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Abstract—This paper presents an LQR based PID controller
to control the inverted pendulum system. The control design
employs a control zoning approach whereby the entire pendu-
lum system is divided into two regions: a normal pendulum
region and the inverted pendulum region where the system
is approximately linear close to the upright position. The
LQR architecture is used to obtain optimal gains for the PID
controller. An algebraic approach is also presented for selection
of Q and R matrices. Experimental implementations with a
PLC based system show that the computed gains yield the
most stable controlled responses compared to the gains chosen
through trial and errors.

Index Terms—LQR control, PID control, PLC, Inverted
Pendulum

I. INTRODUCTION

THE classical Proportional Integral Derivative (PID)
controller has remained the most popular industrial

controller over the last six decades, despite the enormous
hosts of development over the same period [1]. Various PID
tuning methods have been developed by a number of re-
searchers in the last 40 years. Developments in evolutionary
algorithms and particle swarm optimization have led to the
application of these methods for PID tuning [2], [3]. Other
PID tuning approaches include the direct search algorithms
and online optimization based approaches [4], [5]. Although
these methods have resulted in the automatic tuning of
the PID controllers, they require significant computational
loading, and are not suitable for real time applications.

The Inverted Pendulum system is an inherently unstable
system which is coupled with highly nonlinear dynamics.
This feature alone makes the inverted pendulum system a
challenging one, and also making it a primitive benchmark
for comparing the various control approaches. Several ad-
vanced control designs have been presented, including fuzzy
logics [6], [7]. These approaches however, require large
training sets, and for the case of fuzzy based designs, a large
set of rules which further complicates the control for higher
order systems.

The Linear Quadratic Regulator (LQR) is well known in
modern control, and besides the PID has been widely used.
The LQR is used to obtain maximal performance of the
system by minimizing the cost function relating the states
and the control input. Through the use of optimal control
theory, LQR is reduced to the solving of Algebraic Riccati
Equation (ARE) to obtain the transformation matrix P. The
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weight matrices Q and R are usually obtained through trial-
and-error and thus sub-optimal. Bryson [8] developed the
iterative tuning algorithm for selecting Q and R. Kumar [9]
developed an algebraic method of selecting the Q and R
matrices for a 3×3 system. This work extends this method to
a 5×5 system for the application of controlling the nonlinear
inverted pendulum system. Furthermore, to ensure simplicity
of the controller designs, a control-zoning approach is also
employed.

II. METHODOLOGY

A. The LQR controller outline

Consider the following linear-time invariant system de-
scribed in the state-space form defined:

ẋ = Ax+ bu (1a)
y = Cx (1b)

x ≡ [x1, x2, . . . , xn]
T ,x0 ≡

[
x10, . . . , xn0

]T
(1c)

where xi = xi(t), i=1,...,n is a quantity of state i at time
t (s), x is the n × 1 state vector, x0 is the initial state
vector, y is the measurement state vector, u is the input.
The main assumption here is that the input u is time-
dependent only, and does not depend on x0. The conventional
Linear Quadratic Regulator (LQR) control seeks an optimal
controller uopt that minimizes the cost function:

J =

∫ ∞
0

xTQx+ uTRu dt (2)

where Q = QT is a positive semidefinite matrix, and R is
a positive definite matrix. Matrix Q is the matrix penalizing
the deviation of the states from the equilibrium, while matrix
R is the matrix penalizing the control input size.

Through the use of optimal control theory, the optimal
gain vector K is given by:

K = R−1BTP (3)

where matrix P(n×n) is the solution of the algebraic Riccati
Equation defined:

ATP+PA+Q−PBR−1BTP = 0 (4)

The selection of matrices Q and R have great bearings
on the resulting controller being designed. If these matrices
are simply chosen as simple diagonal matrices, the quadratic
performance index of Equation (2) is thus the weighted
integrals of the squared errors of the states and inputs. In
practice these matrices are usually chosen arbitrarily first,
then undergo manual tuning by trial and errors to achieve the
required response. To save time and thus avoid this scenario,
the following section gives an algebraic procedure for solving
for these matrices explicitly for a fifth order system.
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B. Algebraic method for selecting the Q and R matrices

