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Abstract—Many studies have been done with the security of
cloud computing. Though data encryption is a typical approach,
high computing complexity for encryption and decryption of
data is needed. Therefore, safe system for distributed processing
with secure data attracts attention, and a lot of studies have
been done with them. SMC (Secure Multiparty Computation)
is one of these methods. So far, most of works for ML (Machine
Learning) with SMC are ones with supervised and unsupervised
learning such as BP (Back Propagation) and K-means methods.
Then, in the case where learning data does not exist explicitly
like reinforcement learning (RL), how should it be done? We
already proposed some algorithms of Q-learning and PS (Profit
Sharing) learning for SMC in previous papers. However, they
were methods using digital models. On the other hand, solutions
for analog models are desired in the real world. In this paper, we
propose SMC algorithms for Q-learning in the analog model
and show their effectiveness. The idea is that in the digital
model, only one behavior is selected at each time, whereas in
the analog model it is decided as a combination of a plural of
weighted actions.

Index Terms—cloud computing, secure multiparty computa-
tion, Q-learning, analog model.

I. INTRODUCTION

W ITH increasing interest in Artificial Intelligence (AI),
many studies have been made with Machine Learning

(ML). With ML, the supervised, the unsupervised and RL
are well known. Recently, the importance of RL in AI is
increasing with the advancement of learning. Due to respond
to the increase in the amount of data or complex problems for
ML, the use of cloud computing systems is spreading. The
development of cloud computing allows the use such as big
data analysis to analyze enormous information accumulated
by the client, and to create market value of data [1]–[6]. On
the other hand, the client of cloud computing system cannot
escape from anxiety about the possibility of information
being abused or leaked. In order to solve the problem, data
processing methods can be considered such as cryptographic
one [1], [2]. However, data encryption system requires both
encryption and decryption for requests of client or user,
so its applications are limited. Therefore, safe systems for
distributed processing with secure data attract attention, and
a lot of studies with them have been done. It is known

Affiliation: Faculty of Informatics, Okayama University of Science, 1-1
Ridaicho, Kitaku, Okayama, 700-0005, Japan

corresponding auther to provide email: miya@mis.ous.ac.jp
†1 email: miya@mis.ous.ac.jp
Affiliation: Kagoshima University, Kagoshima, Japan
†2 email: shigei@eee.kagoshima-u.ac.jp
†3 email: miya@eee.kagoshima-u.ac.jp
Affiliation: Research and Development Initiative, Chuo University, Tokyo,

Japan
†4 email: norio@shiratori.riec.tohoku.ac.jp
This work was supported in part by the JSPS KAKENHI GRANT

NUMBER JP17K00170.

that SMC’s idea of distributing learning data among multiple
servers is one method to realize this [3], [4]. As for SMC,
many methods of learning by sharing learning data into
partial subsets have been proposed [3]–[6]. Then, in the case
where learning data does not exist explicitly like RL, how
should it be done? We have proposed an applicable model
also in this case. The idea is to divide not only learning data
but also learning parameters, find partial solutions at each
server, combine them and make it the solution of the system
[8]. Based on this idea, we already proposed some algorithms
of Q-learning and PS learning for SMC in previous papers
[9], [10]. However, they were methods using the digital
model. On the other hand, solutions to analog model are
desired in the real world [11], [12]. The latter gives a solution
closer to the optimal solution than the former.

In this paper, we propose SMC algorithms for Q-learning
in the analog model and show their effectiveness. The idea
is that in the digital model, only one action is selected at
each time, whereas in the analog model it is decided as a
combination of weighted actions. In Section 2, we explain
cloud computing system, related works on SMC and how
to share the data used in this paper. Further, a Q-learning
method in the analog model is introduced. In Section 3, we
propose two Q-learning methods in the analog model for
SMC. In section 4, numerical simulations for a maze problem
are performed to show the performance of proposed methods.

