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Abstract—In this paper, we study numerical simulation of
two-dimensional viscous flow over two circular cylinders with
different radii. The flow structure depends on the rate of rota-
tion, the gap-spacing and the Reynolds number. The algorithm
used to simulate the numerical solutions is based on the concept
of projection method. A mathematical model describing the flow
over the two rotating cylinders is applied by the cylindrical
bipolar coordinate system. The main objective is to investigate
the characteristics of the fluid flow. This investigation gives a set
of numerical simulations for the hydrodynamic characteristics,
which can be applied to other related problems.

Index Terms—numerical simulation, cylindrical bipolar co-
ordinate, projection method.

I. INTRODUCTION

THE interaction of the flow over two cylinders is a
topic of prime scientific interest with many engineering

and real life applications. Most of researches studied on
two cylinders were concerned with two rotating and non-
rotating cylinders of an identical diameter (see for example
[1]- [4] and literature cited there). There are two different
types of stationary motion of bodies in a fluid. The first
type is a towed body which in the stationary motion regime
external forces must affect the body. The second type is
self-propelled body. Self-propelled means that a body moves
because of the interaction between its boundary and the
surrounding fluid and without the action of an external
force. In the present work, flow structures were calculated
between two circular cylinders (the left cylinder is non-
rotating and the right cylinder is rotating in counterclockwise
angular velocity) with different radii and uniform stream flow
directed perpendicular to the line connecting the cylinders
centers. We show some results of numerical simulations at
fixed Reynolds number and moderate gap spacing and rate
of cylinders rotation.

II. MATHEMATICAL MODELLING

The governing equation is the Navier-Stokes equations
written in cylindrical bipolar coordinate. The coordinate
system is moving together with the cylinders. The cylindrical
bipolar coordinate system can be defined by the following
equation (1)

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
, (1)
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where ξ ∈ [0, 2π), η ∈ (−∞,∞), a is a characteristic
length in the cylindrical bipolar coordinate system which
is positive. This transformation maps the xy− plane (form
which the domain occupied by the cylinders is excluded)
into the rectangle η2 ≤ η ≤ η1, 0 ≤ ξ < 2π and η2 < 0,
η1 > 0. The surfaces of the cylinders are located at η = η2
and η = η1. The cylinder’s radii r1, r2 and the distance of
their centers from the origin d1, d2 are given by ri = a
csch|ηi|, di = a coth |ηi|, i = 1, 2. The center to center
distance between the cylinders is d = d1 + d2.
The Navier-Stokes equations (2)-(4) in the cylindrical bipolar
coordinate system (ξ, η) [5] are
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1

h2

(
∂(hvξ)

∂ξ
+
∂(hvη)

∂η

)
= 0, (4)

where vξ and vη are the physical components of velocity
vector v = (vξ, vη), p is the pressure, ρ is density, ν is the
kinematic viscosity of the fluid and h =

a

(cosh η − cos ξ)
.

The boundary conditions are a no-slip requirement on cylin-
ders

vξ = ωiri, vη = 0, on η = ηi, ξ ∈ [0, 2π), i = 1, 2, (5)

where ωi, i = 1, 2 are constant angular velocities of the
cylinders rotation. Positive values of ωi, i = 1, 2 correspond
to counterclockwise rotation. Upstream and downstream
boundary conditions at infinity are

vx = 0, vy = U∞, as r2 = x2 + y2 →∞, (6)

where vx and vy are components of velocity vector in x
and y directions respectively and U∞ is the oncoming free

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



stream velocity. The net force and torque exerted by fluid on
an immersed body with surface Σ are

F =

∫
Σ

τ dS, M =

∫
Σ

[r× τ ]dS,

where n is the unit vector normal to the Σ that points outside
the region occupied by the fluid. The force per unit area
exerted across a rigid boundary element with normal n in an
incompressible fluid is defined by

τ = −p n− µ(n× ω)

where ω is vorticity defined as ω = curl v and µ is the
coefficient of viscosity. If Fxi and Fyi , i = 1, 2 are the lift
and drag on the cylinders, the lift and drag coefficients are
defined by

CLi
=

Fxi

ρU∞D
, CDi

=
Fyi

ρU∞D
, i = 1, 2, (7)

where D is a diameter of right cylinder and each consists
of components due to the friction forces and the pressure.
Hence

CL = CLf + CLp, CD = CDf + CDp. (8)

The problem of self-motion is to find solution of the
Navier-Stokes equations (2)-(4) with boundary conditions
(5)− (6) and additional constraints

F = M = 0. (9)

Equation (9) determines the basic distinction between sta-
tionary flow over self-propelled and towed bodies. The
numerical simulation of the flow past self-moving bodies
becomes more complicated as a result of the nonlocality of
constraints like (9). For such flows, the results depend not
only on the Reynolds number, Re, but also depend on the
non-dimensional gap spacing between the two cylinders, g,
and parameters, αi representing the ratios of the rotational
velocities of the cylinder walls to the oncoming flow velocity

Re =
U∞ D

ν
, αi =

Dωi
2U∞

, i = 1, 2, and g =
d− r1 − r2

D/2
.

