
 

Abstract—It is well known fact, that the heteroclinic 

trajectories are one of the most important elements of 

phase spaces of dynamical system, independently from 

their nature, because these trajectories separate zones of 

phase spaces with different dynamical behaviors. 

Moreover, the heteroclinic trajectories can be splitted 

under the action of perturbations, and can generate so-

called heteroclinic nets due to intersections of splitted 

manifolds – this circumstance results in the chaotic 

dynamics creation, that, in its turn, substantially change 

the system dynamics. In this work a new approach for 

computing the heteroclinic splitting via the matricant 

method is developed, and also the approximate 

numerical technique of this method implementation is 

build. The example of the method application is given on 

the base of the spacecraft attitude dynamics. 

Keywords—heteroclinic trajectory, gyrostat-satellite, attitude 

dynamics, dynamical chaos, matricant 

I. INTRODUCTION  

The nonlinear dynamics and dynamical systems theory, 

undoubtedly, are the fast developing parts of the modern 

science, which describe the dynamical behavior and time-

evolutions of different systems independently from their 

nature (including the technical, chemical, physical, 

biological systems, etc.). The systems dynamics is usually 

analyzed in terms of phase spaces coordinates, phase 

trajectories and phase regions. One of the important aspect 

of the analysis of the systems dynamics is the investigation 

of the separatrixes trajectories in phase spaces, which 

correspond to homo-/heteroclinic phase trajectories and 

divide the whole phase space into some independent parts. 

At the action of perturbations, the homo-/heteroclinic 

trajectories can be splitted into the corresponding stable and 

unstable manifolds (without perturbations they merge into 

the single separatrix-trajectory). Moreover, these splitted 

manifolds can be mutually intersecting each other – in this 

case they will generate the corresponding heteroclinic nets in 

the phase space, that inevitably initiates the dynamical 

“heteroclinic” chaos which can substantially change the 

system’s dynamics or even fully disrupt its predicted 

dynamical behavior. Therefore, it is so important to learn 
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and to know the details of the process of the heteroclinic 

splitting. The modern methods of the exploration of the 

separatrixes’ manifolds splitting are based on the 

Melnikov’s-Wiggins’ formalism [1-5], which was started in 

works of V.K. Melnikov (1963) and V.I. Arnold (1964), was 

alternatively interpreted in works V.V. Kozlov (1980), and 

was extended in works P.J. Holmes & J.E. Marsden (1983), 

and S. Wiggins (1988). It is worth to note, however, that this 

formalism is well and correctly applicable for homoclinic 

separatrixes, but has some difficulties at the analysis of the 

heteroclinic splitting [6]. 

 So, in the purposes of the alternative method developing, 

which can be correctly applied to any cases of the 

separatrixes splitting analysis (both homo- and heteroclinic 

cases), we must, firstly, construct the analytical procedure of 

the splitted manifolds calculation and, secondly, have to 

adopt this analytical procedure to its numerical 

implementation. 

II. IMAGES OF SPLITTED MANIFOLDS OF THE PERTURBED 

HETEROCLINIC TRAJECTORY  

Let us to consider the dynamical system describing by the 

ordinal differential equations  Nx : 

   

    1

,

,...,
T

n

t

x t x t

 



x F x f x

x
       (1) 

where ε is the small parameter, f is the perturbing function. 

We assume, that the system (1) in the unperturbed case 

(ε=0) has the heteroclinic trajectories, which are known in 

the shape of exact explicit analytical solutions: 

      1 ,...,
T

nt x t x t x x     (2) 

The solution of the perturbed system (1) we will find in 

the neighborhood of one of the heteroclinic trajectories (2) 

in the form: 

     t t t x x X        (3) 

After substituting (3) into the equations (1) and after 

linearization by the small parameters, we obtain the 

equations of the first order for deviations X(t): 

     ,t t t  X S x X f x     (4) 

where S is the known functional matrix N×N. 

