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Abstract—Based on the current problem of squirrels within
the coconut farms in SamutSongkhram, a province of Thailand,
it encourages us to formulate the mathematical model to study
the dynamics in this area. The system of fractional delayed
differential equations is thus constructed for presenting the dy-
namics and interacting pattern of the number of coconut yields,
squirrels, bran owls, and squirrel hunters in the coconut farm
environment. The resulting model is shortly called the CSOH
model. The well-known solver such as ODE45 and DDE23
are first used to numerically solve the first-order differential
system of the PECE model for the approximate solutions. They
are compared with those obtained using the Adams-Bashforth-
Moulton type predictor-corrector scheme (PECE method). The
comparisons among the methods demonstrate the consistency
of the results. In addition, we apply the PECE method to the
fractional delayed PECE model to investigate the dynamics of
its numerical solutions.

Index Terms—SamutSongkhram, Thailand, Squirrel, Co-
conut, Bran owl, squirrel hunter, CSOH model, Adams-
Bashforth-Moulton type predictor-corrector scheme, Caputo
fractional-order derivative

I. INTRODUCTION

THE interaction of some species in a natural environment
is successively studied in a numbers of contexts. How-

ever one well-known model that is employed to test an accu-
racy and efficiency of computation methods is LotkaVolterra
model, also known as a predator-prey model, proposed in
1920. This model is adjusted to fit various assumptions
under interest of scholars. Some adjusted models that are
currently proposed, for instant, include models that represent
interaction between two species under schooling behavior
and a proportional harvest of both species[1], a model of
two species with one of them can be divided to sub-classes
that incorporate with a transition rate between sub-classes,
competition within the classes, and the Holling type II
response function [2], a model of an interaction of two
species that include additional causes of mortality within the
respond function [3]

Moreover, a model is extended to recognize the essence
of other characteristics embed in the environment that can
significantly effect on behaviors of the species within the
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model. The time delay, hence, becomes an important element
that is employed for this purpose. The works that currently
impose the time delay into models are, for example, the
model of one class of prey and two classes of predator,
immature and mature type, that assume the delay in the
conversion time from immature to mature type which rep-
resented by kibix(t−τ)yi(t−τ)

1+m1x(t−τ) where ki is the consumption
rate, bi is a searching rate, and τ is a constant time delay
notation[4],the two species model that utilize the function
of θa(1−c)(x(t−τ)+ξ)

1+αξ+a(1−c)hx(t−τ) − dy to represent the time delay in
gestation where θ is a conversion rate, a is an attack rate,
ξ is a quantity of additional food, c is a strength of habitat
complexity, h is a handling time, and τ is the time delay for
the gestation of predator [5], a model of two species with
one of them can be divided to sub-classes, immature and
mature classes, which identify the time delay in the function
of red1τx1(t − τ) where x1 is the immature prey and τ is
time delay of immature class become mature class [6], and
the two species model with the gestation delay in the logistic
growth term that represent by r − bx(t− τ)x(t) [7].

Although computation results produced from a kind of
integer order of differential equations like the models referred
above are worth for studying, the marginal benefit of the
fractional order of differential equation can draw many
scholars attention to apply this technique for the purpose of
model analysis. The main advantage of fractional derivative
is that it provide an excellence tool for describing the
memory that modify behavioral respond of species which
make a crucial link between species [8]. This implies that
the more accuracy of approximation should be produced
by fractional technique. Examples of works related to this
fractional derivative technique are a model of two types of
species with a logistic growth of prey and Michaelis Menten
type functional response [9], and a model of two species
with a logistic growth of prey and Holling-type II functional
response [10].

Of Course, all of these kinds of works, whether based on
models of integer or fractional order, can provide valuable
knowledge for inquiring solutions according to an assump-
tion set by scholars and can do their best by closely approx-
imation for solutions that benefit for further actions. It, in
addition, also provides an idea of formulating the model and
represent problems which are actually happen in community.
This thus derive us the intention for searching the way to
formulate such kind of a model.