II. PRELIMINARY

A. Cloud system and related works with SMC

The system used in this paper is composed of a client and
m servers. Each data is divided into m pieces of numbers and
is sent to each server (Fig.1 for m = 2). Each server performs
its computation and sends the computation result to the client.
The client can get the result using them. If the result is not
obtained by one processing, then the multiple processing is
repeated. As for the cloud system, there are many methods
of secure preserving, but it seems that SMC method using
distributed processing is suitable for the system. In particular,
three types of conventional methods for partitioning data to
be securely shared are well known [3], [4]. They are known
as horizontal, vertical and arbitrary partitioning methods. In
the following, the horizontal method is only explained by
using a data example of students’ marks shown in Table I.
See Miyajima [8] about the detailed explanation. In Table I,
a and b are original data (marks) and ID is the identifier of
student. The number of servers is two. The assumed task is
to calculate the average of data. The horizontal partitioning
method assigns the horizontally partitioned data to servers
as follows :

Server 1 : data for ID = 1, 2
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TABLE I
CONCEPT OF HORIZONTALLY AND VERTICALLY PARTITIONED METHODS

COMPOSED OF ONE CLIENT AND TWO SERVERS.

Server 2 : data for ID = 3, 4
In the method, Server 1 computes two averages for sub-

jects A and B as (22+ 24)/2 and (32+ 37)/2, respectively.
Likewise, Server 2 computes two averages for subjects A
and B as (40+13)/2 and (40+45)/2, respectively. Servers
1 and 2 send calculated averages to the client and the
client obtains the averages of subjects A and B as 24.75
and 38.5, respectively. Since each server cannot know half
of the dataset, the method preserves privacy (See Table I).
Remark that each server also cannot know the result when we
consider average values as unknown parameters. The vertical
partitioning method is one of processing data for each subject
(See Table I). The third method, the arbitrary partitioning
method, splits horizontally and vertically the dataset into
multiple parts, and the method assigns the split parts to the
servers. For any of the above mentioned methods, if the
number of servers is fewer, that is, the size of a partitioned
data is larger, any server may more easily guess the feature
of all the data from its own subset of data. Therefore, the
methods need a large number of servers in order to keep
privacy and security. On the other hand, the method explained
in the next section divides each item of data and seems to
keep them even in the case of a small number of servers.

B. Secure divided data for SMC and their application to
machine learning

Let us explain secure divided data for the proposed method
using Table II [8]. Let a and b be two marks and m = 2 (See
Fig.1). Assume that the addition form is used for dividing
each item. For example, two marks a and b are divided into
two real numbers as a = a1+a2 and b = b1+ b2 as follows:
a = a1 + a2 : a1 = 1(r1/10), a2 = a(1− r1/10)
b = b1 + b2 : b1 = b(r1/10) and b2 = b(1− r1/10)
where r1 is a real random number for −9≤r1≤9. If r1 = −1,
then a1 = 0.2 and a2 = −2.2 are obtained. Remark that
Server 1 and Server 2 have all the data in column-wise of
a1 and b1 and a2 and b2 for each ID as shown in Table II,
respectively.

Let us explain how to compute the average for subject A
using data a. Server 1 and Server 2 compute the average of
a1 and a2, respectively. In this case, each average in column-
wise for a1 and a2 is 1.8 and −4.8, respectively. As a result,
the average is obtained as −3 from 1.8− 4.8.

Remark that each data for server is randomized and the
method does not need to use complicated computation as the
encryption system.

Let us explain about the application of secure divided data
to ML. In the conventional methods, the set of learning data

Fig. 1. An example of secure shared data for m = 2.

TABLE II
DATA FOR SERVER 1 AND SERVER 2.

Additional form
ID subject A subject B a b

a b r1 a1 a2 b1 b2

1 -2 -6 -1 0.2 -2.2 0.6 -6.6
2 -8 2 -6 4.8 -12.8 -1.2 3.2
3 1 -9 5 0.5 0.5 -4.5 -4.5

Server 1 1.8 -1.7
Server 2 -4.8 -2.6
average -3 -4.3

for ML is shared into some subsets. On the other hand,
the proposed one divides each item of the learning data
into plural pieces and processes them. From the point of
view, SMC algorithms for supervised learning such as BP
method and unsupervised learning like k-means method were
proposed [8]. Then, how is the algorithm of RL for SMC?
In this case, as there do not exist learning data explicitly,
the solution is obtained by repeating trial and error. Since
there is no data for learning, it seems that the conventional
method using subset of learning data is difficult to use. On
the other hand, several methods on privacy preserving for
RL have been proposed, but these are almost all methods
using encryption and homomorphic mapping [13], [14]. The
proposed method attempts to realize SMC by simple secret
computation processing which does not use such complicated
cryptographic processing and homomorphic mapping. That
is, the aim to reduce the computational complexity of client
while keeping the secret of data (Q-value information in
this case). In previous papers, we have already proposed
Q-learning and PS methods for SMC in the digital model
[9], [10]. In the next section, learning methods using secure
divided data in the analog model are proposed.

