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Abstract—In this paper, we apply the Laplace-Adomian-
Pade method (LAPM), which is based on the Laplace-Adomian
decomposition method (LADM), and the Adams-Bashforth-
Moulton type predictor-corrector scheme to solve a fraction-
alorder model of the glucose-insulin homeostasis in rats for
analytical and numerical solutions, respectively. Moreover, the
exact solutions of this fractional-order model, which are solved
using the Laplace transform, are employed to numerically and
graphically compare with the results obtained using the two
methods. The LAPM and the predictor-corrector scheme can
also be applied simply and efficiently to other fractional-order
differential systems arising in engineering problems.

Index Terms—Laplace-Adomian decomposition method,
Padé approximation, Adams-Bashforth-Moulton predictor-
corrector scheme, Caputo fractional-order derivative, Exact
solution

I. INTRODUCTION

VARIOUS phenomena occurring in the applied sci-
ences [1]–[3] and engineering [4], [5] have recently

been modeled by fractional-order differential equations
(FDEs). Several methods are now being used to analyti-
cally solve FDEs, for example, the Adomian decomposition
method (ADM) [6], the Laplace-Adomian decomposition
method (LADM) [7], the Duan-Rach modified ADM [8],
the homotopy analysis method (HAM) [9], and the multistep
generalized differential transform method (MSGDTM) [10].
Numerical solutions of FDEs can also be obtained via
many approaches such as the Adams-Bashforth-Moulton type
predictor-corrector scheme or PECE (Predict, Evaluate, Cor-
rect and Evaluate) method [11], the Galerkin finite element
method [12], the Legendre wavelets method [4] and the
spectral collocation method [13].

In the present paper, we study the system of fractional
order differential equations in (1). This system is a general-
ization of an integer-order system proposed by Lombarte et
al. [14] as a model for glucose-insulin homeostasis in healthy

Manuscript received December 27, 2017; revised January 25, 2018.
Natchapon Lekdee is a PhD student in the Department Mathematics,

King Mongkut’s University of Technology North Bangkok, Bangkok 10800,
Thailand.(email: karathon31@gmail.com).

Sekson Sirisubtawee is a lecturer in the Department Mathematics, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800,
Thailand.(email:sekson.s@sci.kmutnb.ac.th)

Sanoe Koonprasert is an Associate Professor in the Department Math-
ematics, King Mongkut’s University of Technology North Bangkok,
Bangkok 10800, Thailand and a researcher with the Centre of Excellence
in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand
(email:sanoe.k@sci.kmutnb.ac.th)

rats.

CD
α
a i(t) = c1g(t)− cα6 i(t),

CD
α
a g(t) = −c4(i(t)− c5)− c2i(t) + c0d(t)− c3,(1)

CD
α
a d(t) = −cα7 d(t),

with initial conditions

i(0) = i0, g(0) = g0, d(0) = d0. (2)

In (1), CD
α
a is the Caputo fractional derivative operator of

order α ∈ (0, 1] starting from t = a. The state variables
are the blood insulin concentration i(t), the blood glucose
concentration g(t) and the amount of glucose in the intestine
d(t). The constants ci, i = 1, 2, ..., 7 are non-negative model
parameters.

In this paper, we solve Eq. (1) by three methods and com-
pare the solutions. The first method is an analytical method
based on the Laplace-Adomian-Padé method (LAPM) [1],
[15]. The second method is a numerical method based on
the Adams-Bashforth Moulton predictor-corrector method
(PECE) [11]. The third method uses Laplace transforms to
find an exact solution of the system.

The paper is organized as follows. In section 2, preliminary
definitions and properties are given. In section 3, a descrip-
tion of the methods used in our work are briefly given. In
section 4, the three methods for solving the system (1) and
the solutions obtained are given. Finally, section 5 includes
a discussion of the results and the conclusions.

II. PRELIMINARY DEFINITIONS AND PROPERTIES

In this section, we provide definitions of fractional-
order operators such as the Riemann-Liouville fractional
integral and the Caputo fractional derivative. The definition
of the Mittag-Leffler functions and their important properties
are briefly given.

A function f(t) (t > 0) is said to be in the space Cα (α ∈
R) if it can be expressed as f(t) = tpg(t) for some p > α,
where g(t) is continuous in [0,∞). The function is also said
to be in the space Cmα if f (m) ∈ Cα, m ∈ N (for further
details see [16]).