In particular, the problem of a squirrel is recognized by the
coconut farmer living in the SamutSongkhram, a province of
Thailand, for long period of time since it is a major animal
that destroys numbers of output produced in the farm while
a farmer still don’t have an effective way to prevent the
output loss from it. Even though there are some strategies,
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such as poisoning, catching, and hunting, that are previously
applied to control numbers of squirrels within a farm, they
seem less effective because of the limitation of capability
of farmers to control squirrels and the limitation of support
from related agent especially from a government. Therefore
the problem of a squirrel is still embedded in this area. This
becomes the point of interest of this work in that we will try
to provide the foundation for actions to solve this problem.
Hence it is worth, at this point, for staring to formulate the
best-fit model to visualize of the squirrel phenomena within
the coconut farm environment and to generate the basic idea
for guesstimate some necessary actions for relieving this
problem in the future. To meet the long term objective, we
will begin our work by 1) setting the reasonable model for
coconut yields, squirrels, bran owls, and squirrel hunters in
the coconut farm environment, which shortly called CSOH
model, and roughly identify an existence of its solution 2)
confirming the validity of Predictor Corrector method that
we will utilized for approximating the solution of fractional
order based on accuracy and efficiency by comparing with
numerical result from ODE45 and DDE23, and 3) applying
fractional derivative technique, which will benefit for our
work in the future, for approximate the solution of CSOH
model by utilizing the PECE method. To complete this
work, we will processed through 4 main sections which
include the section 1 that will explain the logic behind the
model construction, the section 2 and 3 that will provide
the concept utilized for computation and verification of our
model which include fractional derivative and numerical
method,Adams-Bashforth-Moulton type predictor-corrector
scheme, respectively , and section 4 that will present the
computation result and, at the same time, discuss the confor-
mity between ODE45, DDE23, and PECE method as well
as the application of fractional derivative in CSOH model.

A. CSOH Model Formulation

The construction of model is based on the relationship
between the coconut yield, squirrel, bran owl, and squirrel
hunter. This model represents how the yield of coconuts can
be varied by a squirrel density and how the action of the
bran owl as well as a squirrel hunter can affect a density
of squirrel. To present their relationship, we propose the
following model:

CD
α
0C(t) = βC(t)

(
1− C(t)

K

)
− γC(t)S(t)− µC(t),

CD
α
0 S(t) = ηS(t)

(
1− S(t)

ωC(t) +Q

)
+ λC(t− τ)S(t)

− δS(t)O(t)− σS(t)H(t)− ρS(t),

CD
α
0O(t) = ξO(t)

(
1− O(t)

κS(t) +B

)
+ ζS(t)O(t),

CD
α
0H(t) = cS(t)− dH(t),

(1)

with the following history

[C(t), S(t), O(t), H(t)]T = [C0, D0, O0, H0]T , −τ ≤ t ≤ 0,
(2)

where CD
α
0C(t) is the Caputo fractioanal derivertive defined

in the next section. The state variables and parameters in
model (1) can be described as follows. C(t) is a number
of coconut yield at time t, S(t), O(t), and H(t) are the

population of squirrel at time t, the population of bran owl
at time t , and the population of squirrel hunter at time t
respectively.

The basic assumptions of the model are that coconut yield
(C), squirrel (S), and bran owl (O) are grown in the logistic
way. For coconut yield, K is the coconut constant carrying
capacity. However, as squirrel and bran owl are not rely on
only one source of foods, so the carrying capacity of the
squirrel can be combined between coconut and other sources
of foods Q and the carrying capacity of bran owl depend on
combination between number of squirrel and other sources
B. For the rest of parameters, the constant β , η , and ξ denote
the reproduction rate of coconut yields, squirrels, and bran
owls, while c denote the enter rate of squirrel hunters, γ is
the predation rate of the squirrels, µ is the harvesting rate of
the coconut yields, ω is the coconut carrying capacity rate, λ
is the conversion rate of the squirrels, δ is the predation rate
of the bran owls, σ is the hunting rate of the squirrel hunters,
ρ is the squirrel trapping rate, τ is the constant time delay,
κ is the squirrel carrying capacity rate, ς is the conversion
rate of the bran owls, and d is the exit rate of the squirrel
hunters.

II. PRELIMINARY

In this section, we will introduce some important con-
cepts of fractional-order operators that will be utilized for
approximating the solution of the fractional CSOH model.
The definitions of the Riemann-Liouville fractional integral,
the Caputo fractional derivative and the vital property are
included as follows (see more details in [11]).