C. Q-learning methods in the digital and analog models

First, let us explain about the Q-learning algorithm in the
digital model. The Q-learning is one of RL techniques for
environment-identity type [11]. It can be used to find an
optimal action-selection policy for a given Markov Decision
Process (MDP). In solving problems using Q-learning, it is
determined how the agent selects an action at any state. It
is performed by learning an action-value (Q-value) function
that gives the expected utility of taking the action for the
current state [11], [12]. The Q-value function is defined
as a function Q : S×A→R, where S, A and R are sets
of states, actions and real numbers, respectively. First, let
all Q-values be 0. Then each action for a state is selected
randomly. Boltzmann or ε-greedy method is used as the
method selected data randomly as shown later. If a desired
solution for the problem is not obtained, learning is iterated.
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In the Q-learning, the action is selected based on the Q-
value function. If a solution is obtained, Q-values are updated
based on the updated formula. By iterating these process, it is
known that Q-value function is updated and converges [11].
In the first part of learning, the action for the state is selected
randomly and the action becomes decidable as learning steps
proceed.

In learning step, Q-value function is updated as

Q(s, a)←Q(s, a) + α△ (1)
△ = r + γmax

a′∈A
Q(s′, a′)−Q(s, a) (2)

where r, α and γ are the reward, learning constant and dis-
count rate, respectively. The state s′ is the next state selected
for the state s and the action a. The term maxa′∈A Q(s′, a′)
means the Q-value Q(s′, a′0) for an action a′0 taking the
maximum number of Q(s′, a′). See the Ref. [9] about the
example of Q-learning in the digital model.

Let us think about the analog model of Q-learning. Let
us explain using an example of maze problem to make the
story easy to understand. The problem is how the agent can
arrive in the shortest path at the goal from the start point (See
Fig.2). In the digital model, one of actions at each position is
selected. Therefore, the path obtained becomes a zigzag path
as behavior. However, in the real problem, it is desirable to
get smooth path. An analog model is proposed as a model to
realize all directions for behavior (action). Several methods
have been proposed for Q-learning for the analog model.
Here, we introduce a learning method that determines the
action based on the distance between the current position and
state (position) of the agent. That is, while hard selection for
the action in the digital model is performed, the introduced
method achieves a soft matching selection for the action. Let
us explain how to select the action of Q-learning in the analog
model using Fig.2. Assign n states (the center position c) in
the space where the agent moves.

Let d be the current position of the agent. First, the
distance Dj(d) between d and the center position cj of each
state for 1≤j≤n is computed as follows:

Dj(d) = exp

(
−||d− cj ||2

2b2j

)
(3)

where exp(·) means the Gauss function with the width bj .
Remark that Dj(d) is large if the distance between d and
cj is near.

Next, the action a∗
j for each state sj is selected as the

action with the maximum number of Q-value (See Fig.2) and
the degree µj of coincide between d and sj is computed as
follows:

µj(d) =
Dj(d)∑n
i=1 Di(d)

for 1≤j≤n (4)

and
n∑

j=1

µj(d) = 1 (5)

Further, the action a∗ for the agent is determined as the
composition of vectors as follow:

a∗ =
n∑

j=1

µja
∗
j (6)

Fig. 2. The method to determine the action in the analog model.

As a result, the agent at the position d moves in the
direction of a∗ and arrives at the new position d′. In this
case, the moving distance is selected randomly.

The conventional algorithm for Q-learning is shown as
follows :
[Q-learning algorithm for the analog model]
d : the current position.
d0 : the initial position.
Q(s,a) : Q-value for the state s and the action a.
S : The set of states.
A : The set of actions.
tmax : The maximum number of learning time.
Tmax and Tmin: Constants for Boltzmann selection.
cj : The center position of the state sj for 1≤j≤n.
Dj(d) : The distance between the state sj and the place d
for Eq.3.
ε : The probability for ε-greedy selection method.
p : The real number selected randomly from the interval
0≤p≤1.
Step 1

Let R+ and R−, α and γ be plus and minus reward,
learning constant and discount rate. Let S and A be defined.
Let Q(s,a) = 0 for s∈S and a∈A. Let t = 0. (Let ε be
defined for ε-greedy selection method.)
Step 2

Let d←d0 be the start position.
Step 3

The distance Dj(d) and the degree µj for 1≤j≤n are
computed from Eqs.3 and 4.
Step 4 (In the case of Boltzmann selection method)

The action a∗
j at the state sj is selected based on the value

B(sj ,a) as follows :

B(sj , a) =
exp (Q(sj , a)/T )∑
b∈A exp (Q(sj , b)/T )

(7)

T = Tmax×
(
Tmin

Tmax

) t
Tmax

(8)

Let a∗j be the selected action based on Eqs.7 and 8.
That is, the action a∗

j from the set A is selected with the
probability B(sj , a).
Step 5

The action a∗ at the place d is computed using Eq.6.
Let d′ be the next position determined from the action a∗.

