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Abstract—Coalition of agents is a fundamental problem in
multiagent systems. While the coalition structure generation
is based on characteristic functions, optimization problems
might exist among agents in the background of cooperation.
Several cooperation problems can be described as asymmetric
constraint optimization schemes that represent the parts of
objective functions corresponding to individual agents. When
the optimality of the solution is critical, exact solution methods
will be employed. However, due to the scalability of the exact
solution methods, large scale problems must be approximated
ignoring relationships among several agents. In other situations,
several agents might not provide the information of their
objectives. In such cases, the agents’ choices of cooperation
or non-cooperation will affect their utilities, and the behaviors
of non-cooperative agents can be an issue for the stability of
cooperation. As the first investigation, we address the coalition
on the asymmetric constraint optimization where several non-
cooperative agents independently determine their assignment.

Index Terms—Agents, Cooperation, Coalition, Asymmetric
Constraint Optimization Problem

I. INTRODUCTION

Coalition of agents has been studied as fundamental
problems in multiagent systems including coalition structure
generation problems [1] and mechanism design [2]. With
a coalition structure generation problem, a set of agents
is partitioned into several groups to maximize the total
value of the characteristic functions that describe the values
of the groups. Then the agents share the earned values,
based on their individual contributions. A share is defined
so that no agent has incentives to switch to other groups.
In the mechanism design, the share of the utility or the
cost is also addressed, and a major issue of the shares is
strategy proofness. While the coalition structure generation
is based on characteristic functions, optimization problems
might exist among agents in the background of cooperation.

Cooperative problem solving, including distributed con-
straint satisfaction/optimization problems (DCSPs/DCOPs),
has also been studied as a different type of cooperation
problem [3], [4], [5], [6]. In the standard settings of prob-
lems, agents cooperatively optimize the total utility or cost.
Several studies have addressed asymmetric problems, where
each agent has a set of its individual objective functions. A
basic assumption of such problems is that no properties are
transferred among agents.

On the other hand, a few studies have addressed the
relationship of cooperative constraint optimization and coali-
tion structure generation problems or mechanism design.
In [7], the characteristic functions of the coalition structure
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generation problem are defined as the objective functions
of DCOPs. The problem is then solved as a DCOP with
approximation algorithms. In [8], a class of DCOPs is defined
with a VCG mechanism, where agents exchange their utilities
based on their contributions to optimal solutions.

Several cooperation problems can be described as asym-
metric constraint optimization schemes that represent the
parts of objective functions corresponding to individual
agents.

A coalition of agents can be considered from a different
view of cooperative problem solving. When the optimality
of the solution is critical, exact solution methods will be
employed. However, due to the scalability of the exact
solution methods, large scale problems must be approximated
ignoring relationships among several agents. In other situa-
tions, several agents might not provide the information of
their objectives. In such cases, the agents that are excluded
from the exact solution methods do not belong to a coalition.
The agents might also be isolated from a reward-sharing
scheme and only earn from its local utility. When these non-
cooperative agents make decisions, it will affect the quality
of solutions. One of our interests is the influence of such
non-cooperative agents under several strategies.

As the first investigation, we address heuristic approaches
for agents that partially cooperate to solve a problem, which
is based on the representation of asymmetric constraint
optimization problems. In this scheme, several agents act
based on their selfish strategies, while other agents belong
to a group whose optimal solution is cooperatively solved.
We address how the behaviors of non-cooperative agents is
affected by settings of problems and experimentally evaluate
several cases of this problem.

II. BACKGROUND

A. Coalition of agents

As a fundamental coalition problem of multiagent systems,
we first address the Coalition Structure Generation (CSG)
problem. CSG problems are defined as partitioning problems
where agents are partitioned into several groups. A CSG
problem consists of a set of agents A and a set of character-
istic functions that represents the values for combinations of
agents. Coalition S is a subset of agents which represents a
partition. The coalitions form coalition structure CS where
S, S′ ∈ CS, S ∩ S′ = ∅ and

∪
S∈CS S = A.

Value v(S) of each coalition S is evaluated by the cor-
responding characteristic functions. The goal is to find the
optimal coalition structure that maximizes global summation∑

S∈CS v(S) of the characteristic functions.
While standard CSG problems are represented with char-

acteristic functions, several studies address external factors
such as relationships among coalitions. In general cases
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Fig. 1. Factor graph of Asymmetric COP

where complex optimization problems exist as external fac-
tors, the relationships of coalitions might not be directly
represented due to the size of the problem.

