

Abstract—In this paper, we propose an alternative of

compositional verification of data invariants in Promela code.
The Promela source code, c-like source code, is analyzed and
decomposed into a set of code chunks using the program slicing
technique. Each code chunk of Promela will be verified to
satisfy each simple logical condition term separately found in
the linear temporal logic properties of data invariants. The
separate checks are performed and eventually consolidated
into the final result. It obviously shows that the state space of
each separated model checking task has been reduced and
more tractable. The SPIN model checker tool is used to
evaluate our final results.

Index Terms—Compositional verification, Data invariant,
Program slicing, Promela, SPIN

I. INTRODUCTION
PIN is an automated verification tool developer by [1],
which needs Promela as an input language for

processing verification in model checking technique. It is
one of the most well-known linear temporal logic (LTL)
model checkers which can simulate various properties:
safety properties that are often characterized as “something
bad never happens”, liveness properties that are
characterized as “something good will happen in the future”
[2].
 For example, safety property can be described as the
mutual exclusion property—at most one process is always in
its critical section. Thus, the bad thing which is having two
or more processes in their critical section concurrently
should never occurs. Deadlock freedom is also a typical
safety property in dining philosophers problem for instance.
The occurrence of each of philosophers holding left
chopstick and waiting for his right chopstick to be available
or vice versa must never occur. Checking safety property or
data invariant checking can be performed by traversing the
state space and checking whether all of them that are
reachable hold the data invariant. By holding the data
invariant, state space must satisfy safety property which can
be specified by propositional temporal logic. This approach
can grow the system state space exponentially which leads
to the state space explosion problem. For example, a system
composed by n processes and each of them have m states.
The asynchronous composition from processing the system
may be mn states which quickly leads to the maximum

Bass Srongsil is with the Department of Computer Engineering, Faculty
of Engineering, Chulalongkorn University, Bangkok, Thailand (e-mail:
bass.s@sudent.chula.ac.th).

Wiwat Vatanawood is with the Department of Computer Engineering,
Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand (e-
mail: wiwat@chula.ac.th).

capabilities of verification tool.
There are several proposed solutions to the state

explosion problem in model checking verification. For
example, using reduction techniques to do on-the-fly
reduction of the structure of the original state space [3],
using abstraction techniques to get the simpler formal model
from the original one [4], etc. In this paper we consider the
divide-and-conquer techniques by decomposing the formal
model written in Promela code into a set of code chunks.
The slicing technique of source code is considered since the
Promela code is a c-like source code. The data invariants are
expressed in terms of temporal formula consisting of atomic
propositions and temporal operators. Our proposed slicing
technique will consider only relevant variables found in
atomic proposition as the slicing criteria for each program
slice. Obviously, we intend to reduce the size of the model
beforehand into a set of smaller code chunks and separately
perform the smaller model checking tasks.

The rest of paper is organized as follows. Section II
describes backgrounds. Section III describes related works.
Section IV describes our slicing methodology. Section V
discusses the results of our compositional verification.
Section VI is our conclusion.

II. BACKGROUND

A. Propositional Logic
Proposition logic is a simple logical system that allows to

reason logical expression whether it is true or false [5].
Logical expression can contain logical operators such as
AND (∧), OR (∨), and NOT (¬). Atomic propositions
express simple known facts about the states of the system
under consideration for example “x equals 0”, or “x is
smaller than 100” for some given integer variable x. Given
AP is a set of atomic propositions. Latin letters such as a, b
and c (with or without subscripts) are used to denote
elements of AP. Four rules are defined for the set of
propositional logic formula: (1) true is formula, (2) any
atomic proposition a ∈ AP is a formula, (3) if Φ1, Φ2 and Φ
are formula, then so are (¬Φ) and (Φ1 ∧ Φ2) and (4) nothing
else is formula [6]. Proposition might hold or not depends
on which of the atomic propositions are assumed to hold.
For example, Φ1 ∧ Φ2 holds if and only if Φ1 and Φ2 hold,
Φ1 ∧ ¬Φ2 holds if and only if Φ1 holds and Φ2 does not hold
and true holds in any context.