Definition 2.1: [16]. The Riemann-Liouville fractional in-
tegral operator of order α > 0 of a function f ∈ Cα with
a ≥ 0 is defined as

RLJ
α
a f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, t > a, (3)

where Γ(·) is the gamma function.
Definition 2.2: [16]. For a positive real number α, the

Caputo fractional derivative of order α with a ≥ 0 is defined

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



in terms of the Riemann-Liouville fractional integral, i.e.,
CD

α
a f(t) =RLJ

m−α
a f (m)(t), or it can be expressed as

CD
α
a f(t) =

1

Γ (m− α)

∫ t

a

f (m) (τ)

(t− τ)
α−m+1 dτ, (4)

where m− 1 < α < m, t ≥ a and f ∈ Cm−1, m ∈ N.
An important property of the Riemann-Liouville fractional
integral and the Caputo fractional derivative of the same
order γ can be written as [16]

RLJ
α
a CD

α
a f(t) = f(t)−

m−1∑
k=0

f (k)(a)
(t− a)k

k!
, (5)

where m− 1 < α < m, f ∈ Cmα for m ∈ N and α ≥ −1.
The Laplace transforms of a fractional derivative in the

Caputo sense and of some types of the Mittag-Leffler func-
tions [16] are as follows.

Lemma 2.1: [16] The Laplace transform of the Caputo
fractional derivative of order m− 1 < α < m is

L {CDα
a f(t)} = sαF (s)−

m−1∑
k=0

sα−k−1f (k)(0), (6)

where F (s) = L {f(t)}.
Definition 2.3: [16] Given α, β > 0, and z ∈ C. The one

parameter Mittag-Leffler function Eα is defined as

Eα(z) =
∞∑
j=0

zj

Γ(jα+ 1)
, (7)

and the Mittag-Leffler function with two parameters is de-
fined as

Eα,β(z) =
∞∑
j=0

zj

Γ(jα+ β)
. (8)

Lemma 2.2: [17] The Laplace transforms for several
Mittag-Leffler functions are given by

L {Eα(−λtα)} =
sα−1

sα + λ
, (9)

L {tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
, (10)

provided that s > |λ|1/α, where λ is a constant parameter.

III. ALGORITHMS OF THE METHODS

In this section, we will present the methods and the
algorithms for the LADM and the PECE methods that we
use to analytically and numerically solve the fractional-order
system (1).

A. The Laplace Adomian Decomposition Method

The Laplace Adomian Decomposition Method (LADM)
[18], [19] for solving FDEs or a system of FDEs is as
follows. Consider the following fractional-order initial value
problem:

CD
α
au(t) +R(u) +N(u) = g(t), (11)

where m−1 < α < m, m ∈ N and the solution u(t) satisfies
some given initial conditions. In Eq. (11), CD

α
a denotes the

Caputo fractional derivative of order α with respect to t, R
and N are linear and nonlinear operators of u, respectively,

and g is a source term.
Taking the Laplace transform of both sides of Eq. (11) and

then applying the formula (2.1) to the resulting equation, we
obtain

L {CDα
au(t)}+ L {R(u)}+ L {N(u)} = L {g(t)},

L {u(t)} =
1

sα

m−1∑
k=0

sα−k−1u(k)(0) +
1

sα
L {g(t)}

− 1

sα
L {R(u)} − 1

sα
L {N(u)}. (12)

In the LADM, we define the solution u(t) as an infinite series

u(t) =
∞∑
i=0

ui(t), (13)

and represent the nonlinear term N by an infinite series of
Adomian polynomials

N(u) =
∞∑
i=0

Ai, (14)

where the Ai polynomials can be determined by the follow-
ing formula

Ai =
1

i!

di

dλi
N

( ∞∑
k=0

λkuk

)∣∣∣∣∣
λ=0

, i ≥ 0. (15)

Substituting (13) and (14) into (12), we get

L

{ ∞∑
i=0

ui(t)

}
=

1

sα

m−1∑
k=0

sα−k−1u(k)(0) +
1

sα
L {g(t)}

− 1

sα
L

{
R

( ∞∑
i=0

ui(t)

)}
− 1

sα
L

{ ∞∑
i=0

Ai

}
.

(16)

Then we have the Adomian recursion scheme as follows

L {u0} =
1

sα

m−1∑
k=0

sα−k−1u(k)(0) +
1

sα
L {g(t)},

L {un+1} = − 1

sα
L {R(un(t))} − 1

sα
L {An}, n ≥ 0.

(17)

Applying the inverse Laplace transform to Eq. (17), we
can evaluate the solution components un (n ≥ 0). Then the
n-term approximation of the solution is

ϕn(t) =
n−1∑
i=0

ui(t), (18)

which in the limn→∞ yields the exact solution of Eq. (11)
as

u(t) = lim
n→∞

ϕn(t). (19)

Sometimes the exact solution u(t) in Eq. (19) may be written
in a closed form.