III. NUMERICAL ALGORITHM AND VALIDATION

The algorithm of the problem solution is based on the
concept of projection methods (Chorin, 1968) [6]. The in-
termediate velocity components ṽξ, ṽη are computed in a
first step by solving a finite difference approximation of the
momentum equations. Intermediate velocity vector ṽ (which
is not solenoidal) is then decomposed into divergence free
and rotational free vector fields by solving Poisson equation
with homogeneous Neumann boundary conditions. The final
approximation of the v and p at time tn+1 can be found and
the steady-state computed solution is defined by

‖θn+1 − θn‖
4t‖θn+1‖

≤ ε,

where θ = (vξ, vη, CD, CL); 4t is the time step and θn

refers to the numerical approximation at time n4t.
To validate the present numerical algorithm, the uniform
flow past rotating circular cylinders with Re = 20, 0.1 ≤
α1(= α2) ≤ 2.0 and a large gap between cylinder surfaces
g = 14 have been calculated and the results compared
with simulation data for flow past a single cylinder. All the

TABLE I
DRAG COEFFICIENT OF FLOW OVER A ROTATING CIRCULAR CYLINDER

AT Re = 20 WITH GAP SPACING g = 14

Contribution
CD

α = 0.1 α = 1.0 α = 2.0

Present 2.119 1.887 1.363
Badr et al. [8] 1.990 2.000 —
Ingham and Tang [7] 1.995 1.925 1.627
Chung [9] 2.043 1.888 1.361

TABLE II
LIFT COEFFICIENT OF FLOW OVER A ROTATING CIRCULAR CYLINDER AT

Re = 20 WITH GAP SPACING g = 14

Contribution
CL

α = 0.1 α = 1.0 α = 2.0

Present 0.291 2.797 5.866
Badr et al. [8] 0.276 2.740 —
Ingham and Tang [7] 0.254 2.617 5.719
Chung [9] 0.258 2.629 5.507

TABLE III
DRAG COEFFICIENTS OF FLOW OVER TWO CIRCULAR CYLINDERS AT

FIXED Re = 20, α2 = 0.0 AND g = 1.0, 2.0, 3.0 FOR 1.0 ≤ α1 ≤ 6.0

g α1 CD CD1
CD2

1.0

1.0 5.903 2.239 3.664
2.0 3.662 0.581 3.081
4.0 0.279 -1.603 1.882
4.25 0.009 -1.550 1.559
5.0 -0.417 -1.489 1.072

2.0

1.0 6.344 2.576 3.768
2.0 4.656 1.212 3.444
4.0 1.160 -1.111 2.271
5.0 0.002 -1.434 1.436
6.0 -1.185 -0.936 -0.249

3.0

1.0 6.217 2.678 3.539
2.0 4.552 1.354 3.198
4.0 1.343 -0.856 2.199
5.5 −0.007 -1.157 1.150
6.0 0.498 -0.473 0.971

simulations have been performed in a large domain so as to
reduce the influence of the outer boundary. Tables I and II
list drag and lift coefficients from our calculation and makes
a comparison with (Ingham et al. 1990) [7], (Badr et al.
1989) [8] and (Chung 2006) [9]. It can be seen that the
differences are acceptable for CD and CL. The analysis of
the data collected in Tables I and II indicate an acceptable
level of agreement between our computational results and
the experimental and numerical data available in literature.

IV. NUMERICAL RESULTS

In this work, two cylinders are placed in a stream of the
uniform speed U∞ at infinity. Numerical results have been
presented into two parts. In the first part, the left cylinder
with radius 2 is non-rotating, whiles the right cylinder with
radius 1 is rotating in anti-clockwise angular velocity. The
influence of the rotation rate α1 is demonstrated in Tables
III and IV. The values of drag and lift coefficients in case of
fixed Reynolds number, Re = 20 and various gap spacing,
g = 1.0, 2.0, 3.0 for 1.0 ≤ α1 ≤ 6.0 are shown in Tables
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TABLE IV
LIFT COEFFICIENT OF FLOW OVER TWO CIRCULAR CYLINDERS AT FIXED

Re = 20, α2 = 0.0 AND g = 1.0, 2.0, 3.0 FOR 1.0 ≤ α1 ≤ 6.0

g α1 CL CL1
CL2

1.0

1.0 2.805 5.104 -2.299
2.0 6.204 8.322 -2.118
4.0 16.944 17.770 -0.826
4.25 18.526 19.100 -0.574
5.0 24.130 24.110 0.020

2.0

1.0 4.070 4.610 -0.540
2.0 7.035 8.342 -1.307
4.0 17.059 17.950 -0.891
5.0 24.461 24.720 -0.259
6.0 28.728 28.410 0.318

3.0

1.0 4.924 4.343 0.581
2.0 7.560 8.076 -0.516
4.0 17.432 17.800 -0.368
5.5 28.570 28.590 -0.020
6.0 33.376 33.290 0.086