B. Temporal Logic
Temporal logic extends propositional logic by modalities

that allows for the specification of the relative order of
events [2]. These modalities allow specifying the order in

Compositional Verification of Data Invariants in
Promela using Slicing Technique

Bass Srongsil, Wiwat Vatanawood

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

which state labels occur during system execution, or to
assess that certain state labels occur infinitely often in
system execution. Propositional logic which is extended by
temporal logic is propositional temporal logics. The
elementary temporal modalities that are written in most
temporal logics include operators as X (next), G (Globally),
F (Finally) [7] presented in Fig. 1, which is based on [2].

Two types of temporal logics are most commonly used
for model checking: Computational Tree Logic (CTL) that
is a branching temporal logic for specifying system
properties, and Linear Temporal Logic (LTL) that is
interpreted over the set of CTL paths [8].

C. Invariant
Invariant, such as safety properties, are linear time

properties that require condition to hold for all reachable
states [2]. An example for mutual exclusion, at most one
process is always in its critical section, can be described by
an invariant using the propositional logic formula as (1).
Given Φ is invariant condition and inCriticali is the
proposition that characterizes the state(s) of having process
in its critical section.

21 inCriticalinCritical ¬∧¬=φ (1)

For deadlock freedom of dining philosophers problem,

the invariant ensures that at least one of the dining
philosophers is not waiting to pick up the chopsticks [2]. It
can be described by using the propositional logic formula as
(2). Given waitForChopsticki is the proposition that
characterizes the state(s) of philosopher I in which he is
waiting for a chopstick.

43

21

pstickwaitForChopstickwaitForCho

pstickwaitForChopstickwaitForCho

¬∧¬∧

¬∧¬=φ
 (2)

D. Program Slicing
Program slicing is basically a decomposition technique. It

elides program components that are not related to a
preserved subset of the original program’s behavior [9]. A
specification of the subset is known as a slicing criterion,
and the resulting subprogram is a slice. Slicing criterion is
defined by [10] as a pair ‹i, V›, combining a program point,
i, and a set of variables, V. A slice is computed with respect
to a slicing criterion that consists of a selected variable and
program location. There are several kinds of slicing such as

backward slices and forward slices. Both of them include
variable assignment in the slice in order to preserve
semantics of the chosen variable at the location in the slicing
criterion.

Backward slicing is one kind of program slicing which
computes to answer the question “what program
components might effect a selected computation” [17]. The
example of backward slicing is shown in Fig. 2, which is
based on [9]. Slicing criterion is specified as ‹8, i›, which is
related to variables i in statement print(i). Then each
statement before execution of statement print(i) is checked
if it contains variable i. So statement that is related to
variable sum such as sum = 0 and sum = sum + 1 will not be
included in a slice.

Whilst, forward slicing is another kind of program slicing
which computes to answer question “what program
components might be effected by a selected computation”
[17]. An example of forward slicing is shown in Fig. 3,
which is based on [9].

Slicing criterion is specified as ‹2, sum›, then each
statement after statement sum = 0 is checked if it is affected
by variable sum. So statement that is related to variable i
such as i = i + 1 will not be included in a slice since it is not
affected by the variable sum.

E. Program Dependency Graph
Program dependency graph (PDG) is a graph representing

the consecutive statements of the cascading dependency of
the data values assignments in the program. It simplifies the
static analysis of the program and typically used to perform
the program slicing. It has been a method to identify the
relevant entities of the program according to data and
control dependencies [11].

Formally, a PDG is a tuple (V, E) where V is a set of
vertices and E is a set of edges. The vertices of a PDG

Fig. 1. An example of semantics of temporal modalities [2]

Fig. 2. An example of backward slicing [9]

Fig. 3. An example of forward slicing [9]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

represent program statements, control predicates, and
regions of the program. While, the edges of a PDG represent
data or control dependencies between the vertices.

The PDG is related to program slicing since program
slicing can be reduced to the graph reachability problem in
which a program slice is a set of vertices that can be reached
from some indicated vertex. Based on Fig. 2., PDG of the
original program can be written in Fig. 4, which is based on
[11].