B. Payoff for cooperation

The share of values for each agent in a coalition structure
is another CSG problem. Several types of shares restrict the
incentives to prefer other coalition structures.

In mechanism design approaches such as the VCG mech-
anism, the payoff for each agent is a major issue. Here the
share of agents is designed for strategy proofness where
agents should present their true desires or prices.

A typical way to determine a payoff is based on the
contribution of each agent. For example, when solution s
is evaluated by v(s), the contribution of agent i is evaluated
as v(s) − v(s−i ). Here v(s−i ) denotes the evaluation when
agent i does not participate in solution s.

C. Asymmetric constraint optimization problem for agents

The Distributed Constraint Optimization Problem (DCOP)
is a class of cooperation problems in multiagent systems.
A DCOP consists of variables and objective functions that
are distributed among agents who cooperatively solve the
problem in a decentralized manner to maximize or minimize
the global summation of the function values. In the original
DCOP, agents share symmetric functions.

To distinguish the individual evaluations of agents, the
asymmetric DCOP (ADCOP) [9], [10] has been proposed.
With ADCOPs, different objective functions are asymmetri-
cally defined for a set of agents. We address this asymmetric
problem structure to represent local problems for individual
agents. Here we assume that a problem and its solver are
centralized, since we mainly focus on the problem structure.

We employ an asymmetric constraint optimization prob-
lem (ACOP) representation that resembles [11], where each
agent has its own objective function. An ACOP is defined as
follows.

Definition 1 (Asymmetric COP for agents): An
asymmetric COP is defined by (A,X,D, F ), where A
is a set of agents, X is a set of variables, D is a set of
domains of variables, and F is a set of objective functions.

The variables and functions are related to the agents in A.
Variable xi ∈ X takes values from its domain defined by
discrete finite set Di ∈ D.

Agent i ∈ A has its own local problem on Xi ⊆ X .
∃(i, j) s.t. i ̸= j,Xi ∩ Xj ̸= ∅. F is a set of objective
functions fi(Xi) for all i ∈ A.

1 Agents are categorized into cooperative and non−cooperative
ones.

2 Each non−cooperative agent fixes the assignment to its own
variable.

3 The optimal solution for cooperative agents is computed under
the fixed assignments.

4 Each cooperative agent receives its reward based on its
contribution.

5 Each non−cooperative agent takes utility under the optimal
solution of cooperative agents and fixed assignments.

Fig. 2. Flow of proposed model

1 Each agent determines an assignment to its own variable for
the case of non-cooperation.

2 The globally optimal solution s for all agents is computed.
3 For each agent i{
4 The optimal solution s−i for agents excluding i is computed.
5 The reward of i for cooperation is the difference between the

utilities of s and s−i .
6 The utility u−

i of i for non−cooperation is computed under
s−i and i’s fixed assignment.

7 Under s−i , the existence of other assignments to xi whose
utility is greater than u−

i is searched.
8 }

Fig. 3. Analysis of single non-cooperative agents

Function fi(Xi) : Di0 × · · · ×Dik → N0 represents the
objective value for agent i based on the variables in Xi =
{xi0 , · · · , xik}. Scope Xi of fi should contain xi of agent
i.

For assignment A of the variables, global objective func-
tion F (A) is defined as F (A) =

∑
i∈A fi(Ai). Here Ai

denotes the projection of assignment A on Xi. The goal is
to find assignment A∗ that maximizes the global objective
function.

Figure 1 shows a factor graph of an ACOP, where each
agent i has variable xi and function fi. Since factor graphs
directly correspond to n-ary functions, any asymmetric prob-
lems are represented.

III. NON-COOPERATIVE AGENTS ON ACOPS

A. Coalition on problem solving

Based on the representation of ACOPs, we define a simple
coalition model. In addition to the ACOP elements, each
agent has a choice whether the agent cooperates with a group
of agents. Namely, in a single group for a problem, there are
cooperative agents and other non-cooperative agents.

We only perform an exact optimization method for the
cooperative agents. On the other hand, the other non-
cooperative agents independently select their assignments
based on their strategies. For simplicity, we assume that
each non-cooperative agent fixes its own assignment before
the optimization process which is performed under fixed
assignments.
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B. Payoffs for problem solving

While the cooperative agents share their utilities based
on their individual contributions, the non-cooperative agents
independently obtain their utilities from their own objective
functions. Only cooperative agents deposit their possible
utilities and obtain payoffs based on the actual optimal
assignments.