Consider a specific fifth order state space system with the
following state matrices:

A =


0 1 0 0 0
0 a22 0 a24 0
0 0 0 1 0
0 0 0 0 1
0 a52 0 a54 0

 , B =
[
0, b2, 0, 0, b5

]T
(5a)

C =
[
c1, . . . , c5

]
(5b)

This state space representation is typical for optimal tuning
designs of PID controllers using the LQR theory. The pro-
cedure of LQR controller design requires the minimization
of the cost function J of Equation (2). The state feedback
control law that minimizes J is:

u = −Kx (6)

where the optimal gain vector K is given by Equation (3).
Suppose that the weight matrices Q and R, as well as the

transformation matrix P are chosen as defined:

Q =


q1

q2
q3

q4
q5

,P =


p11 p12 . . . p15
p21 p22 . . . p25
. . . . . . . . . . . . . . . . . . .
p51 p52 . . . p55


(7)

R = r (8)

where r is an arbitrarily chosen scalar. Consider now the
closed loop state equation defined:

ẋc = (A−BK)xc (9)

where xc is the closed loop state. For stability the eigenvalues
of the closed loop state transition matrix A−BK should all
be negative, in other words, all lie on the left hand plane in a
pole-zero diagram. The characteristic equation of the closed
loop state transition matrix is:

f(s) = p1s+ p2s
2 + p3s

3 + p4s
4 + s5 = 0 (10)

where:

p1 =
a22b2b5p23+a22b

2
5p35−a24b2b5p12−a24b

2
5p15

r

−a52b22p23−a52b2b5p35+a54b
2
2p12+a54b2b5p15

r (11a)

p2 =
−a22b2b5p24−a22b25p45+a24b2b5p22+a24b

2
5p25+a52b

2
2p24

r

a52b2b5p45−a54b22p22−a54b2b5p25
r

+a22a54r−a24a52r+b2b5p23+b25p35
r (11b)

p3 = −a22b2b5p25−a22b
2
5p55−b

2
2a52p25−a52b2b5p55−b

2
2p12

r

−b2b5p15−b2b5p24−b25p45+a54r
r (11c)

p4 = −−b
2
2p22−2b2b5p25−b

2
5p55+a22r

r (11d)

The desired characteristics of the fifth order system, for a
given ξ and ωn, can be written:

fdesired(s) = s(s+ ξωn)
2(s2 + 2ξωn + ωn)

2

= s5 + 4ξωns
4 + ω2

n(5ξ
2 + 1)s3

+ 2ω3
nξ(ξ

2 + 1)s2 + ω4
nξ

2s (12)

Equating the co-efficients of Equation (12) to Equations
(11a) - (11d), and assuming that p12, p13, p15, p24, p25, p45
and p55 are known, yields a system of three equations in three
unknowns, which is solved in Maple to yield the values for
p22, p23 and p35:

p22 = 1
b22(−a22b5+a52b2)

(
(−a22p55 + 2p45)b

3
5

+ 2( 12p55a52 + p24 + p15)b2b
2
5 + (2b22p12

− 10r( 1
10a

2
22 +

2
5ωnξa22 + (ξ2 + 1

5 )ω
2
n + 1

5a54))b5

+ 4a52r(ξωn + 1
4a22)b2

)
(13a)

p23 = 1
b22(−a22b5+a52b2)

(
− a24b45p45 − (p45a

2
22 − p35a22

+ (p15 + p24)a24 − p45a54)b2b35 + ((−p24a222
+ 2p45a52a22 − p12a24 − p35a52 + a54(p15