After the backward slicing with the slicing criterion ‹8, i›,
a resulting smaller slice is illustrated by the PDG shown in
Fig. 5, which is based on [11]. The unrelated vertices of the
original PDG are elided according to the slicing criterion ‹8,
i›. As you can see, the vertex of sum = 0 and its cascading
dependency vertices, carrying the variable sum, are left out.

III. RELATED WORK
Many approaches for reducing state space has been

investigated. Partial order reduction, based on research of
[12], is a technique for reducing size of the state space by
constructing a smaller state space that is searched by the
verification algorithms. Their experiment was based on
safety and liveness properties of parameterized systems,
which produced excellent results as huge reduction of states,
transitions, memory and computing time because the local
semantic accelerations are strong enough to get new results
that match or beat old results in the context of regular model
checking. Divide-and-Conquer is another state space

reduction technique. It decomposes properties of the system
into properties of its components, then checks each
component separately. It is necessary to incorporate
knowledge of the context for expectation of each component
to operate correctly. An example for state space reduction
by divide-and-conquer technique is [13], which proposed an
automatic method for systematically extracting subparts,
then applying divide-and-conquer approach for computation
subparts efficiently. Another work by [14] proposed
agglomeration for state space reduction for model checking
concurrent C programs. The agglomeration predicate needed
to be defined which took as argument a C statement and
returned true or false depending on whether the statement
could be agglomerated or not. Also, the predicate was
checked if it was safe or unsafe. It was called unsafe as a
statement which might contain the global memory
agglomerated. Agglomerating actions could reduce the
number of states in control flow graph, for example two
consecutive statements are x = x +1 and x = x +2, the
agglomeration technique could combine two statements by
one action which is the result as well as of executing the
statement x = (x+1) + 2. The statement with a return
statement followed could be agglomerated into one action as
well, for example two consecutive statements such as x = x
+ 1 and return. Once the states in control flow graph was
reduced, the resulting state space from model checking with
this reduction techniques, is reduced accordingly. The
results from experimental of agglomeration include 5
programs: Zunebug, Lamport’s Bakery and Peterson
algorithms, Dekker mutual exclusion algorithm and Dining
philosopher problem, which could reduce huge number of
states and also time for model checking as the ratio between
the state space generated without reduction and the one after
applying the reduction technique was approximately 90 to
99. The research of [15] which was about state space
reduction in Agent Verification, applied program slicing to
eliminate details of the program that were not related to the
analysis in hand. The approach from [16] was chosen due to
similarity of the programs. Furthermore, the executable
slices did not need to be generated. Experimental results
were shown as the comparison of the memory usage
between traditional SPIN and the slicing approach—
traditional SPIN used 606 MB while the slicing approach
used only 407 MB. Moreover, the comparison of computing
time between them showed that traditional SPIN used 86
seconds while slicing approach used 64 seconds. On the
other hand, the study about program slicing by [17] applied
static backward slicing to reduce the cost of property
checking. The experimental results compared running time
for checking the two properties using the first models from
original program, from sliced program, and finally from
sliced program with abstraction. With slicing approach, it
took the time less than one second.

IV. OUR SLICING METHODOLOGY
In this section, we describe our slicing methodology for

Promela code. An example of Promela code of automated
teller machine (ATM) is given and shown in Fig. 6. The
Promela code briefly specifies the states of a ATM system
using label names, including welcome idle state
(s_welcome), enter pin state (s_enter_pin), main menu state

Fig. 4. An example of PDG of the original program based on Fig. 2. [11]

Fig. 5. An example of PDG of the sliced program based on Fig. 2. [11]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

(s_main_menu), deposit state (s_deposit), withdraw state
(s_withdraw), and try again state (s_try_again).

The ATM system is normally in the welcome idle state
and will respond to the events of depositing and
withdrawing cash. The customer needs to enter the valid pin
number and the amount of money to be checked with his/her
current account balance. A sample of the data invariants of
this ATM system could be specified in LTL property such
as �(¬(account_balance < 0)), meaning that the value of
account_balance should not less than zero at all times.
According to the mentioned LTL property, we select the
slicing criteria from the variables found, which is a pair
‹location, account_balance› where location is the last line
number of the Promela code.