Step 6
Each value of Q(sj , a

∗
j ) for the state sj and the action a∗j

is updated as follows :
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Q(sj ,a
∗
j )←Q(sj ,a

∗
j ) + µjα(r +△) (9)

△ =
n∑

j=1

{γµ′
j max
a′
j
∈A

Q(s′j , a
′
j)− µjQ(sj , a

∗
j )} (10)

, where µ′
j , s′j and a′j are parameters for d′ and if d′ is in

the goal area, then r = R+ and go to Step 7 else if d′ is not
in the movable place(state), then r = R− and go to Step 3
else r = 0 and go to Step 3.
Step 7

If t = tmax then the algorithm terminates else go to Step
3 with t←t+ 1.

If the ε-greedy method is used instead of Boltzmann
selection, Step 4 is replaced with the following Step 4’ :
Step 4’(In the case of the ε-greedy selection method)

Let p be the real number randomly selected. The action
a∗j for the state sj is selected based on ε-greedy selection as
follows :

a∗
j =

{
a s.t. maxa∈A Q(sj ,a) for p≥ε (a)
randomly selected for otherwise (b)

(11)

That is, if p is greater than or equal to ε, then the action
a∗
j satisfying the condition of Eq.11(a) is selected otherwise

the action a∗
j is randomly selected.

III. Q-LEARNING FOR SECURE MULTIPARTY
COMPUTATION IN THE ANALOG MODEL

In Q-learning for SMC on cloud system, Q-values are
divided to each server in addition form . Each server updates
divided Q-values and sends the result to the client. The client
can get new Q-values by adding the results of m servers. The
process is iterated until the evaluating value for the problem
satisfies the final condition. The problem is how Q-values on
the client are updated using Q-values divided on each server.
The divided representation of Q-value is given as follows :

Q(s, a) =
m∑

k=1

Qk(s, a) for s∈S and a∈A (12)

In the following, two learning methods are proposed.
The proposed methods can be easily applied to other Q-

learning algorithms in the analog model.

A. Q-learning for SMC

The first algorithm using Boltzmann (ε-greedy) selection
method is shown in Table III. The initial values of client
and servers are set in Initializing Step. In Step 1, the initial
position is set. In Step 2, the distance Dj(d) and the degree
µi for the current position d and each center position cj of
state sj for 1≤j≤n are computed. In Step 3, the action a∗

j for
the state sj is selected based on Boltzmann selection method.
Further, the next action a∗ is determined as the vector sum
of a∗

j for 1≤j≤n and the new position d′ is obtained from
the action a∗. Furthermore, the degree µj

′ of coincide for
the position d′ is computed from d′ and sj (1≤j≤n). In Step
4, the updating rate △k

b for b∈A and 1≤k≤m is computed

in each server. In Step 5, the updating rate △∗ is computed
using △k

b for b∈A and 1≤k≤m. Further, the updating rate
ξk for each server is determined using βk(sj ,a

∗
j ) and △∗. It

means to divide △∗ into m pieces of numbers. In Step 6, the
Q-value Qk(sj ,a

∗
j ) for each server is updated. In Step 7 and

Step 8, it is checked if the final condition satisfied or not. If
the final condition is not satisfied, then the next episode is
iterated. The algorithm is called M1 method.

B. Q-learning with dummy updating

In M1 method, designated Q-values are updated based on
µj for 1≤j≤n. Therefore, there is the possibility that the
server knows information on which Q-value is important. In
order not to inform the server of the update information,
an improved method with dummy updating is proposed in
which all the Q-values are updated.