If the exact solution u(t) in Eq. (19) can be written as
a power series in which an independent variable t is raised
to fractional powers and the radius of convergence of the
series is quite small, then the solution might not be valid
for the entire domain of interest. Therefore, a technique
of analytical continuation to obtain a solution valid in the
domain of interest is required. The Padé approximant method
constructs a rational function in t as an approximation for
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a slowly converging or diverging power series in t. It is
one of the well-known convergence acceleration techniques,
which can be applied to an n-term polynomial approximation
φn(t). We denote the [m/m] diagonal Padé approximant
of φn(t) in t by [m/m] {φn(t)}, i.e., Padé[m/m] {φn(t)} =
[m/m] {φn(t)}, where m = (n− 1)/2 if n = 3, 5, 7, ..., and
m = n/2 if n = 4, 6, 8, .... However, if each variable t in the
n-term approximation φn(t) has a fractional power, then we
must change such fractions to new integer powers using a
transformation before applying the Padé approximants. The
LADM improved by the Padé approximants is called the
Laplace-Adomian-Padé method (LAPM).

B. Adams-Bashforth-Moulton predictor-corrector scheme

Currently, the Adams-Bashforth-Moulton type predictor-
corrector scheme or the PECE [11] method is extensively
employed to numerically solve FDEs. In our work, we will
use this method to obtain approximate numerical solutions
for system (1). The relevant formulas of the method are as
follows.

Consider the fractional-order initial value problem (FIVP)

CD
α
au(t) = f(t, u(t)), 0 ≤ t ≤ T,

u(k)(0) = u
(k)
0 , k = 0, 1, ...m− 1, α ∈ (m− 1,m),

(20)

where f is a nonlinear function and m is a positive integer.
The FIVP (20) can be transformed to the following Volterra
integral equation

u(t) =
m−1∑
k=0

u
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ))dτ. (21)

In order to approximate the integral in (21), we discretize the
entire time T as the uniform grid {tn = nh : n = 0, 1, ...N}
for some integer N and the step size h := T/N . Let uh(tn)
denotes the approximation to u(tn). Suppose that we have
already calculated approximations uh(tj), j = 1, 2, ..., n,
then the approximation uh(tn+1) of the FIVP (20) can be
computed using the PECE method as follows:

uh(tn+1) =
m−1∑
k=0

tkn+1

k!
u
(k)
0 +

hα

Γ(α+ 2)
f(tn+1, u

P
h (tn+1))+

hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , uh(tj)), (22)

where

aj,n+1 =


nα+1 − (n− α)(n+ 1)α if j = 0,
(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1.

(23)

The initial approximation uPh (tn+1) in Eq. (22) is called
a predictor and is given by

uPh (tn+1) =
m−1∑
k=0

tkn+1

k!
u
(k)
0 +

1

Γ(α)

n∑
j=0

bj,n+1f(tj , uh(tj)),

(24)

where

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α). (25)

IV. MAIN RESULTS

In this section, we demonstrate the use of the LAPM
and the PECE as described above to solve the FIVP in
Eqs. (1)-(2). However, we will first obtain the exact solution
of the fractional-order model of glucose-insulin homeostasis
in healthy rats using the Laplace transform method.

Taking the Laplace transform of system (1), we have

L {CDα
a i(t)} = L {c1g(t)− cα6 i(t)},

L {CDα
a g(t)} = L {−c4(i(t)− c5)− c2i(t) + c0d(t)− c3},

L {CDα
a d(t)} = L {−cα7 d(t)}. (26)

Substituting the initial conditions (2) into (26), we obtain

sαI(s)− sα−1i0 = −cα6 I(s) + c1G(s),

sαG(s)− sα−1g0 = −(c2 + c4)I(s) + c0D(s) +
c4c5 − c3

s
,

sαD(s)− sα−1d0 = −cα7D(s), (27)

where I(s) = L {i(t)}, G(s) = L {g(t)}, and D(s) =
L {d(t)}.