In the purposes of the heteroclinic splitting analysis, we 

have to solve the deviations system (4) for each point of 

each splitted manifolds (starting from the points of the 

unperturbed heteroclinic trajectory) on the interval of the 

physical time [0, ]t T , and then the obtained solutions 

allow us to detect all possible intersections of the whole 

splitted manifolds in the time-point T. 
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Fig.1.   The heteroclinic splitting structure and the heteroclinic net  

as the set of the Poincaré-images of the unperturbed trajectory  

(the color version is available only in the online article) 

 

As it is customary for the majority of the research works, 

the heteroclinic splitting usually is considered under the 

action of the time-periodic perturbations f. In such cases the 

perturbed dynamics is studied with the help of the well-

known Poincaré sections methodology, when the phase 

space is considered in the “stroboscopic” regime; i.e. the 

phase trajectories are depicted in the phase space as sets of 

their discrete points corresponding to the discrete physical t-

time values, which are multiple to the perturbation period T, 

when  mod ,2 0.t    Therefore, for each phase point of 

the phase space Nx  we will see its image, which is 

calculated by the Poincaré map (let us assume temporarily 

that χ =1): 

   0: ;

2
; 2

i

i

t t T

i
T t i


  

  

  


x x

     (5) 

If we focus separately on the heteroclinic separatrix, then we 

also will see its perturbed manifolds as the images of all its 

points by the map (5): the unstable manifolds will 

correspond to the direct forward images of its points (at 

steps of the map in the positive direction of the physical 

time, where i >0), and the stable manifold will correspond to 

the first preimages of the separatrix’s points (at steps of the 

map in the opposite/negative direction of the physical time, 

where i <0). So, in each separated “stroboscopic” time-point 

(in each step of the Poincaré map) we will see the 

“independent” evolution of each phase-point of the 

unperturbed separatrix – together these images form the 

shape of the whole heteroclinic splitted manifold. Moreover, 

the first image  1; 2i T     and the first preimage 

 1; 2i T       are the most important frames to our 

dynamical analysis, because exactly on these frames the 

main (the first) shapes of the perturbed manifolds are 

presented; and exactly these shapes will generate all next 

images|preimages of the manifolds. 

At the fig.1 two saddle-points S1 and S2 form two 

heteroclinic trajectories: S1S2 – the branch 1 and S2S1 – the 

branch 2, and also these saddle-points have free branches 

(the branches 3-6). As it is clear, the branch 1 represents the 

merger of the unstable manifold of the S1–saddle and the 

stable manifold of the S2–saddle. Under the action of 

perturbations these manifolds split into separate trajectories, 

that is depicted at the fig.1: the curve #1 (the red curve) 

corresponds to the splitted unstable manifold of the S1–

saddle (it is the first Poincaré-map image of all points of the 

unperturbed trajectory S1S2 at i=1), and the curve #2 (the 

blue curve) - to the splitted stable manifold of the S2–saddle 

(it is the first Poincaré-map preimage of all points of the 

unperturbed trajectory S1S2 at i=-1). 

If we know the analytical exact explicit solutions for the 

heteroclinic trajectory, then the concrete point P on the 

unperturbed branch 1 can be parameterized by the parameter 

t  (the time of the parameterization). Vectors n and τ are the 

normal and transversal vectors for the heteroclinic trajectory 

at the point  P t , which is “sliding” along trajectory at the 

parameter t  changing. The first image of this point  P t is 

presented at the fig.1 as the point  Pun t  - this point belong 

to the splitted unstable manifold of the S1–saddle. The first 

preimage of this point  P t is presented at the fig.1 as the 

point  Pst t  - this point belong to the splitted stable 

manifold of the S2–saddle. So, the points  Pun t  and  Pst t  

formally correspond to the perturbed positions of one and 

the same point  P t . From the case depicted at the fig.1 it 

is possible to see, that these images can have the same 

distances relative the unperturbed point  P t along normal 

direction n: 

       P P P Pun stt t t t     
   

n n     (6) 

but different distances along the transversal direction τ: 

       P P P Pun stt t t t     
   

τ τ     (7) 

From the point of view of the Melnikov’s method, the 

condition (6) in the linear approximation defines the fact of 

the intersection of splitted manifolds independently from the 

fulfillment/non-fulfillment of the expression (7); i.e. the 

Melnikov function will have the zero-value in this case. At 

the same time, in the depicted case the real intersection of 

the splitted manifolds, as we see, does not occur.  
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Moreover, the real intersection of the splitted manifolds 

can be occurred for different “sliding” unperturbed points P’ 

and P” (fig.1) – the image of the point P’ coincides with the 

preimage of the point P” in the common perturbed point 

Pcom . For this reason, it will be appropriate to introduce into 

the consideration two separated parameters of the 

heteroclinic trajectory parameterization instead of the single 

parameter t . Therefore, to parameterize the unstable 

manifolds we will use the parameter unt  “sliding” along the 

unperturbed heteroclinic trajectory; and for parameterization 

of the stable manifold we introduce the “sliding” parameter 

stt . 