+ p24))b
2
2 + 5a24r((ξ

2 + 1
5 )ω

2 + 4
5ωξa22

+ 1
5a

2
22 +

1
5a54))b

2
5 − (2((−p24a22a52 + 1

2p45a
2
52

− 1
2a54p12)b

2
2 + (ξa22(ξ

2 + 1)ω3 + a54(
5
2ξ

2 + 1
2 )ω

2

+ 2ξ(a22a54 + a24a52)ω + a22a24a52 +
1
2a

2
54)r))b2b5

+ 2(− 1
2p24b

2
2a52 + ((ξ3 + ξ)ω3 + 2ωξa54

+ 1
2a24a52)r)a52b

2
2

)
(13b)

p35 = 1
b22(−a22b5+a52b2)

(
− b22p12 − b5(a52p55

+ p15 + p24)b2 + (a22p55 − p45)b25 + 5r((ξ2

+ 1
5 )ω

2 + 1
5a54)

)
(13c)

Consider now the element-wise form of the algebraic
Riccati Equation:


0 0 0 0 0
1 a22 0 0 a52
0 0 0 0 0
0 a24 1 0 a54
0 0 0 1 0



p11 p12 . . . p15
p21 p22 . . . p25
. . . . . . . . . . . . . . . . . . .
p51 p52 . . . p55



+


p11 p12 . . . p15
p21 p22 . . . p25
. . . . . . . . . . . . . . . . . . .
p51 p52 . . . p55



0 1 0 0 0
0 a22 0 a24 0
0 0 0 1 0
0 0 0 0 1
0 a52 0 a54 0



+


q1

q2
q3

q4
q5

− 1

r


p11 p12 . . . p15
p21 p22 . . . p25
. . . . . . . . . . . . . . . . . . .
p51 p52 . . . p55


×
[
0, b2, 0, 0, b5

]T [
0, b2, 0, 0, b5

]
×


p11 p12 . . . p15
p21 p22 . . . p25
. . . . . . . . . . . . . . . . . . .
p51 p52 . . . p55

 = 0 (14)

Note that since the weight matrix Q of Equation (7) is cho-
sen to be a diagonal matrix, only the diagonals of the matrix
Equation (14) are considered to simplify computations. This
simplification yields five equations in five unknowns which
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is readily solved for the elements q1, . . . , q5 in Maple:

q1 =
b2p12 + b5p

2
15

r
(15a)

q2 =
1

r
(−2a22p22 − 2a52p25 − 2p12)r

+ (b2p22 + b5p25)
2 (15b)

q3 =
b2p23 + b5p

2
35

r
(15c)

q4 = (−2a24p24−2a54p45−2p34)r+(b2p24+b5p45)
2)

r (15d)

q5 =
b22p

2
25 + 2b2b5p25p55 + b25p

2
55 − 2p45r)

r
(15e)

The optimal gain Kopt of Equation (3), in element wise form,
is now:

K =

[
b2p12+b5p15

r , b2p22+b5p25r , b2p23+b5p35r ,
b2p24+b5p45

r , b2p25+b5p55r

]T
(16)

where the elements are computed by substituting Equations
(13a) - (13c) into Equation (16).

III. RESULTS AND DISCUSSION

A. The Inverted Pendulum system setup

The setup of the inverted pendulum on a cart is shown in
Figure 1. The cart can move back and forth along a support
rail. The cart also has two wires, one is connected to the
servo driver (R88D-KP01H), which is in turn connected to
a PLC of Sysmac C-series CP1H 40 I/O model. The other
wire is connected to the encoder which is for feedback of the
cart position and velocity. The PLC sends out high frequency
pulse signals to command the position controller of servo to
achieve the required cart position and velocity. The system
is connected to CX programmer for access and changing the
controller gains via the PID(190) command of the PLC.
A PLC datalogging system is also used for data acquisition
and for viewing the control signals. Figure 2 shows the
interaction between the PLC and the servo motors. All data
are saved in a .txt file, and can be viewed in MATLAB.