Our proposed slicing method is based on [14]. A slicing
criterion is produced from extraction of variables in
propositional temporal formula for data invariant checking,
which can create a slice that contains relevant statements.
After that a data invariant checking is processed based on
each slice. The details of the activities are explained below.

A. Identify slicing criterion
A slicing criterion is produced from the propositional

temporal formula for data invariant checking, which might
contain variables, constant values and operators. The
variables are extracted to provide a slicing criterion for
processing program slicing in the next step while the
constant values and the operators are extracted to interpret
the logical expression based on the value of variable for
each state space whether it is true or false. A slicing
criterion is a pair ‹i, V›, which i represents line number and
V represents variable. This step produces slicing criterion as
‹end, INV›, which end is the last line number of proctype in
Promela and INV is a variable from propositional temporal
formula for data invariant checking. For example, we
introduce propositional temporal formula for data invariant
checking as �(¬(account_balance < 0)), an invariant
formula that describes safety property as balance in bank
account must never be less than zero in any situation. The
variable account_balance and constant value 0 are
accordingly extracted from the formula. Moreover, the
logical operator NOT must be extracted in order to apply to
the logical account_balance < 0 to be account_balance >=
0. Given 100 is the last line number of proctype of this
example. The slicing criterion for propositional temporal
formula for data invariant checking �(¬(account_balance <

0)) is a pair ‹100, account_balance›.

B. Examine variable dependencies from PDG
PDG is created based on the original program, the graph

shows dependencies between variables, statements and
control flow. We have specified variable in slicing criterion
from previous step, which can perform traversing vertices in
PDG. The traversed vertices are marked and they will be
included in a slice. Once the traversing process is complete,
we will have the information which vertices are whether
marked or not. The example slicing criterion from previous
step is ‹100, account_balance›, which can perform
traversing in PDG for checking if any vertices have
dependencies to the variable account_balance. We found
that the group of statements in the label s_enter_pin and
s_try_again are not dependent to account_balance. On the
other hand, the vertices that have dependency to
account_balance are group of statements in the label
s_withdraw and s_deposit.

C. Create a slice
This step produces a slice from PDG in previous step.

The vertices that are not marked meaning that they are not
related to variable in propositional temporal formula, and
they are elided. A slice is created from the original program
and it will contain only statements that are related to slicing
criterion and also their dependencies statements. A sliced
PDG according to the slicing criterion
�(¬(account_balance < 0)) is shown in Fig. 7.

D. Verify data invariant checking of a program slice
This study compares state space of data invariant checking

between a slice and the original program using SPIN. So
after a slice is created, it will be executed to verify data
invariant in order to ensure the data invariant has been
preserved. Data invariant must be exactly the same as the
result from the original program’s data invariant. In this
paper, we focus on the Promela code with any size of one
proctype and the propositional temporal formula, denoted as
A operator B, where A and B are observable variables in
Promela code, and operator ∈ {==, <, <=, >, >=, !=}.
Propositional temporal formula can be single or multiple
atomic proposition such as �(¬(account_balance < 0)	

Fig. 6. An example of automated teller machine in Promela source code

Fig. 7. A sliced PDG according to the slicing criterion
�(¬(account_balance < 0))

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

∧¬(account_name == null)), given account_name,
account_balance are the name of account owner and total
account balance respectively.

V. EVALUATION
The example Promela source code for automated teller

chine is developed for the evaluation. The flow of the
process is similar to simple automated teller machine. Start
from putting the correct PIN, in case the PIN is incorrect
then the state traverses to try again and getting PIN until it is
correct. After that the process is about account managing
such as deposition, withdrawal or transferring. This
example, the data invariant checking on account_balance
can produce a slice that has smaller size than the original
program because program slicing approach can remove
some statements such as statements about variable pin in
state for entering pin, which can produce smaller state space
than the original program as well. The total number of state
space from data invariant checking of the original automated
teller machine is 95, but after applying our slicing
methodology, the total number of state space is reduced to
28. However, the different of state space on data invariant
checking from our approach and the original program
depends on how many irrelevant statements that the original
program contains. The more irrelevant statements in the
original program, the more state space can be reduced from
our approach. The experiment results are based on source
code from [18]. The results are shown in Table I, where
#Proc denoted the process number and #State space denoted
the numbers of state space.