Definition 2.1: [11], [12] A function f(t), (t > 0) is said
to be in the space Cα (α ∈ R) if there exists a real number
p > α, such that f(t) = tpg(t) where g(t) ∈ [0,∞).

Definition 2.2: [11], [12] A function f(t), (t > 0) is said
to be in the space Cmα , where m ∈ N

⋃
{0} if f (m) ∈ Cα.

Definition 2.3: [11], [12] The Riemann-Liouville frac-
tional integral operator of order α > 0 of a function f ∈ Cα
with a ≥ 0 is defined as

RLJ
α
a f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, t > a, (3)

where Γ(·) is the gamma function. If α = 0, then RLJ
α
a f(t) =

f(t)
Definition 2.4: [11], [12] For a positive real number α, the

Caputo fractional derivative of order α with a ≥ 0 is defined
in terms of the Riemann-Liouville fractional integral, i.e.,
CD

α
a f(t) =RLJ

m−α
a f (m)(t), or it can be expressed as

CD
α
a f(t) =

1

Γ (m− α)

∫ t

a

f (m) (τ)

(t− τ)
α−m+1 dτ, (4)

where m− 1 < α < m, t ≥ a and f ∈ Cm−1, m ∈ N, and

CD
α
a f(t) = f (m) where α = m. (5)

The important property of the Riemann-Liouville frac-
tional integral and the Caputo fractional derivative of the
same order α can be written as

RLJ
α
a CD

α
a f(t) = f(t)−

m−1∑
k=0

f (k)(a)
(t− a)k

k!
, (6)

where m− 1 < α < m, f ∈ Cmα for m ∈ N and α ≥ −1.
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III. METHOD OF SOLVING FRACTIONAL DELAY
DIFFERENTIAL EQUATION

In this section, we will provide the description of the
Adams-Bashforth-Moulton type predictor-corrector scheme
or the PECE method for solving fractional-order differential
equations with and without delay terms.

A. The predictor-corrector scheme for solving fractional-
order differential equations

The PECE method [13] for numerically solving fractional-
order differential equations is briefly described as follows.
Consider the following initial value problem

CD
α
0 u (t) = f (t, u (t)) , 0 ≤ t ≤ T,

u(k) (0) = u
(k)
0 , k = 0, 1, m− 1, α ∈ (m− 1,m) ,

(7)

where f is a nonlinear function and m is a positive integer.
The IVP (7) is equivalent to the Volterra integral equation

u (t) =

m−1∑
k=0

u
(k)
0

tk

k!
+

1

Γ (α)

t∫
0

(t− τ)
α−1

f (τ, u (τ)) dτ.

(8)

To estimate the integral in (8), the entire interval [0, T ]
of the independent variable t is discretized as the uniform
grid {tn = nh : n = 0, 1, ...N} for some integer N with
the step size h := T/N . Let uh(tn) denote the approx-
imation to u(tn). Suppose we have already approximated
uh(tj), j = 1, 2, ..., n, and desire to obtain uh(tn+1) of
the IVP (7), hence we obtain the discretized formula for a
corrector as follows.

uh (tn+1) =
m−1∑
k=0

tkn+1

k!
u
(k)
0 +

hα

Γ (α+ 2)
f
(
tn+1, u

P
h (tn+1)

)
+

hα

Γ (α+ 2)

n∑
j=0

aj,n+1f (tj , uh (tj)) , (9)

where

aj,n+1 =


nα+1 − (n− α)(n+ 1)α, if j = 0,

(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1.

(10)

The approximation uPh (tn+1) in Eq. (9) is called a predictor
and is given by

uPh (tn+1) =
m−1∑
k=0

tkn+1

k!
u
(k)
0 +

1

Γ (α)

n∑
j=0

bj,n+1f (tj , uh (tj)) ,

(11)

in which

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α). (12)

B. The predictor-corrector scheme for delay factional differ-
ential equation

To solve delay fractional differential equation, the
AdamsBashforth-Moulton type predictor-corrector scheme,
described in the previous section, is modified as follows [12],
[14], [15]. Consider the following fractional-order delay
differential equation