For each cooperative agent, its contribution is evaluated as
the difference value between the optimal global utility and
another one for the problem where the agent does not exist.
This scheme resembles a previous work [8]. Here we assume
that all non-cooperative agents select their own fixed values
in the same manner for simplicity.

On the other hand, the non-cooperative agents obtain their
local utilities for their fixed assignments and the optimal
assignments of the cooperative agents. Note that here we
assume not a mechanism for all agents but an example payoff
scheme for cooperative agents.

The computation flow of the proposed model is shown in
Fig. 2. Here, as the first investigation, we experimentally
analyze the case where one agent is excluded from the
cooperation. This is simply evaluated based on the approach
in [8] as shown in Fig. 3. To find the optimal solution,
we employ a tree search method. Since there are multiple
optimal solutions in general cases, we selected one sample
solution instead of the statistical aggregation of possible
combinations of contributions that require an exhaustive
search.

C. Strategies of agents

In our simple model, an agent has two types of choices.
One is the decision whether to participate in the group,
and another one is the fixed assignment to its variable. We
experimentally investigate several heuristics.

Basically, we assume that the strategy of non-cooperative
agents is greedy. Each non-cooperative agent knows the
lower and upper bound values of its own function. Obviously,
the lower bound value is always obtained. Therefore, if an
agent is satisfied with the lower bound, it simply selects
a corresponding assignment. However, the resulting utility
might not be so high. If an agent takes other assignments, the
agent might obtain the utilities that are less than its desired
value due to the lack of agreements with other agents.

After the optimization process, a non-cooperative agent
might find other assignments that improve its utility on the
solution for cooperative agents. In such cases, there are risks
on stability of solutions.

D. Characteristics of agents

We address several characteristics of agents to investigate
the strategies of non-cooperative agents. The function of in-
dividual agents has several aspects. The variance of function
values is a basic characteristic which is often considered in
approximation algorithms. There are upper and lower bounds
for all scopes, as described above. The boundaries are also
aggregated for each assignment to a variable. The lower
bound f

i
(xi) for each assignment to own variable xi of agent

i is represented as follows.

f
i
(xi) = min

Xi\xi

fi(Xi) (1)

When the lower bounds are different among the assignments,
the baseline utility for each assignment can be determined.

A different characteristic is the ratio of function values
among agents. The agents whose functions have large values
are influential in a group.

The agents might be also affected by their degree. When
an agent is related to a number of other agents by functions,
the agent’s decision will highly affect the solution quality.

E. Selection of non-cooperative agents

Which agents perform as non-cooperative agents will also
affect the quality and stability of solutions. We address two
heuristics that consider the impact of the variables of non-
cooperative agents. Basically, for each agent, the impact of
its own variable is evaluated as the difference between the
upper and lower bound values of objective functions. The
impacts resemble the one shown in [12]. Then the non-
cooperative agents are selected based on the ascending order
of the impacts.

The first heuristic evaluates the impact for the own func-
tion of each agent i. The impact f̂i for the own function is
represented as follows.

f̂i = max
xi

(
max
Xi\xi

fi(Xi)− min
Xi\xi

fi(Xi)

)
(2)

This impact will emphasize the influence of a variable for
each individual agent.

The second heuristic evaluates the impact for all functions
which relates the own variable of each agent. The impact f̌i
for all related functions is represented as follows.

f̌i = max
xi

(
max
Xi\xi

∑
k s.t. xi∈Xk

fk(Xk)− min
Xi\xi

∑
k s.t. xi∈Xk

fk(Xk)

)
(3)

This emphasizes the influence of a variable for all agents
related to the variable.

IV. EVALUATION

A. Settings

We experimentally investigated the behavior of the pro-
posed scheme. The problem consists of n variables and n
functions. Variable xi takes a value from its related domain
whose size is three.

We employed the following types of function values.
• rnd.: random integer values with the uniform distribu-

tion. The range of values is [0, 10] or [0, 100].
• g92: random integer values based on the gamma dis-

tribution of (α, β) = (9, 2). The values are rounded to
integer values.

In the basic settings, we employed ternary functions whose
arity a is three.

Each non-cooperative agent takes an assignment to its own
variable based on one of the following strategies.

• lb: the assignment corresponds to the lower bound of
its function values.