Algebraically manipulating the resulting system, we obtain
the following linear system for the variables I(s), G(s), and
D(s):sα + cα6 −c1 0
c2 + c4 sα −c0

0 0 sα + cα7

 I(s)
G(s)
D(s)

 =

 sα−1i0

sαg0+c4c5−c3
s

sα−1d0

 . (28)

From the last equation in system (28), we can easily obtain
D(s) as follows

D(s) =
sα−1d0

sα + cα7
. (29)

Taking the inverse Laplace transform of (29) and then using
the formula (9), we obtain

d(t) = d0Eα(−cα7 tα). (30)

Applying Cramer’s rule to system (28) to obtain the remain-
ing two variables, we find

I(s) =
s2αi0 + c1(sα + cα7 )(g0sα + µ2) + c1c0d

0sα

s(sα + cα7 )(sα − β1)(sα − β2)
,

(31)

G(s) =
1

s(s2α + cα6 s
α + c1(c2 + c4))

[
c0d

0sα(sα + cα6 )

+ (sα + cα6 )(sαg0 + c4c5 − c3)(sα + cα7 )

− s(sα + cα7 )(c2 + c4s
α−1i0)

]
(32)

Separating the solutions in Eqs. (31)-(32) into partial frac-
tions, we have

I(s) =
i0

s
+

φ1
β1 − β2

(
s−1

sα − β1

)
− φ2
β1 − β2

(
s−1

sα − β2

)
− φ3

(
s−1

sα + cα7

)
, (33)

G(s) =
g0

s
+

ω1

β1 − β2

(
s−1

sα − β1

)
− ω2

β1 − β2

(
s−1

sα − β2

)
− ω3

(
s−1

sα + cα7

)
, (34)
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where

φ1 = β2
1i

0 + c1(g0β1 + µ2) +
c1 c0d

0β1
β1 + cα7

, (35)

φ2 = β2
2i

0 + c1(g0β2 + µ2) +
c1 c0d

0β2
β2 + cα7

, (36)

φ3 =
c1 c0d

0cα7
(β1 + cα7 )(β2 + cα7 )

, (37)

β1 =
−cα6 +

√
(cα6 )

2 − 4µ1c1

2
, (38)

β2 =
−cα6 −

√
(cα6 )

2 − 4µ1c1

2
, (39)

ω1 = g0β2
1 + cα6µ2 + β1µ2 + cα6 g

0

+
(β1 + cα6 )c0β1d

0

β1 + cα7
− µ1β1i

0, (40)

ω2 = g0β2
2 + cα6µ2 + β2µ2 + cα6 g

0

+
(β2 + cα6 )c0β1d

0

β2 + cα7
− µ1β2i

0, (41)

ω3 =
(cα6 − cα7 )c0c

α
7 d

0

(β1 + cα7 )(β2 + cα7 )
, (42)

µ1 = c2 + c4, and µ2 = c4c5 − c3. (43)

Taking the inverse Laplace transforms for I(s) and G(s)
in Eqs. (33) and (34), respectively, and then using the
formula (10), we finally obtain the solutions in terms of the
Mittag-Leffler functions as follows:

i(t) = i0 +
φ1

β1 − β2
Eα,α+1(β1t

α)− φ2
β1 − β2

Eα,α+1(β2t
α)

− φ3Eα,α+1(−cα7 tα), (44)

g(t) = g0 +
ω1

β1 − β2
Eα,α+1(β1t

α)− ω2

β1 − β2
Eα,α+1(β2t

α)

− ω3Eα,α+1(−cα7 tα). (45)

Therefore, Eqs. (30), (44) and (45) are the exact solutions
of the FIVP (1)-(2). In particular, for the special case of
integer order α = 1, the Mittag-Leffler functions can be
reduced to exponential functions [20]. Thus, for α = 1, the
exact solutions (30), (44), and (45) reduce to the following:

i(t) = i0 +
φ1

β1 − β2

(
eβ1t − 1

β1t

)
− φ2
β1 − β2

(
eβ2t − 1

β2t

)
− φ3

(
e−c7t − 1

−c7t

)
,

g(t) = g0 +
ω1

β1 − β2

(
eβ1t − 1

β1t

)
− ω2

β1 − β2

(
eβ2t − 1

β2t

)
,

− ω3

(
e−c7t − 1

−c7t

)
(46)

d(t) = d0e−c7t.

A. The Laplace-Adomian-Padé method

The present section is devoted to the use of the Laplace-
Adomian-Padé method (LAPM) to obtain an analytical so-
lution for the FIVP in Eqs. (1)-(2). We begin by using the
Laplace Adomian Decomposition method (LADM) to obtain
a series solution of the FIVP. We then show that the radius
of convergence of the series is very small and that the series
diverges over a large region of the domain of interest. Thus,

the LAPM is required to obtain a solution which can be used
over the whole domain by replacing the series solution by
a Padé approximant, i.e., by a rational function. The LAPM
for solving the FIVP in Eqs. (1)-(2) is as follows.

