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Abstract—Theory exploration has been investigated as the
lemma generation methods which play important role in au-
tomation of theorem provers. In our previous research on
exploration of equational inductive theorems, we have found
that in some cases it is important to find syntactically complex
theorems for deriving other theorems which is hard to directly
prove by induction. In this paper we discuss on the details of
such cases through an example.

Index Terms—inductive theorem proving, term rewriting
systems, theory exploration

I. INTRODUCTION

With the increasing importance of software systems, the
need of formal verification is growing to ensure correctness
rigorously. In formal verification, typically we have to solve
a huge number of theorem proving problems. Since the cost
of interactive proof by human is expensive, the improvement
of automated theorem provers is one of the most important
subjects for popularization of formal verification.

In automated theorem proving, it is known to be difficult
to prove the type of theorems called inductive theorems,
the class of theorems requiring mathematical (well-founded)
induction to prove, because such theorems may essentially
require auxiliary lemmas to prove and in general it is difficult
to find automatically such an appropriate intermediate lemma
from the original theorem. One of the approaches to finding
such lemmas is the top-down way based on the observation
of the failed proof attempts such as divergence critic [1],
and sound generalization [2], [3]. An another approach
for lemma generation is theory exploration [4], [5], [6] or
lemma discovery. In theory exploration we try to discover as
many valid equations (lemmas or theorems) as possible from
scratch, instead of trying to find useful lemmas for a specific
theorem. The constructed theory, a set of valid equations, is
expected to be used as collection of lemmas in the proofs of
the original goal or other more difficult theorems.

To enlarge the scope of provable theorems in the ex-
ploration, in [7] we proposed an approach of applying the
rewriting induction technique [8], [9], a powerful induction
scheme based on the theory of term rewriting systems (TRS),
to prove conjectures instead of simple structural induction.
In the experiments based on the proposed methods, we
have found that in some cases syntactically simple theorems
which is hard to prove by induction is derived from other
syntactically complex theorems which is easy to prove. In
this paper, through an example, we discuss the detail of the
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importance and difficulties of finding such complex theorems
in theory exploration for inductive theorems.

This paper is organized as follows. In Section II we
review the basic notions for term rewriting and rewriting
induction. In Section III, we show the detail of a case of
theory exploration where syntactically complex lemmas play
important role. In Section IV we discuss on approaches for
finding the syntactically complex but important lemmas and
concludes in Section V.

II. PRELIMINARIES

In this section, we briefly review basic notions and
concepts for term rewriting systems [10], [11], rewriting
induction [8], [9], and divergence critic [1].

A. Term Rewriting Systems

A signature F is a set of function symbols, where each
f ∈ F is associated with a non-negative integer n, the arity
of f . Let V be a set of variables such that F ∩ V = ∅. The
set T (F ,V) of all F-terms over V is inductively defined
as follows: V ⊆ T (F ,V) and if t1, . . . , tn ∈ T (F ,V) and
f ∈ F then f(t1, . . . , tn) ∈ T (F ,V), where n is the arity
of f . We write s ≡ t when the terms s and t are identical. A
term s is a subterm of t, if either s ≡ t or t ≡ f(t1, . . . , tn)
and s is a subterm of some ti. A substitution is a function
σ : V → T (F ,V) such that F(x) 6= x for only finitely
many xs. Any substitution σ can be extended to a mapping
σ : T (F ,V) → T (F ,V) by defining σ(f(s1, . . . , sn)) =
f(σ(s1), . . . , σ(sn)). Application σ(s) of σ to s is also
written as sσ. A term t is an instance of a term s if there
exists a substitution σ such that sσ ≡ t. A term is a ground
term if it contains no variables. A term t is a ground instance
of s if t is a ground term and is an instance of s. A ground-
substitution σg is a substitution whose range is ground term,
i.e. σg : V → T (F). A substitution σ is more general than a
substitution σ′ if there is a substitution δ such that σ′ = σδ.
For two terms s and t, if there is a substitution σ such that
sσ ≡ tσ, σ is a unifier of s and t. We denote the most general
unifier of s and t by mgu(s, t). Let �i be a new symbol
which does not occur in F ∪ V for any i ≥ 0. A context,
denoted by C, is a term t ∈ T (Σ, V ∪ {�1,�2, . . . }) with
some occurrences of �1,�2, . . . . C[s1, s2, . . . ] denotes the
term obtained by replacing �i in C with si.