• ub: the assignment for the upper bound of its function
values.

• dlb: the assignment corresponds to the maximum lower
bound value for its own assignments.
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TABLE I
INFLUENCE OF GREEDINESS OF NON-COOPERATIVE AGENTS (n=10)

problem alg. coop−single coop−choice incentive
gt eq le gt eq le to change

rnd. lb 0.776 0.224 0 1 0 0 0.668
[0, 10] dlb 0.718 0.282 0 0.998 0.002 0 0.592

ub 0.694 0.306 0 0.262 0.250 0.488 0.582
rnd. lb 0.796 0.204 0 1 0 0 0.668

[0, 100] dlb 0.774 0.226 0 0.998 0.002 0 0.64
ub 0.708 0.292 0 0.270 0.120 0.610 0.588

g92 lb 0.794 0.206 0 0.994 0.006 0 0.664
dlb 0.766 0.234 0 0.996 0.004 0 0.612
ub 0.708 0.292 0 0.234 0.140 0.626 0.568

TABLE II
TWO GROUPS OF DIFFERENT ARITIES (n=10, rnd. [0, 10])

ratio of alg. a=5 a=3
agents coop−single coop−choice incentive coop−single coop−choice incentive

gt eq le gt eq le to change gt eq le gt eq le to change
1 : 9 lb 0.84 0.16 0 1 0 0 0.62 0.796 0.204 0 1 0 0 0.678

dlb 0.84 0.16 0 1 0 0 0.62 0.756 0.244 0 0.993 0.007 0 0.613
ub 0.84 0.16 0 0.24 0.3 0.46 0.62 0.731 0.269 0 0.224 0.222 0.553 0.58

5 : 5 lb 0.8 0.2 0 1 0 0 0.644 0.764 0.236 0 1 0 0 0.668
dlb 0.8 0.2 0 1 0 0 0.644 0.708 0.292 0 0.996 0.004 0 0.588
ub 0.8 0.2 0 0.272 0.168 0.56 0.644 0.684 0.316 0 0.136 0.216 0.648 0.56

TABLE III
TWO GROUPS OF DIFFERENT LOWER BOUNDS OF FUNCTION VALUES (n=10, [0, 10])

ratio of alg. [5, 10] for an assignment to own variable [0, 10] for all assignment
agents coop−single coop−choice incentive coop−single coop−choice incentive

gt eq le gt eq le to change gt eq le gt eq le to change
1 : 9 lb 0.86 0.14 0 1 0 0 0.8 0.787 0.213 0 1 0 0 0.678

dlb 0.62 0.38 0 0.98 0.02 0 0.46 0.749 0.251 0 0.998 0.002 0 0.576
ub 0.66 0.34 0 0.24 0.18 0.58 0.66 0.742 0.258 0 0.193 0.233 0.573 0.544

5 : 5 lb 0.812 0.188 0 1 0 0 0.744 0.804 0.196 0 1 0 0 0.644
dlb 0.62 0.38 0 0.98 0.02 0 0.368 0.764 0.236 0 1 0 0 0.544
ub 0.716 0.284 0 0.276 0.252 0.472 0.544 0.696 0.304 0 0.244 0.228 0.528 0.524

TABLE IV
TWO GROUPS OF DIFFERENT SCALES OF FUNCTION VALUES (n=10, [0, 10])

ratio of alg. [0, 100] for all assignment [0, 10] for all assignment
agents coop−single coop−choice incentive coop−single coop−choice incentive

gt eq le gt eq le to change gt eq le gt eq le to change
1 : 9 lb 0.9 0.1 0 1 0 0 0.7 0.773 0.227 0 1 0 0 0.653

dlb 0.86 0.14 0 1 0 0 0.56 0.704 0.296 0 0.996 0.004 0 0.544
ub 0.84 0.16 0 0.08 0.24 0.68 0.62 0.66 0.34 0 0.3 0.198 0.502 0.551

5 : 5 lb 0.884 0.116 0 1 0 0 0.696 0.756 0.244 0 0.988 0.012 0 0.632
dlb 0.848 0.152 0 1 0 0 0.524 0.684 0.316 0 0.968 0.032 0 0.568
ub 0.84 0.16 0 0.188 0.164 0.648 0.62 0.68 0.32 0 0.452 0.14 0.408 0.512

With the above settings, we evaluated the heuristics for
non-cooperative agents. The results were averaged over fifty
instances.