The fundamental idea of Q-learning with dummy updating
is that all Q-values are updated at each step. Therefore, it
seems that each server cannot know which Q-value is im-
portant or not. Let us explain the improved M1 method. The
number pk(s,a) is randomly selected such that |pk(s,a)|≤1
and ηk(s,a) is calculated as follows :

ηk(s,a) =


pk(s,a)∑m

l=1
pl(s,a)

for s = sj and a = a∗
j (A)

for 1≤j≤n
pk(s,a)∑m

l=1
pl(s,a)

− 1
m for otherwise (B)

(13)

where s = sj and a = a∗j for 1≤j≤n are selected states and
actions.

Remark that each case of A and B for Eq.13 holds∑m
k=1 ηk(s,a) = 1 and 0 for s∈S and a∈A, respectively.

That is, all Q-values for states and actions are randomly
updated using pk(s,a) and each server cannot know which
Q-value is import or not at each step.

In the improved method, Steps 8 and 9 of Table III are
changed as follows :
Step 8 (Client)

Calculate ηk(s,a) of Eq.13 for s∈S and a∈A. Let
ξk = αηk(s,a)△∗ for 1≤k≤m. Send ξk for 1≤k≤m to
each server.
Step 9 (k-th Server)

The Q-value Qk(sj , ai) is updated as follows :

Qk(sj , ai)←Qk(sj , ai) + µjξk (14)

The algorithm is called M2 method.

IV. NUMERICAL SIMULATIONS FOR THE PROPOSED
ALGORITHMS

In numerical simulations, the problem is to find the
shortest path for the agent from the start position to goal
area by Q-learning methods (See Fig.3). In Fig.3, the agent
can go to any position except for black and outer areas. In
order to find the shortest path, the agent iterates trials to
move from the start to goal area based on each algorithm.
The simulation conditions are as follows:
1) Let the start position d0 = (1, 1), black(wall) area
B = {(x1, x2)∈R2|4≤x1, x2≤6} and the goal area
{(x1, x2)∈R2|9≤x1, x2≤10}, where R is the set of all real
numbers.
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TABLE III
M1 METHOD OF Q-LEARNING FOR SMC.

Client k-th Server (1≤k≤m)
Initialization The numbers R+, R−, r, α and γ are given. Let t = 0. Let Qk(s, a) = 0 for s∈S and a∈A.
Step 1 Let d←d0.
Step 2 Calculate Dj(d) and µj for d and cj(1≤j≤n).
Step 3 Send all Q-values Qk(s,a) for s∈S and a∈A to the client.
Step 4 Calculate Q(s,a) =

∑m

k=1
Qk(s,a) for s∈S and a∈A.

Select the action s∗j for the state sj based on Boltzmann
selection of Eq.(7). Let a∗ =

∑n

j=1
µja

∗
j be the vector

sum of a∗
j (1≤j≤n). Let d′ be the next position determined

by a∗. The degree µ′
j of coincide between d′ and sj for

1≤j≤n is computed.
Step 5 If the position d′ is possible(movable), then send the degree

µj and µj for 1≤j≤n to each server else go to Step 4.
Step 6 Calculate △k

b = rµ′
jQk(s

′
j , b)− µjQk(sj , a

∗
j ) for 1≤j≤n

and send them to client.
Step 7 Calculate △b =

∑n

k=1
△k

b and △∗ = r +maxb∈A△b

and send r +△∗ to all servers, where r = R+, R− and
0 if d′ is in goal, not in movable position and otherwise,
respectively.

Step 8 Select m pieces of random numbers βk(s, a)
s.t.
∑m

k=1
βk(s, a) = 1. Let ξk = αβk(sj , aj)△∗ for

1≤k≤m. Send ξk for 1≤k≤m to each server.
Step 9 The Q-value Qk(sj , a

∗
j ) is updated as follows :

Qk(sj , a
∗
j )←Qk(sj , a

∗
j ) + µjξk

Step 10 If d′ is in goal state, then go to
Step 11 else go to Step 2 with d←d′.

Step 11 It t = tmax then the algorithm terminates
else go to Step 1 with t←t+ 1.

Fig. 3. The figure for the maze problem.