A rewrite rule l → r is an ordered pair of terms such that
l is not a variable and every variable contained in r is also
in l. A term rewriting system (TRS), denoted by R, is a set
of rewrite rules. The reduction relation →R⊆ T (F ,V) ×
T (F ,V) is defined by s →R t iff there exists a rule l →
r ∈ R, a context C, and a substitution σ such that s ≡ C[lσ]
and C[rσ] ≡ t. A term s is reducible if s →R t for some
t; otherwise, s is a normal form. A TRS R is terminating if
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DELETE 〈E ] {s = s},H〉 ` 〈E ,H〉
SIMPLIFY 〈E ] {s = t},H〉 ` 〈E ∪ {s′ = t},H〉

if s →R∪H s′

EXPAND 〈E ] {s = t},H〉 `
〈E ∪ Expdp(s, t),H ∪ {s → t}〉
if s|p is basic and
R∪H ∪ {s → t} is terminating

POSTULATE 〈E ,H〉 ` 〈E ∪ {s = t},H〉
Figure 1. Inferences rules of rewriting induction

there is no infinite rewrite sequence s0 →R s1 →R · · · . A
TRS is ground-reducible if every ground term is reducible
with the TRS. The root symbol of a term s ≡ f(s1, . . . , sn)
is f and denoted by root(s). The set of all defined symbols
of R is defined by DR = {root(l) | l → r ∈ R}. The set of
all constructor symbols of R is defined by CR = Σ\DR. A
term consisting of only constructor symbols and variables is
a constructor term. The set of all defined symbols in a term
t is denoted by D(t). The relation ↔R is the symmetric
closure of the rewrite relation →R. The transitive closure of
a relation R is denoted by R+. The reflexive and transitive
closure of a relation R is denoted by R∗.

B. Rewriting Induction

Rewriting induction [8], [9] can be formulated as an
inference system on the pair 〈E ,H〉 of a set of conjecture
equations E and a set of inductive hypothesis rules H, shown
in Figure 1, where the function Expd for a position p and
terms s and t is defined as Expdp(s, t) = {s[r]pσ = tσ | l →
r ∈ R, σ = mgu(s|p, l), l : basic}.

Definition 1 (inductive theorem). An equation s = t is called
inductive theorem of R, denoted by R `ind s = t, if for any
ground substitution σg , sσg ↔∗

R tσg holds.

Theorem 1 (correctness of rewriting induction [8], [9]).
Given a ground reducible and terminating TRS R, if there
exists a derivation sequence 〈E0,H0〉 ` 〈E1,H1〉 ` · · · `
〈En,Hn〉 where all rule in H0 are inductive theorems of R
and En is empty set, then E0 ∪Hn are inductive theorems in
R.

In addition to the standard inference rules of rewriting
induction in Figure 1, in the context of theory exploration
we also use the following rule SIMP-POSTULATE, we pro-
posed in [7], to perform simplification using already proved
lemmas.

SIMP-POSTULATE 〈E ] {s = t},H〉 `
〈E ∪ {s′ = t},H ∪ {l → r}〉
if s →{l→r} s′,R `ind l = r and
R∪H ∪ {l → r} is terminating

C. Divergence Critic

Divergence critic [1] is the well-known method for lemma
generation based on the identification of the accumulating
term structure in the divergent sequence of equations. We
briefly show the idea of the method with an example. Let us
consider the append @(xs, ys) and reverse rev(xs) functions
on lists, defined as the first 4 rules in Figure 2. The append
function returns the list obtained by appending the given two

lists. The reverse function rev(xs) returns the list consisting
of elements in the given list xs in reverse order. Then
for example the equation rev(rev(xs)) = xs is one of the
inductive theorems on these functions. However, if we try
to prove the theorem without additional lemmas, we fail to
prove with the following divergent sequence.

rev(rev(xs)) = xs
rev(rev(xs)@[y]) = y : xs

rev((rev(xs)@[y])@[z]) = z : (y : xs)

We can observe that in each step of the divergent sequence,
in LHS a singleton list [y] is appended to the end of the
argument of outer rev, while in RHS the element y of
the singleton list is prepended. This pattern between two
successive equations in the sequence is captured by the
following two equations using contexts.

C[s] = t
C[D[s]] = F [t]

For the first two equations in the sequence, C ≡ rev(�), D ≡
�@[y], F ≡ y : �, s = rev(xs), and t = xs. In the two
equations the differences between two successive equations
is represented by contexts D and F . Such contexts repre-
senting differences are calculated by the difference matching
algorithm [12]. From this view, combining two equations we
can derive new equation C[D[s]] = F [C[s]] which can be
used to remove the difference D accumulated in LHS. In this
case, we have the following equation.

rev(rev(xs)@[y]) = y : rev(rev(xs))

Finally, we obtain the lemma which does not cause diver-
gence by generalizing the equation. In this case, by gener-
alizing the s ≡ rev(xs) with a fresh variable ws, we have
the following lemma which is easy to prove without other
lemmas and also can be used to solve original divergence.

rev(ws@[y]) = y : rev(ws)

III. CASE ANALYSIS

In this section, we demonstrate the difficulties in finding
useful lemmas in theory exploration of inductive theorems
through an example.