We begin the LAPM from Eq. (27). After some straightfor-
ward algebraic manipulation and taking the inverse Laplace
transforms, we obtain the following implicit formulas for the
solutions

i(t) = i0 + L −1

{
1

sα
L {c1g(t)− cα6 i(t)}

}
,

g(t) = g0 + L −1

{
1

sα
L {−c4(i(t)− c5)− c2i(t) + c0d(t)− c3}

}
,

d(t) = d0 + L −1

{
1

sα
L {−cα7 d(t)}

}
. (47)

We can then expand the implicit formulas i(t), g(t), d(t)
into infinite series by iteration. The infinite series for the
solutions are then given by

i(t) =
∞∑
k=0

ik(t), g(t) =
∞∑
k=0

gk(t), d(t) =
∞∑
k=0

dk(t).

(48)

Fortunately, the model does not have any nonlinear terms, so
we do not need to replace them by the Adomian polynomials.
Substituting Eq. (48) into Eq. (47) for i(t), g(t), d(t), we
obtain

∞∑
k=0

ik(t) = i0 + L −1

{
1

sα
L

{
c1

∞∑
k=0

gk(t)− cα6
∞∑
k=0

ik(t)

}}
,

∞∑
k=0

gk(t) = g0 + L −1

{
1

sα
L

{
−c4

( ∞∑
k=0

ik(t)− c5

)

−c2
∞∑
k=0

ik(t) + c0

∞∑
k=0

dk(t)− c3

}}
, (49)

∞∑
k=0

dk(t) = d0 + L −1

{
1

sα
L

{
−cα7

∞∑
k=0

dk(t)

}}
.

Matching the two sides of Eq. (49), we can determine the
solution components from the following recursion scheme.

L {i0(t)} =
i0

s
,

L {g0(t)} =
g0

s
+
c4c5 − c3
sα+1

,

L {d0(t)} =
d0

s
,

...

L {in+1(t)} =
c1
sα

L {gn(t)} − cα6
sα

L {in(t)},

L {gn+1(t)} = −c2 + c4
sα

L {in(t)}+
c0
sα

L {dn(t)},

L {dn+1(t)} =
−cα7
sα

L {dn(t)}, n = 0, 1, 2, 3....

(50)

Iteratively taking the inverse Laplace transform of the recur-
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sion scheme in Eq. (50), we obtain

i0(t) = i0, g0(t) = g0 + tα
(
− c3

Γ(α+ 1)
+

c5c4
Γ(α+ 1)

)
,

d0(t) = d0,

i1(t) = tα
(

g0c1
Γ(α+ 1)

− i0cα6
Γ(α+ 1)

)
+ t2α

(
− c1 c3

Γ(2α+ 1)
+

c5c1 c4
Γ(2α+ 1)

)
,

g1(t) = tα
(

d0c0
Γ(α+ 1)

− i0c2
Γ(α+ 1)

− i0c4
Γ(α+ 1)

)
,

d1(t) = − d0tαcα7
Γ(α+ 1)

,

i2(t) = t2α
(

d0c0 c1
Γ(2α+ 1)

− g0c1c
α
6

Γ(2α+ 1)
− i0c1 c2

Γ(2α+ 1)
− i0c1 c4

Γ(2α+ 1)

)
+ t2α

i0c2α6
Γ(2α+ 1)

+ t3α
(

c1 c3c
α
6

Γ(3α+ 1)
− c5c1 c4c

α
6

Γ(3α+ 1)

)
,

g2(t) = t2α
(
− d0c0c

α
7

Γ(2α+ 1)
− g0c1 c2

Γ(2α+ 1)
− g0c1 c4

Γ(2α+ 1)
+

i0c2c
α
6

Γ(2α+ 1)

)
+ t2α

i0c4c
α
6

Γ(2α+ 1)

+ t3α
(

c1 c3 c4
Γ(3α+ 1)

+
c1 c2 c3

Γ(3α+ 1)
− c5c1 c4

Γ(3α+ 1)
− c5c1 c2 c4

Γ(3α+ 1)

)
,

d2(t) =
d0t2αc2α7

Γ(2α+ 1)
.