B. Single non-cooperative agents

We evaluated the cases where one of the agents performs
as a non-cooperative agent. In addition to basic settings
shown above, we composed several cases where the type
of a part of agents is different from other agents.

• arity: several agents have functions whose arity a is
larger than others.

• lower bound: an assignment to the variable of each agent
is related to a lower bound of its function value which

is the largest one in all assignments. Namely, agent i
selects argmaxxi

f
i
(xi).

• function value: several agents have a different scale of
function values, which is ten times greater than other
ones.

Here we set the number of agent n to ten. The number of
different types agents is set to one or five. A major criterion
of the evaluation is the difference between the utilities of
each agent in the cases of cooperation and non-cooperation.

First, we evaluated the cases where non-cooperative agents
take non-cooperative assignments based on their strategies.
Table I shows the results for the cases of several functions.
Each value in the tables is the ratio of the number of
agents. Here ‘coop−single’ denotes the difference between
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TABLE V
MULTIPLE NON-COOPERATEIVE AGENTS (n = 20, [0, 100])

num. sel. rnd. own rel.
non-coop. alg. sum. util. incnt. dcr. ratio dcr util. sum. util. incnt. dcr. ratio dcr util. sum. util. incnt. dcr. ratio dcr util.

2 lb 1629 0.29 0.28 62.0 1629 0.34 0.26 31.4 1642 0.34 0.03 3.3
dlb 1627 0.29 0.24 49.3 1632 0.41 0.33 45.9 1651 0.29 0.01 0.3
ub 1634 0.21 0.20 32.7 1648 0.23 0.17 31.1 1661 0.25 0.01 1.3

5 lb 1533 0.45 0.34 93.3 1545 0.44 0.32 84.1 1579 0.37 0.17 39.4
dlb 1544 0.40 0.30 76.8 1546 0.45 0.32 70.3 1577 0.34 0.16 26.9
ub 1580 0.27 0.22 67.4 1581 0.32 0.26 91.3 1600 0.25 0.12 18.3

10 lb 1367 0.55 0.38 100.0 1368 0.52 0.36 96.5 1421 0.47 0.29 61.2
dlb 1404 0.48 0.34 74.4 1419 0.46 0.33 63.5 1463 0.42 0.25 49.8
ub 1434 0.44 0.29 82.2 1461 0.40 0.29 98.5 1482 0.34 0.21 49.9

TABLE VI
MULTIPLE NON-COOPERATEIVE AGENTS (n = 20, g92)

num. sel. rnd. own rel.
non-coop. alg. sum. util. incnt. dcr. ratio dcr util. sum. util. incnt. dcr. ratio dcr util. sum. util. incnt. dcr. ratio dcr util.

2 lb 494 0.43 0.32 12.99 496 0.43 0.35 13.27 502 0.53 0.11 2.67
dlb 495 0.35 0.29 9.56 497 0.38 0.28 9.31 503 0.36 0.03 0.68
ub 501 0.18 0.13 6.76 497 0.35 0.26 9.57 506 0.29 0.04 0.72

5 lb 473 0.46 0.35 20.09 472 0.46 0.33 21.15 483 0.42 0.19 8.84
dlb 474 0.42 0.29 14.57 479 0.39 0.28 16.88 487 0.38 0.17 6.11
ub 479 0.30 0.21 13.19 483 0.32 0.22 15.81 494 0.28 0.12 6.68

10 lb 428 0.51 0.33 16.83 426 0.54 0.36 20.30 442 0.48 0.27 14.97
dlb 441 0.46 0.29 18.27 446 0.47 0.33 16.67 453 0.44 0.22 13.58
ub 449 0.38 0.24 17.52 451 0.41 0.26 20.15 468 0.32 0.18 11.46

the reward of cooperation and the actual utility of non-
cooperative case. ‘coop−choice’ denotes the difference be-
tween the reward of cooperation and the boundary value
corresponding to the selected non-cooperative assignment.
‘gt’, ‘eq’ and ‘lt’ denote ‘greater than’, ‘equals’ and ‘less
than’, respectively. ‘incentive to change’ denotes the cases
where there are other assignments to a non-cooperative agent
that improves its utility on the solution of cooperative agents.

The result shows that in all cases where an agent co-
operates, the rewards of the agents are not decreased (i.e.
‘coop−single’ is never less than zero). On the other hand,
the values of ‘coop−choice’ depend on the cases. Obviously,
in the case of ‘lb’, the actual utility does not decrease, since
the selected assignment corresponds to the lower bound.