So, our main task now is to obtain the solutions for the 

deviations X(T) for the each unperturbed point (like P) of 

heteroclinic trajectory for all system’s heteroclinic 

trajectories and theirs splitted stable and unstable manifolds 

– then we can see the all possible intersections of all splitted 

manifolds (like Pcom ). 

III. THE EXACT COMPUTATION OF THE IMAGES OF THE 

SPLITTED MANIFOLDS OF THE HETEROCLINIC TRAJECTORY  

Now we can find the deviation of each point of the 

heteroclinic trajectory (e.g., P) at its splitting into the 

unstable and stable manifolds (at the physical time point 

±T ) by the integrating of the differential equations (4) in the 

direct time direction for the unstable manifold and in the 

back time direction for the stable manifold, starting in all 

cases from the points of the heteroclinic trajectory (i.e. at the 

zero-values of initial conditions X(0)=0). 

For our task of solving the linear differential equations (4) 

with the time-depending coefficients    tS x , the 

classical form of the solution is known, which uses the 

matricant-object [e.g., 7]: 

             0 0

0

1

,
t

t

t t

t

t t d    


   
 X Ω S x Ω S x f x (8) 

where   
0

t

t tΩ S  is the so-called matricant, which can be 

evaluated by the following ways [7]: 

        

     

0

0 0 0

0 0 0

...

t t t

t

t

t t t

t t t

t t t

t t dt t t dt dt

t t t dt dt dt

 
    

  

  
   
    

  

  

Ω S E S S S

S S S

  (9) 

    

    

0 0

2 2 1 1

lim ...
k

t

t n n
t
n

t t

t t



 

 


      

           

Ω S E S

E S E S

      (10)  

Here E – is the identity matrix; and in the form (10) the idea 

is used, that the time-interval [t0, t] is divided on n 

subintervals, Δtk is the length of the k-th subinterval and τk is 

an internal point of the k-th subinterval. We ought 

additionally to say, that in the form (10) the expression 

under the limit is called as the “integral multiplication”; and 

the limit itself – is called as the “multiplicative integral”. 

From the definition of the matricant the important property 

follows: 

           2 1

0 1 1 0
...

n

t tt t

t t t tt t t t


   Ω S Ω S Ω S Ω S   (11) 

So, at the “final” time t=tk=T the solution (8) formally will 

represent the deviation of one point of the separatrix, which 

was parameterized by the zero-value of sliding parameters 

 0t  ; and therefore, to write the solution for all possible 

deviations of the points of the separatrix, we must explicitly 

involve the sliding parameters. Moreover, the system (4) and 

the solution (8) were configured for the direct time (the 

differentiation/integration in the forward time-direction). 

Taking here the local conclusion, we can write the solutions 

for the points of the splitted unstable manifold: 

     

       
0

1

0

0

,

T

un un un

T

un un

t T t t

t t d    


   

    
 

X Ω S x

Ω S x f x
  (12) 

The solution (12) gives the deviation of the point  P unt of 

the unstable manifold at the value of the physical time t=T. 

The coordinates of the first image  Pun unt of the point 

 P unt  belonging to the unstable manifold and calculated by 

the Poincaré map (5) can be written using (3): 

     un un un un unt T t T t T    x x X    (13) 

To obtain more convenience shape of expressions (13) and 

(12), we can simply redefine the sliding parameter by the 

shift on the constant T:   

 un unt t T             (14) 

The expressions (13) and (12) will have the following form: 

     

     

       
0

1

0

0

;

,

un un un un un

T

un un un

T

un un

t t t

t t T t

T t T t d



   


 




   

         



x x X

X Ω S x

Ω S x f x

 (15) 

To obtain the values of the phase coordinates of the first 

(pre)images of points of the stable manifold (at the value of 

the physical time t=-T), we formally must repeat all the 

above indicated steps, but at the change the physical time-

variable on its opposite direction     ,t t dt dt     

and at the redefinition of sliding parameter   st stt t T  . 