As the target axioms for theory exploration, we con-
sider the functions on natural numbers and lists defined by
the set R of rules shown in Figure 2. In this definition,
natural numbers 0, 1, 2, . . . are represented by the terms
0, s(0), s(s(0)), . . . using the constant function 0 representing
0 and successor function s. We represent lists by terms
constructed by the constant nil representing empty list and
binary function :(x, xs) representing the list whose head
element and the list after the head element are x and xs
respectively. For simplicity, in the following descriptions
we denote the term representing lists x : (y : (z : nil))
by [x , y , z ]. Also, we use infix notations xs + ys instead
of +(xs, ys) for some binary operators such as +,−, :,@.
The function + and −, binary operator on natural numbers,
represents addition and subtraction. The function len(xs)
returns the number of elements in the given list xs. The
function take(x, ys) returns the list consisting of first x
elements in ys.
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R =



nil@xs → xs
(x : xs)@ys → x : (xs@ys)
rev(nil) → nil
rev(x : xs) → rev(xs)@[x ]
0+y → y
s(x )+y → s(x+y)
0−y → 0
s(x )−0 → s(x )
s(x )−s(y) → x−y
len(nil) → 0
len(x : xs) → s(len(xs))
take(0, xs) → nil
take(s(x ), nil) → nil
take(s(x ), y : ys) → y : take(x , ys)
drop(0, xs) → xs
drop(s(x ), nil) → nil
drop(s(x ), y : ys) → drop(x , ys)
sh(nil) → nil
sh(x : xs) → x : sh(rev(xs))
alt(nil, xs) → xs
alt(x : xs, ys) → x : alt(ys, xs)

Figure 2. Axiom rules: functions on natural numbers and lists

The function sh (shuffle) changes the order of elements
of the given list by repeating to take the first element
and then the last element alternately. For example, we
have sh([1, 2, 3, 4, 5]) →∗ [1, 5, 2, 4, 3]. The function alt
(alternate) combines the given two lists by taking elements
from first and second arguments alternately. For example,
we have alt([1, 2, 3], [4, 5, 6]) →∗ [1, 4, 2, 5, 3, 6]. Combining
this alternate function with basic list operations, we can
calculate the result of shuffle function more efficiently by
alternating the given list and the reversed one, then taking the
first half of the list. This fact is represented by the following
inductive theorem.

sh(xs) = take(len(xs), alt(xs, rev(xs))) (1)

Through the proof of this theorem by rewriting induction,
we present how syntactically complex lemmas are utilized to
deriving other important lemmas. First, by applying EXPAND
rule, we obtain the following conjecture.

x : sh(rev(xs)) =

take(len(x : xs), alt(x : xs, rev(x : xs)))

Then by repeatedly applying SIMPLIFY rule using rewrite
rules in R, we obtain the following equation.

x : sh(rev(xs)) =

x : take(len(xs), alt(rev(xs)@[x ], xs)) (2)

At this point, we can apply the inductive hypothesis rule,
obtained by orienting (1) from left to right, to the underlined
part in (2). Note that this reasoning step cannot be performed
in structural induction.

x : take(len(rev(xs)), alt(rev(xs), rev(rev(xs)))) =

x : take(len(xs), alt(rev(xs)@[x ], xs)) (3)

The LHS of (3) can be simplified using the following two
inductive theorems of R, which are relatively small in terms

of number of symbols and so are discovered earlier than the
original goal (1) in the theory exploration.

len(rev(xs)) = len(xs)
rev(rev(xs)) = xs

By applying these equations from left to right to LHS of (3),
we obtain the following equations.

x : take(len(xs), alt(rev(xs), xs)) =

x : take(len(xs), alt(rev(xs)@[x ], xs)) (4)

Next, we try to simplify RHS of (4) to make the whole
equation to a trivial form. The key lemmas are the following
inductive theorems.

alt(rev(xs)@ys, xs) = alt(rev(xs), xs)@ys (∗)
take(x , ys@zs) = take(x , ys)@take(x − len(ys), zs)
len(alt(xs, ys)) = len(xs) + len(ys)
x − (x + y) = 0
xs@nil = xs