Since the expressions of the solution components are quite
long for n ≥ 3, only the first two solution components
are expressed as above. The n-term approximations of the
solution i(t), g(t), and d(t) are defined as

In(t) =
n−1∑
k=0

ik(t), Gn(t) =
n−1∑
k=0

gk(t), Dn(t) =
n−1∑
k=0

dk(t), (51)

respectively. The initial conditions and parameter values
described in [14], which are employed in our simulations,
are as follows.

i0 = 100, g0 = 150, d0 = 50, c0 = 0.1, c1 = 0.7,

c2 = 0.0003, c4 = 0.05, c6 = 0.25, c7 = 0.14, c5 = 250.
(52)

Using the symbolic algebra package MATHEMATICA,
the LADM approximating solutions of the FIVP (1)-(2) for
the special case α = 1 with the given initial conditions and
parameter values in Eq. (52) are

I20(t) = 100 + 65t− 10.56t2...+ 3.549× 10−28t20,

G20(t) = 150.+ 6.97t− 1.672t2...+ 6.632× 10−29t20,

D20(t) = 50− 7.5t+ 0.5625t2...− 9.119× 10−32t19.

(53)

The corresponding solutions using the LAPM are

Padé[10/10] {I20(t)} =
100 + 119297t...+ 2.917× 10−10t10

1 + 1192.32t...+ 4.487× 10−13t10
,

Padé[10/10] {G20(t)} =
150 + 187164t...+ 9.83× 10−11t10

1 + 1247.71t...+ 4.31× 10−13t10
,

Padé[10/10] {D20(t)} =
50 + 18228.8t...− 3.97× 10−14t10

1 + 364.725t...+ 7.95× 10−16t10
.

(54)

The corresponding exact solutions in (46) obtained using
Laplace transforms for α = 1, the approximate numerical
solutions using the RK4 method, the LADM, and the LAPM

are compared in Fig. 1. It is obvious from Fig. 1 that
the solutions for i(t), g(t) obtained using the LADM are
different from those obtained using the other methods when t
is approximately close to t = 25 and that the LADM solution
diverges for t > 25. This divergence is due to the fact that the
infinite series solution for the LADM diverges for t > 25.
Due to this divergence of the LADM compared with the
LAPM it is clear that the LAPM will be a better method
than the LADM for other values of α.
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Fig. 1. Simulation comparisons of the solutions i(t), g(t), d(t) for the
FIVP (1)-(2) with α = 1 using the exact solutions, the RK4 method, the
LADM, and the LAPM. The simulation results i(t), g(t) obtained from the
LADM are diverging for t ≥ 25.

B. Adams-Bashforth-Moulton predictor-corrector scheme

Applying the Adams-Bashforth-Moulton predictor-
corrector scheme in Eqs. (21)–(25) [11] to the FIVP (1)-(2),
we discretize the time interval with points {tn} and
obtain the formulas for ih,n = ih(tn), gh,n = gh(tn),
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dh,n = dh(tn) as follows:

ih,n+1 = i0 +
hα

Γ(α+ 2)

(
c1g

P
h,n+1 − cα6 iPh,n+1

)
+

hα

Γ(α+ 2)

n∑
j=0

a1,j,n+1 (c1gh,j − cα6 ih,j) ,(55)

gh,n+1 = g0 +
hα

Γ(α+ 2)

(
−c4(iPh,n+1 − c5)

− c2i
P
h,n+1 − c3 + c0d

P
h,n+1)

+
hα

Γ(α+ 2)

n∑
j=0

a2,j,n+1 (−c4(ih,j − c5)

− c2ih,j − c3 + c0dh,j), (56)

dh,n+1 = d0 +
hα

Γ(α+ 2)
(−cα7 dPh,n+1)

+
hα

Γ(α+ 2)

n∑
j=0

a3,j,n+1(−cα7 dh,j), (57)

in which

iPh,n+1 = i0 +
1

Γ(α)

n∑
j=0

b1,j,n+1[c1gh,j − cα6 ih,j ],(58)

gPh,n+1 = g0 +
1

Γ(α)

n∑
j=0

b2,j,n+1[−c4(ih,j − c5)

− c2ih,j − c3 + c0dh,j ], (59)

dPh,n+1 = d0 +
1

Γ(α)

n∑
j=0

b3,j,n+1[−cα7 dh,j ], (60)

where, for l = 1, 2, 3,

al,j,n+1 =


nα+1 − (n− α)(n+ 1)α if j = 0,
(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1,

(61)

bl,j,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) 0 ≤ j ≤ n. (62)

We will use the discretized formulas (55)-(62) to obtain the
numerical solutions for the FIVP (1)-(2) in the next section.