Then we can write: 

     

     

         
0

1

0

0

;

1 ,

st st st st st

T

st st st

T

st st

t t t

t t t T

t T t T d



   


 




    

            



x x X

X Ω S x

Ω S x f x

(16) 

Now let us remind the value χ in the map (5): if 1   then 

the Poincaré map corresponds to the classical “periodical” 

form; another value for this parameter scales the map’s 

steps. As it was noted, the first step is most important for the 

problem of manifolds spliting, and, therefore, the value χ 

allow to correct the “length” of this step, that extends the 

applicability of expressions (15) and (16) on an arbitrary 

value of the physical time-point T (from nil to infinity).   

So, the expressions (15) and (16) represent the exact 

analytical solutions of the first order-system (4) for the 
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splitted manifolds of the heteroclinic trajectory at the action 

of perturbations for the arbitrary time-point T. 

The separated question connects here with difficulties of 

the analytical computation of the matricant, so we have to 

construct the procedure of numerical calculations of the 

obtained solutions (15) and (16), that will be realize in the 

next section.   

IV. THE NUMERICAL COMPUTATION OF IMAGES OF THE 

SPLITTED MANIFOLDS OF THE HETEROCLINIC TRAJECTORY  

Now using the analytical forms of the solutions (15) and 

(16), we can construct the procedure to numerical 

calculations of the splitted manifolds of the heteroclinic 

trajectories with an arbitrarily accurate. 

The basic numerical procedure we will synthesize for the 

case of the action of high-frequency harmonic perturbations, 

when the period is small (T<<1) or for the case when the 

step of the map (5) is scaled by the small value χ <<1. Then, 

starting from the form of harmonic periodic perturbation, we 

will consider four even more small quarter-period-

subintervals for the physical time: 

         0.. 0.. 4 , 4.. 2 , 2..3 4 , 3 4..t T T T T T T T T     .  

It is possible to formally write the structure of the integral 

it the right part (15) and (16) using the well-known 

Simpson’s rule of numerical integration on two half-period-

subintervals (i.e. each Simpson-step covers two 

corresponding quarter-period-subintervals): 

       

 

 

1

0

0

1
/4

0

1 1
/2 3 /4

0 0

1

0

, ,

,0 4 ,
12 4

3
2 , 4 ,

2 4

,

T

T

T T

T

t t t d

T T
t t

T T
t t

t T

   




 



   
 

  
        

 

   
             

   

   

I Ω S f

E f Ω f

Ω f Ω f

Ω f

  (17)  

where for convenience and in order to unify the shape of the 

result for both cases (un, st) the following notations were 

involved: 

 
  

  

 
  

  

, in thecase" "
,

, in thecase " "

, , in thecase" "
,

, , in thecase " "

un

st

un

st

T t un
t

t T st

T t un
t

t T st






 


 

     
    


   
 

    

S x
S

S x

f x
f

f x

 (18) 

 /4

0

/2 /4

0 0

3 /4 /2

0 0

3 /4

0 0

,0
4

,
4 4

,
2 4

3
,

4 4

T

T T

T T

T T

T
t

T T
t

T T
t

T T
t


  


   

     
  


           


  

        

Ω E S

Ω E S Ω

Ω E S Ω

Ω E S Ω

        (19) 

where the designation of the matricant   0 0 ,t  Ω Ω S  

also combines both cases (un, st) through the choice of 

corresponding shape (18) of the matrix  ,t S . 

Here we ought to note, that the expressions (19) were 

approximately obtained from the main definition of the 

matricant (10) considering the property (11). At the any 

preassigned values of sliding parameters  orun stt t t  the 

expressions (19) immediately receive their numerical matrix 

values. 

The expressions (17)-(19) fully define the numerical 

values of points coordinates of the images of the perturbed 

splitted manifolds for all values of sliding parameters 

              or ; or :un un st st un un st stt t t t t t x x x X X X

         0; Tt t t t t   x x X X Ω I      (20) 

So, now we have constructed the procedure of numerical 

computing the splitted manifolds of the heteroclinic 

trajectories. Certainly, the formulae (20) represent the 

approximate numerical solutions; and, of course, expressions 

that are more precise can be built on the basis of exact 

explicit analytical solutions (15) and (16). 