Fig. 1. The inverted pendulum on a cart

B. The Inverted Pendulum Model

Consider an inverted pendulum suspended on a moving
cart as shown in Figure 3:

Fig. 2. The interaction between the PLC and the servo motors for the
inverted pendulum system

Fig. 3. The inverted pendulum on a cart

The differential equations governing the motion of the
inverted pendulum are defined:

(M +m)ẍ+ γ2ẋ = Fv +ml sin θ (θ̇)2 −ml cos θ θ̈ (17a)

(I +ml2) θ̈ = mgl sin θ −mgl cos θ ẍ (17b)

where M and m are the masses of the cart and pendulum re-
spectively (kg), l the pendulum length (m), g the gravitational
constant (m s−2), β1 the damping constant of the cart (kg m
s −1), Fv the applied force onto the cart, x the cart position
and θ the pendulum angle. Equations (17a) and (17b) can be
linearized to yield the following differential equations:

ẍ = −mg
M

θ − γ2
M
ẋ+

γ1
M
V (18)

θ̈ =
(M +m)g

ml
θ − γ2

Ml
ẋ− γ1

Ml
V (19)

Equations (18) and (19) can be expressed as state space
equations where the state matrices are:

A =


0 0 1 0
0 0 0 1
0 −mgM − γ2M 0

0 (M+m)g
ml − γ2

Ml 0

 , B =


0
0
γ1
M−γ1
Ml

 (20)

C. The Inverted Pendulum Control: Defining the control
regions

Equation (20) gives the linearized dynamical model equa-
tion of the inverted pendulum that assumes the value of θ
is small so that θ̇ =0. However, this assumption is generally
not true for most operating regions of the inverted pendulum,
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and thus designing a controller on the linearized dynamical
model itself would likely result in a sub-optimal design.
To achieve optimal design the entire system is thus divided
into two regions in which the reference angle θ=0 is taken
from the upright position: the normal pendulum region and
the inverted pendulum region, where the normal pendulum
region is between -45◦ ≤ θ ≤ 45◦ and the inverted pendulum
region is between 45◦ < θ < -45◦ as shown in Figure 4.
This division is similar to the control zoning approaches used
in many industrial PLCs in level and temperature controls.
For future references the inverted pendulum region will also
be termed the linear region. Figure 5 shows the flowchart
describing the implementation of the inverted pendulum
control through a PLC. It is seen that the pendulum regions
defined in Figure 4 is specified into the PLC system.

Fig. 4. Defining the pendulum regions with θ = 0◦ as reference

Fig. 5. The PLC based inverted pendulum system flowchart

D. Controlling the inverted pendulum in the normal pendu-
lum region

In controlling the inverted pendulum setup in the normal
pendulum region, a simple PID controller is used to allow
implementation onto the PLC. In this region the proportional
gain Kp is set to be large while the integral time Ti is
set small, to allow maximum increase of the cart speed in
order to generate sufficient forces to swing the pendulum.
The minimal Ti value is set to allow minimal time for
the pendulum to reach the inverted pendulum region. For
simplicity, the set of gains for the controller in this region is
determined through trial and error of the simulated model in
MATLAB, and is given by:

Kp = 1.0, Ti = 0.1, Td = 20 (21)

The implementation of the PID gains of Equation (21)
onto the apparatus of Figure 1 is now done through the PLC
command PID(88). Figure 6 shows the responses from the
PLC datalogger, where the set point (green) is fixed at 46◦ to
ensure that the pendulum now reaches the inverted pendulum
region. The red signal denotes the control response of the
pendulum. Datalogging begins at t = 0.8 s, and ends when
the system finally reaches the inverted pendulum region at
t = 4.7 s. This means that the system achieves the inverted
pendulum region in t = 3.9 s.

Fig. 6. The control responses from implementing Equation (21) onto the
apparatus of Figure 1.