C. Simulation results

In this section, we will show the simulation results of the
FIVP (1)-(2) with α = 3

4 ,
1
2 . obtained using the formulas

for the exact solutions in Eqs. (30), (44), and (45) and
the function mlf for the Mittag Leffler functions, which is
implemented by [21]. The approximating solutions of the
problem generated by the PECE method, the LAPM, and the
LADM are also described. In addition, the absolute errors of
the numerical results obtained by the LAPM and the PECE
method compared to those obtained using the exact solution
formulas are shown.

The following simulation results are for α = 3
4 . Applying

the LADM to the problem via the recursion scheme (50), the
20-term approximations of the solutions are demonstrated as

I20(t) = 100 + 59.52t3/4...+ 1.216× 10−18t15,

G20(t) = 150 + 7.584t3/4...+ 1.460× 10−19t15,

D20(t) = 50− 13.113t3/4...− 5.328× 10−22t57/4.

(63)

For simplicity, let t
1
4 = z, then we have

I20(z) = 100 + 59.52z3...+ 1.216× 10−18z60,

G20(z) = 150 + 7.584z3...+ 1.460× 10−19z60,

D20(z) = 50− 13.113z3...− 5.328× 10−22z57.

(64)

Calculating the Padé[10/10] of the resulting solutions in
Eq. (64) using the command ’PadeApproximant’ in Math-
ematica and then recalling that z = t

1
4 , the LAPM leads us

to the following approximating solutions

Padé[10/10]I20(t) =
100− 2.54× 10−10t

1
4 ...+ 7.67× 10−12t

5
2

1− 2.54× 10−12t
1
4 ...+ 4.08× 10−14t

5
2

,

Padé[10/10]G20(t) =
150 + 1.61× 10−8t

1
4 ...− 1.41× 10−9t

5
2

1 + 7.74× 10−11t
1
4 ...− 8.91× 10−12t

5
2

,

Padé[10/10]D20(t) =
50 + 2.7× 10−11t

1
4 ...+ 2.33× 10−12t

5
2

1 + 5.38× 10−13t
1
4 ...+ 1.45× 10−13t

5
2

.

(65)

The simulation results of the problem for α = 3
4 using

all of the methods, i.e., the exact formulas (30), (44), and
(45), the PECE method in Eqns. (55)-(62) with the step
size h = 10−3, the LAPM in Eq. (65), and the LADM in
Eq. (63), are shown in Fig. 2. The solution curves i(t), g(t)
constructed by the LADM are diverging when t ≈ 15 and the
numerical simulations obtained by the PECE method and the
LAPM are in very good agreement with the exact solutions.
The absolute errors between numerical solutions, which are
computed using the LAPM and the PECE method, and the
exact solutions are shown in Table I. It can be numerically
concluded from Table I that the PECE method achieves a
higher degree of accuracy than the LAPM when t is larger.
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Fig. 2. Simulation comparisons of the solutions i(t), g(t), d(t) for the
FIVP (1)-(2) using the exact solutions, the PECE method, the LAPM, and
the LADM for α = 3

4
.

TABLE I
THE ABSOLUTE ERRORS OF DIFFERENT METHODS CAOMPARED WITH

THE EXACT SOLUTIONS OF THE FIVP (1)-(2) WITH α = 3
4

α = 3
4

|Exact-LAPM|
t |∆i| |∆g| |∆d|
0 0 0 0
2 1.615E-04 9.970E-05 7.932E-06
4 4.017E-03 4.897E-04 8.802E-05
6 1.840E-02 1.869E-03 4.675E-04
8 4.890E-02 4.726E-03 1.478E-03
10 9.830E-02 9.256E-03 3.473E-03
12 1.670E-01 1.543E-02 6.769E-03
14 2.540E-01 2.301E-02 1.162E-02
16 3.575E-01 3.201E-02 1.822E-02
18 4.753E-01 4.196E-02 2.669E-02
20 6.051E-01 5.272E-02 3.711E-02

α = 3
4

|Exact-PECE|
t |∆i| |∆g| |∆d|
0 0 0 0
2 9.246E-06 1.215E-06 2.167E-06
4 2.769E-06 3.738E-07 1.082E-06
6 8.442E-07 1.164E-07 5.858E-07
8 1.727E-07 2.366E-08 3.295E-07
10 7.730E-08 1.230E-08 1.857E-07
12 1.607E-07 2.510E-08 1.027E-07
14 1.743E-07 2.786E-08 5.504E-08
16 1.706E-07 2.774E-08 2.435E-08
18 1.507E-07 2.517E-08 6.862E-09
20 1.234E-07 2.145E-08 5.653E-10

Next, we will simulate numerical results of the problem
for α = 1

2 as follows. Applying the LADM to the problem
via the recursion scheme (50), the 20-term approximations
of the solutions are expressed as

I20(t) = 100 + 47.115t1/2...+ 1.028× 10−10t10,

G20(t) = 150 + 7.865t1/2...+ 9.059× 10−12t10,

D20(t) = 50− 21.851t1/2...− 6.57× 10−13t19/2.