V. AN EXAMPLE OF THE CALCULATION OF THE SPLITTED 

HETEROCLINIC MANIFOLDS IN THE TASK OF GYROSTATS 

PERTURBED DYNAMICS 

Let us now to implement the obtained scheme of the 

calculation of the splitted manifolds (their images) of the 

heteroclinic trajectories in the framework of the task of the 

torque-free one-rotor gyrostat motion [6]. The main 

dynamical system of the torque-free one-rotor gyrostat can 

be found in many works, e.g. in [6]: 

   

 

0; 0;

0;

b b

b internal

Ap C B qr q Bq A C pr p

C r pq B A M

         


    

(21) 

where ,b rA A A   ;b rB B A   and  , ,b b bA B C  

correspond to the axial inertia moments of the main SC body 

in the connected frame; and  , ,r r rA A C  represent the axial 

inertia moments of the dynamically symmetrical rotor in its 

own connected frame; [p, q, r]T – are components of the 

vector of the angular velocity of the main body in the 

connected frame, σ – is the angular velocity of the rotor 

rotation relative the main body;  rC r    - is the 

angular momentum of the rotor-body, which is rotated 

around the general longitudinal axis of the main body.  

If Minternal=0 then the unperturbed motion realizes, and 

then the phase space represents so-called polhode-ellipsoids 

in the 3D-space   3, ,
T

p q r x  (fig.2).  

For this system in some important dynamical cases, the 

heteroclinic solutions are known [6], and for the torque-free 

motion this analytical solutions are the following: 

       

 
 
 

 

    

   

22 2

, , ;

;

;

;

T

b b

b

t p t q t r t

C B C
p t t

A A B

q t t

r t t
B C



   



   

 
  





    


  
 


x

     (22) 

where 
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with the set of constants: 
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The analytical solutions (22) describe four heteroclinic 

trajectories connecting the saddle-points S1 and S2 (fig.2). 

Here we can note, that the heteroclinic scheme presented at 

the fig.1 in the case of the torque-free gyrostat will have two 

closed heteroclinic loops connecting by four corresponding 

branches ({3, 5} and {4, 6} as at the fig.1) – it doubles the 

quantity of heteroclinic trajectories, that even more 

complicates the analysis of heteroclinic splitting.  

Now let us consider the small ( 1  ) periodic internal 

perturbation in the rotor-spinup-engine, which is described 

by the small torque:  

 cosinternalM t         (23) 

Then the solution for the rotor’s angular momentum 

follows: 

   sint t










         (24) 

The substitution of the solution (24) into the equations 

(21) gives the perturbed system: 

   

   

   2

sin ;

sin ;

cos ,

b b

b b

b b

Ap C B qr q C t q

Bq A C pr p C t p

C r pq B A C t

  

  

  

 

 

 

      


    


   

  (25) 

where the small dimensionless parameter is involved  

2
=

bC









           (26)  

 In the considered case, we have the following coefficients 

matrix and the perturbing function for the linearized 

perturbed system (4)   , ,
T

P Q RX : 

 

Fig.2.  The gyrostat’s phase space and the heteroclinic trajectories 
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f x      (28) 

So, using expressions (17)-(20) and having the 

heteroclinic solutions (22), we can numerically calculate the 

images of the splitted manifolds of the heteroclinic branch 

for the system (25) (and its corresponding linearization (4) 

with the matrix- and vector-functions (27), (28)). The 

corresponding numerical calculation was implemented – the 

corresponding numerical results are depicted at the figures 

(fig.3-fig.5). The splitted manifolds of the branch 1 are 

presented at the fig.3, where the image of the unstable 

perturbed manifold depicted as the set #1 of points (red 

points), and the (pre)image of perturbed stable manifolds 

represent the set #2 of points (blue points). Small points at 

the fig.3 correspond to the direct integration results of the 

equations (25) on the time-interval [0, T] for the set of initial 

points on the unperturbed branch; and the big points – are 

the points calculated by the matricant method (20). As we 

can see, the integration results and results calculated by the 

matricant method coincide with each other with the good 

consistency – this confirms the operability of the matricant 

method. Here we must note that the calculations (fig.3, 4, 5) 

were implemented at the following system’s parameters and 

main initial conditions, defined the unperturbed heteroclinic 

branch: Ar=5, Cr=4, Ab=15, Bb=8, Cb=6 [kg*m2]; μΔ=120 

[N*m]; ωΔ=20 [1/s]; χ=1; T=0.3146 [s]; ε=0.05; p0=3.5, 

q0=0, r0=6.96, σ0=-5.96 [1/s]; Δ0=4 [kg*m2/s]. 
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Fig.3.  The splitted manifolds of the first heteroclinic branch  

(the color version is available only in the online article) 

 

(a)              (b) 