CD
α
0 u(t) = f(t, u(t), u(t− τ)), t ∈ [0, T ], 0 < α ≤ 1

(13)
u(t) = g(t), t ∈ [−τ, 0]. (14)

Discretizing a uniform grid

{tn = nh : n = −k,−k + 1, ...,−1, 0, 1, ..., N}, (15)

where k and N are integers such that the step size h
satisfies the equations h = T/N and h = τ/k. We denote
the approximation of u(tj) by uh(tj) for j = −k,−k +
1, ...,−1, 0, 1, ..., N and let

uh(tj) = g(tj), j = −k,−k + 1, ...,−1, 0. (16)

In addition, the delayed approximation uh(tj − τ) can be
written as

uh(tj − τ) = uh(jh− kh) = uh(tj−k), j = 0, 1..., N.
(17)

Taking RLJ
α
0 on both sides of Eq. (13) and using Eq. (14),

we obtain

u(t) = g(0) +
1

Γ(α)

∫ t

0

(t− ξ)α−1f(ξ, u(ξ), u(ξ − τ))dξ.

(18)

Evaluating Eq. (18) at t = tn+1, we have

u(tn+1) =g(0) +
1

Γ(α)

∫ tn+1

0

(tn+1 − ξ)α−1f(ξ, u(ξ)

, u(ξ − τ))dξ.

(19)

Suppose we have already calculated the approximations
uh(tj) for (j = −k,−k+ 1, ...,−1, 0, 1, ..., n), and we want
to approximate u(tn+1) in Eq. (19). This can be done by
approximating the integral in Eq. (19) using the product
trapezoidal quadrature formula. The resulting approximated
solution uh(tn+1) of u(tn+1) is called a corrector and can
be expressed as

uh(tn+1) = g(0) +
hα

Γ(α+ 2)
f(tn+1, u

P
h (tn+1), uh(tn+1 − τ))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , uh(tj), uh(tj − τ))

= g(0) +
hα

Γ(α+ 2)
f(tn+1, u

P
h (tn+1), uh(tn+1−k))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , uh(tj), uh(tj−k)), (20)

where aj,n+1 is given by the formula (10). The predictor term
uPh (tn+1) in Eq. (20) is evaluated by the product rectangle
rule and can be written as

uPh (tn+1) = g(0) +
1

Γ(α)

n∑
j=0

bj,n+1f(tj , uh(tj), uh(tj − τ)),

= g(0) +
1

Γ(α)

n∑
j=0

bj,n+1f(tj , uh(tj), uh(tj−k)), (21)

where bj,n+1 can be computed using the formula (12).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



IV. NUMERICAL EXPERIMENT

This section will compare the computational results of
the problem (1)–(2) with and without the time delay τ for
α = 1, 0.9. Firstly, the comparison is demonstrated for the
first-order case using the simulation results obtained from the
MATLAB commands, i.e., ODE45, DDE23 and the PECE
method in Eqs. (9)–(12) and Eqs. (20)–(21). The objective of
this comparison is to validate the CSOH model and to ensure
the capability of PECE method for applying to the fractional
delayed model (1)–(2). Next, the numerical results of the
fractional delayed system (1)–(2), which are obtained using
the PECE method in Eqs. (20)–(21), are graphically and
numerically shown for α = 0.9. The numerical experiments
are as follows.

A. Simulation results of the problem (1)-(2) for α = 1

We begin applying the Adams-Bashforth-Moulton type
predictor-corrector scheme without a delay term as shown
in Eqs. (9)–(12) to the problem (1)–(2) for α = 1, τ = 0.
It can be noticed that the original problem is reduced
to the initial value problem with the initial conditions
[C(0), S(0), O(0), H(0)]

T
= [C0, D0, O0, H0]

T . Then the
discretized formulas for such a problem are written as

Cn+1
h

= C0 +
hα

Γ(α+ 2)

[
βCP,n+1

h

(
1 −

CP,n+1
h

K

)

− γCP,n+1
h

SP,n+1
h

− µCP,n+1
h

]
+

hα

Γ(α+ 2)

×
n∑
j=0

a1,j,n+1

[
βCjh

(
1 −

Cjh
K

)
− γCjhS

j
h − µCjh

]
,

(22)

Sn+1
h

= S0 +
hα

Γ(α+ 2)