(66)

For simplicity, let t
1
2 = z, then we get

I20(z) = 100 + 47.115z...+ 1.028× 10−10z20,

G20(z) = 150 + 7.865z...+ 9.059× 10−12z20,

D20(z) = 50− 21.851z...− 6.57× 10−13z19.

(67)

Similarly as above, we compute the Padé[10/10] of the
obtained solutions in Eq. (67) and then substitute z = t

1
2

into the resulting equations. The LAPM eventually brings

the following approximating rational solutions

Padé[10/10]I20(t) =
100 + 1.08× 109t

1
2 ...+ 25.106× t5

1 + 1.08× 107t
1
2 ...+ 0.11t5

,

Padé[10/10]G20(t) =
150− 1.855× 1010t

1
2 ...− 286.91× t5

1− 1.237× 108t
1
2 ...− 1.40t5

,

Padé[10/10]D20(t) =
50− 1.80× 109t

1
2 ...− 1.04× 10−3t5

1 + 3.583× 107t
1
2 ...0.285t5

.

(68)

The numerical simulations of the problem for α = 1
2 using

all of the methods, i.e., the exact formulas (30), (44), and
(45), the PECE method in Eqns. (55)-(62) with the step size
h = 10−3, the LAPM in Eq. (68), and the LADM in Eq. (66),
are described in Fig. 3. The solution curves i(t), g(t) obtained
using the LADM are diverging when t ≈ 10 and the
numerical simulations obtained by the PECE method and the
LAPM are in very good agreement with the exact solutions.
The absolute errors between numerical solutions, which are
computed using the LAPM and the PECE method, and the
exact solutions are shown in Table II. It is not difficult to
observe from Table II that the PECE method attains a better
accuracy than the LAPM when t is far away from the initial
point.
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Fig. 3. Graphical comparisons of the solutions i(t), g(t), d(t) for the
FIVP (1)-(2) using the exact solutions, the PECE method, the LAPM, and
the LADM for α = 1

2
.
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TABLE II
THE ABSOLUTE ERRORS OF DIFFERENT METHODS CAOMPARED WITH

THE EXACT SOLUTIONS OF THE FIVP (1)-(2) WITH α = 1
2

α = 1
2

|Exact-LAPM|
t |∆i| |∆g| |∆d|
0 0 0 0

1.5 2.274E-04 1.835E-04 6.387E-06
3 2.387E-04 9.357E-05 8.239E-06

4.5 2.294E-04 4.001E-05 8.574E-06
6 2.150E-04 2.979E-06 8.457E-06

7.5 1.996E-04 2.497E-05 8.197E-06
9 1.848E-04 4.735E-05 7.903E-06

10.5 1.708E-04 6.605E-05 7.615E-06
12 1.580E-04 8.216E-05 7.347E-06

13.5 1.462E-04 9.635E-05 7.104E-06
15 1.354E-04 1.091E-04 6.884E-06

α = 1
2

|Exact-PECE|
t |∆i| |∆g| |∆d|
0 0 0 0

1.5 3.001e-05 4.166E-06 1.731E-05
3 1.112e-05 1.914E-06 7.561E-06

4.5 5.602e-06 1.176E-06 4.260E-06
6 3.259e-06 8.288E-07 2.698E-06

7.5 2.055e-06 6.316E-07 1.829E-06
9 1.369e-06 5.066E-07 1.295E-06

10.5 9.496e-07 4.219E-07 9.473E-07
12 6.762e-07 3.606E-07 7.076E-07

13.5 4.837e-07 3.129E-07 5.328E-07
15 3.627e-07 2.787E-07 4.121E-07

V. CONCLUSION

In this article, we have successfully obtained the exact
solutions of the fractional-order initial value problem (1)-
(2) by using the Laplace transform. We have also obtained
approximating analytical solutions of the problem via the
LADM and the LAPM. The numerical solutions of the
problem simulated via the PECE method have also been
computed. The simulations of the solutions calculated by the
above approaches have been compared for the integer order
α = 1 and the fractional orders α = 3

4 ,
1
2 . The comparisons

have shown that the approximate solutions generated via the
LAPM and the PECE are in very good agreement with the
exact solutions of the problem, whereas the infinite series
solutions generated by the LADM become divergent as the
time increases.
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