Using these lemmas from left to right, the underlined part of
RHS of (4) is simplified to the corresponding part of LHS
of (4) as follows:

take(len(xs), alt(rev(xs)@[x ], xs))
= take(len(xs), alt(rev(xs), xs)@[x ])
= take(len(xs), alt(rev(xs), xs))@

take(len(xs)− len(alt(rev(xs), xs)), [x ])
= take(len(xs), alt(rev(xs), xs))@

take(len(xs)− (len(rev(xs)) + len(xs)), [x ])
= take(len(xs), alt(rev(xs), xs))@

take(len(xs)− (len(xs) + len(xs)), [x ])
= take(len(xs), alt(rev(xs), xs))@take(0, [x ])
= take(len(xs), alt(rev(xs), xs))@nil
= take(len(xs), alt(rev(xs), xs))

However, we fail to prove the first lemma marked by (∗)
because it causes following divergence:

alt(rev(xs)@ys, xs) = alt(rev(xs), xs)@ys
alt(rev(xs1 )@(x1 : ys), x1 : xs1 ) =

alt(rev(xs1 )@[x1 ], x1 : xs1 )@ys
alt(rev(xs2 )@(x2 : x1 : ys), x1 : x2 : xs2 ) =

alt(rev(xs2 )@(x2 : [x1 ]), x1 : x2 : xs2 )@ys

and in this case top-down techniques such as divergence critic
does not work because there is no simple lemma which can
be directly applied to the equations in the divergent sequence.

Instead of trying to find an inductive proof of a theorem
directly, in some cases we can derive the theorem from a
more general theorem which is easy to find its inductive
proof. In this case, we can consider the following inductive
theorem.

alt(take(len(ys), xs), ys)@drop(len(ys), xs) =

alt(xs, ys) (5)

By instantiating it with σ = {xs 7→ rev(ys)@xs}, we obtain
the following theorem.

alt(take(len(ys), rev(ys)@xs), ys)@

drop(len(ys), rev(ys)@xs) =

alt(rev(ys)@xs, ys)
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Then the original lemma marked by (∗) is obtained by
simplifying the theorem by the following two lemmas.

take(len(ys), rev(ys)@xs) = rev(ys)
drop(len(ys), rev(ys)@xs) = xs

The above two lemmas are also hard to prove by induction
directly. However, they can also be derived by instantiation
and simplification from the following more general lemmas
which are easy to prove.

take(len(ys), ys@xs) = ys
drop(len(ys), ys@xs) = xs

In theory exploration, already proved equations are used as
lemmas to prove remaining conjectures. So it is important to
try to prove useful lemmas such as (5) at an earlier stage of
exploration. In our experiments, we used the syntactical sim-
plicity and generality for estimation of usefulness: equations
with less symbols and more variables are more useful. This
simple heuristic works fine for finding basic and syntactically
simple lemmas such as the laws of identity x+0 = x earlier.
With such simple heuristic, however, semantically general
but syntactically complex equations such as (5) are picked
later in exploration and so are cannot be used as lemmas in
proof of more simpler theorems such as (∗).

IV. DISCUSSION

In this section, we discuss about approaches to solve the
problem of how to find syntactically complex lemmas, shown
in the previous section.

One possible approach is to consider other syntactical
metrics for usefulness which is not too sensitive to the
syntactical complexity. Instead of simply using the number
of all symbols (function symbols and variables) for the
complexity, it may be better to use the ratio of the number of
function symbols to the number of variables. It also may be
effective to distinguish the defined symbols and constructor
symbols in calculating the complexity from the number of
function symbols because constructor symbols in a term
correspond to restriction on the set of data represented by the
term, and so equations containing many constructor symbols
such as drop(s(s(s(x))), : (y, : (z, : (w, nil)))) = nil are
considered to be less general one stating on more specific
set of data.

Another approach is to analyze the usefulness of an
equation with respect to derivability by the equation. In
the context of theory exploration where there is set C of
conjecture equations to be proved, we can estimate the
importance of an conjecture equation e ∈ C as a lemma
in this set by the number of conjectures in C \ {e} which
turns to be derivable as an equational consequence (without
inductive proofs) by the help of the equation e. Although
the equational derivability is undecidable in general, using
the efficient congruence closure algorithm [13] on ground
equations we can approximately decide the derivability of
equations at reasonable cost.

V. CONCLUSION

In this paper, we have shown the usefulness of syntac-
tically complex lemmas in theory exploration for inductive
theorems through an example of list manipulation functions,

and discussed on possible approaches for finding such im-
portant lemmas.

The further investigation on the effectiveness of the pro-
posed approaches for finding useful lemmas by experimen-
tation is our future work.
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