[
ηSP,n+1

h

(
1 −

SP,n+1
h

ωCP,n+1
h +Q

)
+ λCP,n+1

h SP,n+1
h − δSP,n+1

h OP,n+1
h − σSP,n+1

h HP,n+1
h

− ρSP,n+1
h

]
+

hα

Γ(α+ 2)

n∑
j=0

a2,j,n+1

[
ηSjh×(

1 −
Sjh

ωCjh +Q

)
+ λCjhS

j
h − δSjhO

j
h − σSjhH

j
h − ρSjh

]
,

(23)

On+1
h

= O0 +
hα

Γ(α+ 2)

[
ξOP,n+1

h

(
1 −

OP,n+1
h

κSP,n+1
h +B

)

+ ζSP,n+1
h OP,n+1

h

]
+

hα

Γ(α+ 2)

n∑
j=0

a3,j,n+1

[
ξOjh(

1 −
Ojh

κSjh +B

)
+ ζSjhO

j
h

]
, (24)

Hn+1
h

= H0 +
hα

Γ(α+ 2)

[
cSP,n+1
h − dHP,n+1

h

]
+

hα

Γ(α+ 2)

n∑
j=0

a4,j,n+1

[
cSjh − dHj

h

]
, (25)

where

CP,n+1
h

= C0 +
1

Γ(α)

n∑
j=0

b1,j,n+1

[
βCjh

(
1−

Cjh
K

)

− γCjhS
j
h − µC

j
h

]
, (26)

SP,n+1
h = S0 +

1

Γ(α)

n∑
j=0

b2,j,n+1

[
ηSjh

(
1−

Sjh
ωCjh +Q

)

+ λCjhS
j
h − δS

j
hO

j
h − σS

j
hH

j
h − ρS

j
h

]
, (27)

OP,n+1
h = O0 +

1

Γ(α)

n∑
j=0

b3,j,n+1

[
ξOjh

(
1−

Ojh
κSjh +B

)

+ ζSjhO
j
h

]
, (28)

HP,n+1
h = H0 +

1

Γ(α)

n∑
j=0

b4,j,n+1

[
cSjh − dH

j
h

]
, (29)

where, for l = 1, 2, 3, 4,

al,j,n+1 =


nα+1 − (n− α)(n+ 1)α, if j = 0,
(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1,

(30)

and

bl,j,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) , 0 ≤ j ≤ n. (31)

To obtain the numerical solutions, we insert the following
values

C0 = 500, S0 = 20, O0 = 2, H0 = 2, β = 3,

K = 3, 500, γ = 0.1, µ = 0.3, η = 1, ω = 0.2, Q = 100,

λ = 0.005, δ = 0.2, σ = 0.1, ρ = 0.02, ξ = 1, κ = 0.05,

B = 10, ζ = 0.002, c = 0.01, d = 0.06,

(32)

into the formulas (22)–(31) with the step size h = 0.01. The
simulation results obtained using the above PECE method are
plotted in Fig1. Numerical comparison between the results
obtained by the PECE and the command ODE45 are shown
in Table I.

Secondly, we impose the time delay τ = 0.1 into the
CSOH model (1)–(2) for α = 1. To compare the numerical
results obtained using the PECE method with the time delay
to the command DDE23, only the the corrector and predictor
of S(t) in formulas (23), (27) must be modified using the
discretized formulas (20), (21) as follows.
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Fig. 1: Numerical results obtained using the PECE method
with α = 1, τ = 0, h = 0.01, and the simulation time
T = 30, (a) dynamics between C(t) and S(t), (b) dynamics
between S(t) and O(t), (c) dynamics between S(t) and
H(t).