In the case of ‘ub’, the actual utility can decrease from
the corresponding upper bound in the cases of over require-
ment. For a greedy non-cooperative agent that prefers an
upper bound, its requirement is not easily satisfied due to a
mismatch of the decisions among different agents. On the
other hand, the utility of ‘ub’ can also increase from the
upper bound of a function when the corresponding agent
contributes the cooperation.

In both differences, several agents obtained the same
reward regardless cooperation or non-cooperation. In these
situations, the non-cooperation of one of the agents did not
affect the results. The ratio of such agents was relatively
large in average when non-cooperative agents prefer the
assignments of locally larger utility. The incentive to change
an assignment is relatively large in the cases where an
agent takes the assignment of lower bounds. Such a choice
leaves the margin to locally improve the assignment of non-
cooperative agent from one side, while that increases the risk
of peer agents.

Next we examined the cases where several agents have

functions whose arity is relatively high. Table II shows
the results. Except ‘coop−choice’, the result of the agents
of higher arity (a=5) is almost the same regardless their
strategies. This is considered that the higher arity restricts
the behaviors of agents.

Table III shows the results where several agents have a
characteristic structure of lower bounds. Such an agent has
an assignment that assures higher lower bound than ones for
other assignments. This setting is compatible with some parts
of ‘dlb’ that selects the assignment corresponding to the max-
imum lower bound in all assignments. The result shows that
the incentive to change an assignment is relatively small in
the case of ‘dlb’. Similarly, the cases of ‘gt’ of ‘coop−single’
is also smaller than that of other strategies. Such assignment
might be more influential than other assignments, and might
improve the stability of solutions.

We finally evaluated the cases where several agents have
the functions whose scale of values is larger than others. The
results shown in Table IV slightly resemble the previous case
where the incentive to change is relatively small in ‘dlb’.
A possible consideration is that the higher function values
have a relatively large lower bound value for an assignment
which is selected by ‘dlb’. On the other hand, the result of
‘coop−single’ is different from the previous case.

C. Multiple non-cooperative agents

We also evaluated several cases with multiple non-
cooperative agents. The problem consists of twenty agents
including one, five or ten non-cooperative agents. Here we
employed the heuristics to select non-cooperative agents as
follows.

• rnd.: a random selection based on the uniform distribu-
tion.

• own: the impact for own function shown in III-E.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



• rel.: the impact for related functions shown in III-E.
Table V shows the results for the functions of [0, 100].

‘sum. util.’ denotes the total utility for all agents. It decreases
when the number of non-cooperative agents increases. It is
also relatively large in the case of ‘rel’ which considers
the impact of an agent for all corresponding agents. ‘incnt.’
denotes the incentive to change an assignment. It resembles
the previous results, while it also relatively small in the case
of ‘rel’.

‘dcr. ratio’ denotes the cases where the non-cooperative
agents switch to other assignments to improve their utility
after the optimization process, and that decreases the total
utility for all agents. The ratio decreases when the required
utility (i.e. lb, dlb and lb) increases. It also relatively small
in the case of ‘rel’.

‘dcr. util.’ denotes the decreased amount of total utility
corresponding to ‘dcr. ratio’. It is relatively small in several
cases of ‘dlb’ in comparison to other boundaries in the same
heuristic to select non-cooperative agents.

Table VI shows the results for the functions of g92.
The results resemble the case of [0, 100]. Basically, ‘rel’
decreased the risk of cooperative agents more than ‘own’. On
the other hand, in several cases, ‘dlb’ decreased the possible
loss of utility in comparison to other boundaries.

The results reveal the possibility of heuristics to evaluate
agents which cannot participate in the cooperation. The
solutions of cooperative agents should be stable for non-
cooperative agents even if that cannot be fully controlled. In
such situations, the heuristics and criteria of risks for non-
cooperative agents might be an issue.

V. CONCLUSION
In this work, we addressed non-cooperative agents on

asymmetric constraint optimization problems where the non-
cooperative agents independently select its assignment. In
such a situation, strategies of non-cooperative agents and
problem settings affected the quality and risk of solutions.
The experimental results revealed the possibility of heuristics
to evaluate agents which cannot participate the cooperation.
Our future work will include more detailed analysis, and
methods to determine the appropriate heuristics that reduce
the unsatisfactory and risk of non-cooperative agents.
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