2) Let A = {0, π
2 , π,

3π
2 } and the set of central positions

C(S) = {(x1, x2)∈Z2|1≤x1, x2≤9}−B, where each of the
set A means four directions up, down, right and left on Fig.3,
and Z is the set of all integers. Let n = |C(S)|. The states
are arranged in a lattice pattern at regular intervals.
3) Let Tmax = 5.0 and Tmin = 0.03 for Boltzman selection
and ε = 0.1 for ε-greedy selection.
4) The moving distance h for the agent at each position
d is selected randomly for 0.01≤h≤0.5 and the action is
determined by each algorithm.
5) If the agent selects to move to wall or outer area, the
agent ignores the selection and reselects a new action, where
r = −1 is given as the negative reward. It is not counted in
the number of trials.
6) If the agent arrives at the goal area in the maximum
number of learning time, then the agent starts the new trial,
where the reward r = 1 is given as the positive reward.
7) Let tmax = 10000, r = 10, α = 0.5, γ = 0.92, and m = 3
and 10. Twenty trials for learning and test are performed for
each algorithm.
8) In the test simulation, experiments are carried out with

five positions as the starting points as shown in Fig.3. The
result is evaluated as the rate of the number of success trials
and the average of moving distance from each starting point
to goal area.

Figs.4 and 5 show the efficiency graphs. They represent
the moving distance to the learning time. In Figs.4 and 5,
the conventional (ε-greedy or Boltzmann), M1 for m = 3
and 10, and, M2 for m = 3 and 10 mean the conventional
algorithm with ε-greedy or Boltzmann as selection method,
proposed algorithms for M1 with m = 3 and 10, and for
M2 with m = 3 and 10, respectively. All the results are
almost the same as the conventional cases. Table IV shows
the results of the test simulation, where Tests 1 to 5 mean
the cases with different starting points as shown in Fig.3. In
Table IV, No. Suc. and M.D. mean the number of success
trials for twenty trials and the average of moving distance for
success trials. Further, the result on each server means one in
the cases where the same trials are performed using only Q-
values of each server. For example, 0.95 of No.success and
9.83 of M.D. for Test 1 of client in the conventional method
mean 19/20 and 9.83 steps as the average for 20 trials to the
goal from the start point of Test 1. All the results for client
are almost the same as the conventional. As for servers, trials
only using server’s information are almost unsuccessful and
a lot of times are needed even in the successful cases.

Finally, let us explain about the result of selection meth-
ods. The ε-greedy method is in learning time faster than
Boltzmann method. But, Boltzmann method is superior in
accuracy of the test simulation to ε-greedy method. There-
fore, we showed the result of Boltzmann selection method
in the result of test simulations.

V. CONCLUSION

In this paper, we proposed Q-learning algorithms in the
analog model for SMC and the effectiveness of them were
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TABLE IV
THE RESULT OF OPTIMALITY OF Q-LEARNING.

Test 1 Test 2 Test 3 Test 4 Test 5
No.Suc. M.D. No.Suc. M.D No.Suc. M.D No.Suc. M.D No.Suc. M.D

Conventional Client 0.95 9.83 1.0 9.62 1.0 5.71 1.0 11.06 0.95 12.75
(m = 3) Client 1.0 10.75 1.0 9.70 1.0 7.00 1.0 11.20 0.95 11.95

M1 Server 1∼10 0.05 0 0.13 0.10 0.05
(m = 10) Client 0.95 10.31 1.0 10.17 1.0 5.66 1.0 11.24 1.0 11.47

Server 1∼10 0 0 0.05 0 0
(m = 3) Client 0.95 9.75 1.0 9.34 0.95 5.34 1.0 11.23 1.0 18.46

M2 Server 1∼10 0 0 0.05 0.05 0.05
(m = 10) Client 1.0 10.32 1.0 9.83 1.0 5.29 1.0 10.72 1.0 11.46

Server 1∼10 0 0.05 0.025 0.05 0.05

Fig. 4. The result of efficiency of Q-learning for SMC.

Fig. 5. The result of efficiency of Q-learning for SMC.

shown in numerical simulations. In Section 2, cloud com-
puting system, related works on SMC and a secure data
dividing mechanism used in this paper were explained.
Further, Q-learning methods in the digital and analog models
are introduced. In Section 3, Q-learning methods in the
analog model for SMC were proposed. First, a Q-learning
algorithm in the analog model was proposed using divided
Q-values and the effectiveness was shown. The feature of
Q-learning method for the analog model was that the action
was selected as the weighted sum of plural actions. In
the proposed algorithm, there was the possibility that some

servers know secure computation. Therefore, an improved
Q-learning algorithm in the analog model was proposed. It
was the method with dummy updating and it seems that any
server is difficult to know secure computation. In section 4,
numerical simulations for a maze problem were performed
to show the performance of proposed methods. In the future,
we will reduce the computational complexity of the client
and show the safety of algorithms for SMC in theoretical
proof.
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