Sn+1
h

= S0 +
hα

Γ(α+ 2)

[
ηSP,n+1

h

(
1−

SP,n+1
h

ωCP,n+1
h +Q

)
+ λCP,n+1−k

h SP,n+1
h − δSP,n+1

h OP,n+1
h

− σSP,n+1
h HP,n+1

h − ρSP,n+1
h

]

+
hα

Γ(α+ 2)

n∑
j=0

a2,j,n+1

×

[
ηSjh

(
1−

Sjh
ωCjh +Q

)
+ λCj−kh Sjh

− δSjhO
j
h − σS

j
hH

j
h − ρS

j
h

]
, (33)

SP,n+1
h = S0 +

1

Γ(α)

n∑
j=0

b2,j,n+1

[
ηSjh

(
1−

Sjh
ωCjh +Q

)

+ λCj−kh Sjh − δS
j
hO

j
h − σS

j
hH

j
h − ρS

j
h

]
. (34)

TABLE I: Discrepancy of the numerical results of the prob-
lem (1)–(2) for α = 1, τ = 0 obtained using the ODE45
solver and the PECE method (h = 0.01).

t
| ODE45-PECE |

|∆C| |∆S| |∆O| |∆H|
0 0 0 0 0
3 0.53997 0.01918 0.00057 0.00022
6 1.24462 0.20278 0.00324 0.00111
9 1.07454 0.19353 0.00313 0.00138
12 0.64546 0.05613 0.00275 0.00119
15 0.46518 0.01336 0.00104 0.00100
18 0.16231 0.01158 0.00018 0.00088
21 0.07052 0.02192 0.00016 0.00075
24 0.28465 0.02560 0.00077 0.00070
27 0.30293 0.02458 0.00083 0.00060
30 0.47970 0.01272 0.00102 0.00056

TABLE II: Discrepancy of the numerical results of the
problem (1)–(2) for α = 1, τ = 0.1 obtained using the
DDE23 solver and the PECE method (h = 0.01).

t
| DDE23-PECE |

|∆C| |∆S| |∆O| |∆H|
0 0 0 0 0
3 0.12882 0.01145 0.00067 0.00011
6 1.02404 0.33619 0.00428 0.00027
9 22.79801 1.19936 0.02216 0.00350

12 5.78926 0.62653 0.00887 0.00037
15 16.55247 0.40536 0.00074 0.00133
18 19.78738 0.33068 0.00646 0.00250
21 20.94212 0.30122 0.01251 0.00329
24 21.64938 0.30588 0.01686 0.00382
27 22.07041 0.34118 0.01869 0.00411
30 21.89598 0.41364 0.01799 0.00414

Using the same values of the parameters described in
Eq. (32), the modified PECE method for the delayed first-
order problem gives the graphical results in Fig2. The differ-
ences between the results obtained using the PECE method
and the DDE23 solver are numerically shown in Table II. The
impact of the time delay to the system is that it postpones the
time of reaching the equilibrium points. Fig 3 shows that the
numerical solutions are converging to their equilibrium points
when t ≈ 140. These convergences cannot be observed in
Fig 2.

Referring to Table (II), it can be noticed that the dif-
ferences of the numerical results obtained utilizing the two
methods are quite large on the coconut yield C(t). This can
be overcome by reducing the step size h of the PECE method
from h = 0.01 to h = 0.001. The numerical simulation
consequently results in reducing the size of discrepancy as
shown in Table III. Hence, reducing the step size h of the
PECE method has a great impact on the accuracy of the
numerical results.

B. Simulation results of the problem (1)-(2) for α = 0.9

According to the above comparisons, we have the con-
formity among the used methods, i.e., the ODE45 solver,
DDE23 solver, and PECE method on the problem (1)-(2)
for α = 1. In this section, we hence obtain numerical
results of the fractional-order delayed CSOH model (1)-(2)
for α = 0.9. Applying the PECE method, which is described
in Eqs. (22), (24), (25), (26), (28), (29), and the modified
formulas (33), (34) with the step size h = 0.001 along with
the history and parameter values described in Eq. (32), to
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Fig. 2: Numerical results obtained using the PECE method
with α = 1, τ = 0.1, h = 0.01, and the simulation time
T = 30, (a) dynamics between C(t) and S(t), (b) dynamics
between S(t) and O(t), (c) dynamics between S(t) and
H(t).