VI. CONCLUSION

In this paper we propose an alternative of compositional
verification of data invariants in Promela source code using
a slicing technique. The data invariants, as the LTL safety
property, are written in terms of propositional temporal
formula which are used to specifying the slicing criteria.
The variables found in a propositional term of the
propositional temporal formula would be considered as a
slicing criterion, used to perform a program slicing of
Promela code. Each small resulting slice of Promela code
would be verified to satisfy each propositional term at last to
conclude its validity of the data invariants. We propose a
backward slicing from the last line number of the Promela
code. We provide the obvious evidence of the compositional
verification of the smaller set of state spaces from the
Promela slices. However, we need to pursue more
experiments on the huge Promela codes in our future work.

REFERENCES
[1] G. J. Holzmann and D. Peled and M. Yannakakis. On nested depth-

first search. In 2nd International SPIN workshop on Model Checking
of Software, pages 23–32. AMS Press, 1996.

[2] C. Baier, J. Katoen, “Principles of Model Checking (Representation
and Mind Series)”, pages 20–230, 2008.

[3] J. C. Fernandez, M. Bozga, and L. Ghirvu. State space reduction
based on live variables analysis. Journal of Science of Computer
Programming (SCP), 47(2-3):203–220, 2003

[4] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. ACM Transactions on Programming
Languages and Systems, 16(5):1512–1542, 1994

[5] Ben-Ari M. (2012) Propositional Logic: Formulas, Models, Tableaux.
In: Mathematical Logic for Computer Science, pages 7–16. Springer,
London

[6] H. Pospesel, “Introduction to Logic: Propositional Logic.”, 1979.
[7] C. Artho, P. Ölveczky, “Formal techniques for Safety-Critical

Systems,” 4th International Workshop, Paris, France, November 6-7,
2015.

[8] S. Edelkamp, A. Lomuscio, “Model Checking and Artificial
Intelligence”, 4th Workshop, MoChArt IV, August 29, 2006.

[9] R.Ettinger, “Refactoring via Program Slicing and Sliding,” 2007
IEEE International Conference on Software Maintenance, Paris, 2007,
pp 505-506.

[10] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984. 7, 17, 18, 126

[11] Jian-Liang Chen, Feng-Jian Wang and Yung-Lin Chen, "An object-
oriented dependency graph for program slicing," Proceedings.
Technology of Object-Oriented Languages. TOOLS 24 (Cat.
No.97TB100240), Beijing, 1997, pp. 121-130.

[12] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State Space
Reduction using Partial Order Techniques,” International Journal on
Software Tools for Technology Transfer, November 1999, Volume 2,
Issue 3, pp 279-287

[13] Bengt Jonsson, Ahmed Rezine, and Mayank Saksena, “A Divide-and-
Conquer Strategy for Regular Model Checking”, 2007

[14] A. Methni, B. Ben Hedia, M. Lemerre, S. Haddad and K. Barkaoui,
“State Space Reduction Strategies for Model Checking Concurrent C
Programs,” 9th Workshop on Verification and Evaluation of Computer
and Communication Systems (VECoS'15), 2015, Vol. 1431, pp.65-
76.

[15] R. H. Bordini, M. Fisher, W. Visser and M. Wooldridge, “State-Space
Reduction Techniques in Agent Verification, Autonomous Agents
and Multiagent Systems”, 2004.

[16] J. Zhao, J. Cheng, and K. Ushijima. Literal dependence net and its use
in concurrent logic programming environment. In Proc. Workshop on
Parallel Logic Programming, held with FGCS’94, ICOT, Tokyo,
pages 127–141, 1994.

[17] K. Gallagher and D. Binkley, “Program Slicing”, Frontiers of
Software Maintenance, 2008.

[18] Fumiyoshi Kobayashi. Bakery Algorithm in Promela, 2008. URL
http://www.ueda.info.waseda.ac.jp/~kobayashi/Promela/benchmark/in
dex.html (Accessed 2017-21-12).

Table I: Comparing model checking results with and without our slicing
methodology

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