III and IV. The drag coefficients of both cylinders decrease
with increasing α1, at fixed g, (see in the third column of
Table III). The lift coefficients of both cylinders increase
with increasing α1, at fixed g, as shown in the third column
of Table IV. We found that in the case of fixed Reynolds
number, Re = 20, rate of rotation corresponding to zero
drag force (α̃1) increases when g increases. For example,
Table III shows that at Re = 20, α̃1 corresponding to zero
drag force are α̃1 ≈ 4.25, (g = 1.0), α̃1 ≈ 5.0, (g = 2.0)
and α̃1 ≈ 5.5, (g = 3.0). The streamline patterns from
the simulations are shown in Fig.1- Fig.3 . The streamline
patterns and pressure contours in the case rate of rotation
corresponding to zero drag force (α̃1) are occurred for g =
1.0, 2.0, 3.0 with respectively (see in Fig. 2).
In the second part, the left cylinder is rotating α2 = 1.0
and the right cylinder is rotating in counterclockwise angular
velocity. The effect of the rotation rate α1 is demonstrated
in Tables V and VI. The values of drag and lift coefficients
in the case of fixed Reynolds number, Re = 20 and various
gap spacing, g = 1.0, 2.0, 3.0 for 1.0 ≤ α1 ≤ 6.0 are also
shown. The drag coefficients of both cylinders decrease with
increasing α1, at fixed g, (see in the third column of Table V).
The lift coefficients of both cylinders increase with increasing
α1, at fixed g, as shown in the third column of Table VI.
The simulations of streamline patterns are shown in Fig.4
- Fig.6. This work is a fundamental problem which can be
applied to some classes of obstructed flow.

V. CONCLUSION AND SUGGESTION

Numerical results show the flow structure over two rotating
circular cylinders with different radii depend on the rate
of rotation, the gap spacing and the Reynolds number. We
found that at fixed gap spacing g, the drag coefficient of both
cylinders decrease with increasing α and the lift coefficient
of both cylinders increase with increasing α. In addition
we obtain the rate of rotation corresponding to zero drag
force (α̃1) increases when g increases at fixed Re = 20.
However these results (α̃1) are not the numerical solutions
of self-motion regime because its satisfy only CD ≈ 0
but CL is not close to zero. Numerical solutions of flow
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Fig. 1. streamline patterns of flow over two circular cylinders at Re =
20, g = 1.0, 2.0, 3.0 and α1 = 2.0, α2 = 0.0 .

TABLE V
DRAG COEFFICIENTS OF FLOW OVER TWO CIRCULAR CYLINDERS AT

FIXED Re = 20, α2 = 1.0 AND g = 1.0, 2.0, 3.0 FOR 1.0 ≤ α1 ≤ 6.0

g α1 CD CD1
CD2

1.0

1.0 9.886 3.037 6.849
2.0 6.958 1.343 5.615
4.0 2.902 -0.924 3.826
6.0 1.543 -0.324 1.867

2.0

1.0 8.528 2.344 6.184
2.0 6.376 0.888 5.488
4.0 2.106 -1.270 3.376
6.0 0.994 -0.510 1.504

3.0

1.0 8.632 2.623 6.009
2.0 7.432 1.482 5.950
4.0 4.410 0.066 4.344
6.0 1.565 -0.355 1.920

over multiple cylinders can be used the projection method
with the finite difference method but the governing equations
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TABLE VI
LIFT COEFFICIENTS OF FLOW OVER TWO CIRCULAR CYLINDERS AT

FIXED Re = 20, α2 = 1.0 AND g = 1.0, 2.0, 3.0 FOR 1.0 ≤ α1 ≤ 6.0

g α1 CL CL1
CL2

1.0

1.0 5.988 5.974 0.014
2.0 9.965 10.360 -0.395
4.0 21.765 22.110 -0.345
6.0 39.713 39.010 0.703

2.0

1.0 7.218 4.774 2.444
2.0 10.396 8.795 1.601
4.0 21.040 19.660 1.380
6.0 37.257 35.780 1.477

3.0

1.0 10.069 4.677 5.392
2.0 13.600 8.959 4.641
4.0 24.659 20.570 4.089
6.0 39.565 36.430 3.135
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Fig. 2. Streamline patterns and Pressure contours of flow over two circular
cylinders at Re = 20, α̃1 = 4.25 (g = 1.0), α̃1 = 5.0 (g =
2.0), α̃1 = 5.5 (g = 3.0) and α2 = 0.0

have to transform to another coordinate system. In addition,
numerical solutions of fluid flow over two rotating circular

cylinders for self-motion regime with different radii and in
cases of higher Reynolds numbers may be investigated for
future works.
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Fig. 3. streamline patterns of flow over two circular cylinders at Re =
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Fig. 4. streamline patterns of flow over two circular cylinders at Re =
20, g = 1.0, 2.0, 3.0 and α1 = 2.0, α2 = 1.0 .
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