Fig.4.  The splitted manifolds of all four heteroclinic branches (a) and 

the zoom of the area of root intersections (b): the small points – the direct 

integrations, the big points – the results obtained by the matricant method 

(the color version is available only in the online article) 

 
Fig.5.  The chaotic time-history of the angular velocities {p, q, r} due 

to the realization of the heteroclinic chaos in the neighborhood of the first 

heteroclinic branch (p – black (1); q – red (2); r – blue (3)) 

(the color version is available only in the online article) 

 

As we see from the modeling results, the intersections of 

the splitted manifolds take place, and, moreover, these 

intersections can be between the splitted manifolds of one 

the same branch (fig.3), and also they can be between the 

splitted manifolds of different branches (fig.4). This 

circumstance defines the presence of a complex structure of 

the heteroclinic net, which arises in the phase space at the 

action of perturbations, and which results in the chaotic 

dynamics, that is presented as the chaotic time-history of 

angular velocity components (fig.5). 

VI. THE FUNCTION OF DETECTING THE INTERSECTIONS OF 

SPLITTED MANIFOLDS OF HETEROCLINIC BUNDLES 

 Now basing on the analytical expressions (15) and (16) 

we can construct the exact analytical vector-function for the 

calculation of distances between the splitted stable manifold 

of the i-th heteroclinic branch any the splitted unstable 

manifold of the j-th heteroclinic branch (for one the same 

branch the number i is equal j): 

     ,
i j i i j j

ij st un st st un unt t t t d x x     (29) 

Obviously, if the vector-function (29) has the zero-vector 

value at some specific values of the parameters 

 ,
i i j j

st st un unt t t t   then the intersection/contact of 

these splitted manifolds exists. As we have already sad, the 

different branches’ splitted manifolds can be intersected, 

and, therefore, we must browse all possible variants of the 

branches combinations. Then the zero-values of the 

following generalized scalar function 2nD  will show the 

intersections/contacts presence between splitted manifolds: 

   1 1

1

,..., , ,..., ,
n n

n n i j

st st un un ij st un

i j i

D t t t t t t
 

 d   (30) 

where n is the quantity of the connected heteroclinic 

branches (e.g., in the considered task of the perturbed 

attitude dynamics of gyrostats n=4). We ought to note that 

the partial case of the function (29) (or (30)) can be 

considered in the role of the well-known Melnikov’s 

function  M t   in the framework of the homoclinic 

loop analysis (at the single homoclinic branch, when n=1): 

   1 1 1 1
, ,st un st unM t t t t t t  d  

It is clear, that for numerical computing functions d and D 

and for the detection of their zeros we can use the 

approximated forms of the solutions (20). This part of 

research is the quite important theme of next publications. 

VII. CONCLUSION  

The new approach for computing the heteroclinic splitting 

via the matricant method is constructed. The corresponding 

approximate numerical technique of this method 

implementation is proposed. The example of the method 

application is given in the framework of the task of the 

gyrostat-spacecraft attitude dynamics. The generalized form 

of the function of detecting splitted manifolds 

intersections/contacts (analogous to the Melnikov’s [1] and 

to the Wiggins’ function [5]) is developed. 

REFERENCES 

[1] Melnikov V.K. (1963), On the stability of the centre for time-periodic 

perturbations, Trans. Moscow Math. Soc. No.12, pp.1-57. 

[2] Arnold V.I. (1964), Instability of dynamical systems with several 

degrees of freedom, Doklady Akademii Nauk SSSR, 156(1), pp.9-12. 

[3] Kozlov V.V. (1980), Methods of qualitative analysis in the dynamics 

of a rigid body, Gos. Univ., Moscow. 

[4] Holmes P. J., Marsden J. E. (1983), Horseshoes and Arnold diffusion 

for Hamiltonian systems on Lie groups, Indiana Univ. Math. J. 32, 

pp.273-309. 

[5] Wiggins S. (1988), Global Bifurcations and Chaos: Analytical 

Methods (Applied mathematical sciences : vol. 73). Springer-Verlag. 

[6] Doroshin A.V. (2017), Attitude dynamics of gyrostat-satellites under 

control by magnetic actuators at small perturbations, 

Communications in Nonlinear Science and Numerical Simulation 49, 

pp.159–175.  

[7] Gantmakher, F.R. (1998), The theory of matrices (Vol. 131). 

American Mathematical Soc. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018