E. Controlling the inverted pendulum in the inverted region

As discussed in Section III-C, the inverted pendulum
region is one where linear model approximations can be
sufficiently made to the dynamics of the pendulum. In this
light, designing a simple PID controller whose gains are
optimally tuned can be done in conjunction with another
controller architecture such as LQR. Since PID controllers
concerns with the error e(t), such function and their associ-
ated derivatives ė and ë have to be defined as states to enable
the use of LQR. In this respect, denote the position error as
ex, the angular error eθ, where the relationships between
these errors and their desired set point values xd and θd are
defined:

ex = xd − x (22)
eθ = θd − θ (23)
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Substituting Equations (22) and (23) into the linearized
differential Equations (18) and (19) and simplifying yields:

ëx = −a1eθ − a2ėx − a3V (24)
ëθ = a4eθ − a5ėx + a6V (25)

where:

a1 = −mg
M

, a2 =
γ2
M
, a3 =

γ1
M

(26a)

a4 =
(M +m)g

ml
, a5 =

γ2
Ml

, a6 =
γ1
Ml

(26b)

where the physical parameters are given in Table I.

TABLE I
THE PHYSICAL PARAMETERS OF THE INVERTED PENDULUM SYSTEM.

Physical Description Pendulum Cart Support
Length 250 mm 300 mm 500 mm
Mass 156 g 450 g –

The states x1 to x5 for this system are now defined:

x1 = ex, x2 = ėx, x3 =

∫ t

0

eθ dt (27)

x4 = eθ, x5 = ėθ. (28)

The absence of the term
∫ t
0
ex dt is due to the fact that

the control is primarily concerned with stabilization of the
inverted pendulum at the upright position without regard to
its position errors. Equations (24) and (25) can therefore
be written as a state space system with the following state
matrices:

Aθ =


0 1 0 0 0
0 −a2 0 a1 0
0 0 0 1 0
0 0 0 0 1
0 −a5 0 a4 0

 , Bθ =
[
0,−a3, 0, 0, a6

]T
(29)

Although the inverted pendulum region was defined to lie
within the angles of 45◦ < θ < -45◦, as depicted in Figure
4, some nonlinearities may still exist around the edge of
the region, particularly during the transition from the normal
pendulum region to the inverted pendulum region. In order
to keep the controller design simple whilst coping with these
nonlinearities, the overshoot is allowed to be quite large (≈
90%). The settling time is designed to be 3 s. The damping
factor ζ and natural frequency ωn are related to the settling
time Ts and the percentage overshoot %OS by [10]:

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

(30)

ωn =
− ln(0.02

√
1− ζ2

ζTs
. (31)

Substituting %OS = 90 and Ts = 3 into Equations (30) and
(31) yields:

ζ = 0.5 ωn = 4 (32)

To compute the LQR gains using the algebraic method of
Section 2.2, first the parameter r is arbitrarily chosen to be

r = 0.1. The parameters p12, p13, p15, p24, p25, p45 and p55
are then chosen as follows:

p12 = 0.2, p13 = 0.25, p15 = 0.25,

p24 = 0.25, p45 = 0.3p55 = 0.25 (33)

Substituting the parameters of Equations (32) and (33), along
with the parameters in Table I, into Equations (13a) - (13c),
(15a) - (15e) and (16) yields:

Kdesign =
[
1, 1, 1, 3, 6

]T
(34)

The last three elements of matrix K are the proportional
gain Kp, the integral gain KI and the derivative gain KD

of the conventional PID controller. The PLC version of the
PID controller, however, slightly modifies the conventional
PID controller where Ki and Kd are defined in terms of the
integral time Ti and derivative time Td [11]:

Ki =
Kp

Ti
, Kd = KpTd (35)

The set of gains in vector Kdesign is first simulated via the
lqr command in MATLAB. Figure 7 plots the simulated eθ
response. It is evident here that the maximum overshoot of
eθ at 90% occurs around 0.5 s, then reaches the steady state
at around 3.0 s as designed.

