  This method was able to detect periodic abnormal 

waves that were not able to be detected by the existing 

method based on LSTM [1]. 

2) Although the results did not show sufficiently high 

accuracy, it can be improved by modifying the preprocessing 

of ECG data and the evaluation method of detection 

accuracy.   

In the future, we will tackle the problem of the above 2) 

and apply the method to other ECG data. 

 

 
a) Output results when normal ECG data is input 

 

 
b) Output results when abnormal ECG data is input 

Detected abnormal waves are surrounded by the frame. 

 

Fig. 5. Visualization results of the two methods 

 

 

  

 
Fig. 6.  Detection accuracy 

  

 
Fig. 7.  Detection result in θ = 0.6 
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