TABLE III: Discrepancy of the numerical results of the
problem (1)–(2) for α = 1, τ = 0.1 obtained using the
DDE23 solver and the PECE method (h = 0.001).

t
| DDE23-PECE |

|∆C| |∆S| |∆O| |∆H|
0 0 0 0 0
3 0.06723 0.00467 0.00002 0.00005
6 0.07294 0.33595 0.00283 0.00101
9 11.50632 0.73602 0.01110 0.00180
12 4.66667 0.29782 0.00290 0.00005
15 9.70057 0.18178 0.00156 0.00084
18 11.17735 0.14209 0.00554 0.00148
21 11.79295 0.12547 0.00909 0.00198
24 12.39969 0.12866 0.01198 0.00237
27 13.01634 0.14810 0.01349 0.00266
30 13.40185 0.19023 0.01348 0.00281
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Fig. 3: Numerical results obtained using the PECE method
with α = 1, τ = 0.1, h = 0.01, and the simulation time
T = 200, (a) dynamics between C(t) and S(t), (b) dynamics
between S(t) and O(t), (c) dynamics between S(t) and
H(t).

TABLE IV: Numerical results of the problem (1)–(2) for
α = 0.9, τ = 0.1 using the PECE method with h = 0.001.

t
PECE

|∆C| |∆S| |∆O| |∆H|
0 500 20 2 2
3 173.23355 12.97739 9.41423 2.58536
6 311.95077 19.82819 11.22206 2.72312
9 357.43848 22.61053 11.48103 2.86142

12 361.10604 23.71782 11.57423 2.98823
15 360.45823 23.93775 11.61876 3.09766
18 361.54209 23.92124 11.64126 3.19126
21 363.34415 23.88780 11.65437 3.27187
24 365.05575 23.86833 11.66327 3.34179
27 366.50416 23.85648 11.66990 3.40275
30 367.72692 23.84725 11.67505 3.45609

the problem (1)-(2) for α = 0.9, we obtain the approximate
solutions as portrayed in Fig4 and the numerical results at
some specified times t are shown in Table (IV).

V. CONCLUSIONS

To construct the mathematical model that represents the
squirrel situation in coconut farm and to approximate for
solution, we have used ODE 45 and DDE 23 as the baseline
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Fig. 4: Numerical results obtained using the PECE method
with α = 0.9, τ = 0.1, h = 0.001, and the simulation time
T = 30, (a) numerical solutions C(t), S(t), O(t), H(t), (b)
dynamics between C(t) and S(t), (c) dynamics between S(t)
and O(t), (d) dynamics between S(t) and H(t).

solution for benefit of developing the computation technique
based on PECE method to approximate solution for fractional
order. The comparison show that PECE method can approx-
imate solution close to what approximated by ODE 45 and
DDE 23, especially when step size is small, in the integer
order case both for the model that impose and don’t impose
the time delay. Refer to the conformity of approximation
from ODE 45, DDE 23, and PECE method, we thus adjust
the computation detail of PECE method for approximating
the solution of fractional order.
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hyay, “Paradox of enrichment: A fractional differential approach with
memory,” Physica A: Statistical Mechanics and its Applications, vol.
392, no. 17, pp. 3610–3621, 2013.

[9] M. Javidi and N. Nyamoradi, “Dynamic analysis of a fractional or-
der prey–predator interaction with harvesting,” Applied mathematical
modelling, vol. 37, no. 20, pp. 8946–8956, 2013.

[10] R. K. Ghaziani, J. Alidousti, and A. B. Eshkaftaki, “Stability and
dynamics of a fractional order leslie–gower prey–predator model,”
Applied Mathematical Modelling, vol. 40, no. 3, pp. 2075–2086, 2016.

[11] I. Podlubny, Fractional differential equations: an introduction to
fractional derivatives, fractional differential equations, to methods of
their solution and some of their applications. Academic press, 1998,
vol. 198.

[12] S. Bhalekar and V. Daftardar-Gejji, “A predictor-corrector scheme
for solving nonlinear delay differential equations of fractional order,”
Journal of Fractional Calculus and Applications, vol. 1, no. 5, pp.
1–9, 2011.

[13] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector ap-
proach for the numerical solution of fractional differential equations,”
Nonlinear Dynamics, vol. 29, no. 1, pp. 3–22, 2002.

[14] K. Diethelm and N. J. Ford, “Analysis of fractional differential
equations,” Journal of Mathematical Analysis and Applications, vol.
265, no. 2, pp. 229–248, 2002.

[15] C. F. Lorenzo and T. T. Hartley, “Initialized fractional calculus,” 2000.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018