Fig. 7. The simulated control response with Kdesign of Equation (34)

Vector Kdesign in its present form is suitable only for simu-
lation on a computer aided design software such as MATLAB
or Simulink. In order to implement the gains of Equation
(34) on to the inverted pendulum apparatus of Figure 1, the
last three elements of Kdesign need to be converted to the
PLC version of the PID controller. Substituting the last three
element of vector Kdesign into Equation (35) and solving for
the integral time Ti and derivative time Td yields:

Kp = 3, Ti = 1, Td = 2 (36)

The gains of Equation (36) is now implemented onto the in-
verted pendulum apparatus of Figure 1 through the command
PID(88) as was done for the pendulum region. Figure ??
plots the response from the PLC datalogger. It is evident
from this figure that there are some significant overshoots of
around 70% around the 0◦ setpoint. Such overshoot is likely
due to the fact that the pendulum itself is operating around
the edges of the inverted pendulum region, where the non-
linearities were still prevalent. However the pendulum finally
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reaches 0◦ at around 3 s as designed. This was also expected
since the controller designs already allowed the overshoot to
be up to 90% to cater for the nonlinearity effects. These
results show that having an allowable margin of errors could
prove to be a useful approach in controller designs when
there exists some unmodelled effects. This concept is already
prevalent in many other engineering disciplines such as civil
engineering.

Fig. 8. The angle error responses from implementing the controller of
Equation (36) onto the apparatus of Figure 1.

To further test the set of gains of Equation (36) on the
inverted pendulum apparatus, four other sets of gains are set
as a comparison:

G1 = {Kp = 1, Ti = 1, Td = 1} (37a)
G2 = {Kp = 1, Ti = 1, Td = 2} (37b)
G3 = {Kp = 1, Ti = 2, Td = 1} (37c)
G4 = {Kp = 2, Ti = 1, Td = 2} (37d)

Each set of gains of Equations (36), (37a) - (37d) are
implemented onto the inverted pendulum apparatus 8 times.
For each of the trials, three possible scores based on the
experimental stability of the controlled responses is noted.
The trial is denoted “S” if the pendulum stays on the upright
position without any vibration, in other words, the system is
stable; “MS” if the pendulum vibrates while at the upright
position, or in other words, being marginally stable, and
“US” if the pendulum system is completely unstable, that is,
does not stay on the upright position at all. Table II shows
the experimental stability results.

TABLE II
THE EXPERIMENTAL STABILITY RESULTS OF THE PLC-BASED

INVERTED PENDULUM DESIGNS FOR THE SET OF GAINS OF EQUATIONS
(36), (37A) - (37D).

Gains/Trial 1 2 3 4 5 6 7 8
{1,1,1} S US S US S US US US
{1,1,2} S MS S S US US US S
{1,2,1} S US US US S US US S
{2,1,2} US S US S S US MS S
{3,1,2} S S MS S S MS S S

It is seen from Table I that the designed set of gains of
{3,1,2} results in the most stable pendulum system with
100% of the controlled responses being either completely
stable or marginally stable. This result validates that the
designed set of gains is capable of handling the nonlinearities
that were still prevalent around the edges of the inverted
pendulum region.

IV. CONCLUSION

This work has presented an LQR based PID controller
to control the inverted pendulum system. To facilitate an
integration with a PLC, the control design uses a control zon-
ing approach where the entire pendulum is divided into two
regions: a normal pendulum regions where the nonlinearities
are inherent, and the inverted pendulum region where the
system is approximately linear close to the upright position.
The errors in position and angle are denoted control states to
enable the use of the LQR architecture to obtain the optimal
gains for the PID controller. An algebraic approach was also
presented to allow a systematic method for selection of the
Q and R matrices, which in turn yielded an optimal set
of control gains Kdesign. Experimental implementations with
the PLC based system show that the computed gains yield
the most stable controlled responses compared to the gains
chosen through trial and errors, which would be the case
with implementations onto the real world system.

There are many other controller designs in the literature
for the inverted pendulum system. However these methods
typically make very strong assumptions on the validity of
the system model. Although these controller designs share
the flexibility of being tunable online to compensate for
modelling errors, they typically require large amount of
computational efforts. The approach in this paper uses the
control zoning to effectively set an allowable margin of errors
in face of unmodelled effects. This approach alleviates the
computational loadings and simplify implementations. In any
practical system the simpler the controller design the less
chance of coding errors and hardware failures.
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