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Abstract—This paper develops an integral based method for
the system identification and modeling of the heat exchanger.
The proposed method formulates the model through the use
of integrals, thus rendering a nonconvex optimization problem
into simple linear optimization which can be solved through an
ordinary least squares method. The convection heat exchanger
model is firstly assumed, whereby all the inlet and outlet
temperatures are measured or known. Two experiments were
conducted. The first involved a series of step responses with
incremental heating input, whilst the second involved step
responses taken only after the system has cooled down to
room temperature. Results show that the proposed method
allowed a more complicated model of the heat exchanger
to be constructed, whilst still being robust to Gaussian and
quantization as well as encoder noises.

Index Terms—Identification, heat exchanger, minimal mod-
eling

I. INTRODUCTION

THE advent of fast technological advances has furthered
the demands for effective energy management in all

aspects of life. Thermal energy has emerged the major
leader of the modern world, not only in terms of providing
useful energy, but to also satisfy the heating and cooling
requirements, particularly in industry. Heat exchangers are
simply devices that are used to transfer heat between two or
more medium of different temperatures, and are used in a
variety of industrial applications such as thermal processing
plants. Optimal performance of the heat exchangers are
dependent on the performances of the controllers themselves,
and are usually designed using advanced control algorithms
[1]. However, model based controller designs have been
favoured in the last few years. This type of controller relies
on the incorporation of a simpler mathematical model in the
final control law design.

The development of a simpler mathematical model for
the heat exchanger has also been of interest recently. The
main goal in this respect is to synthesize a mathematical
model that provides as little complexity as may be possible,
whilst concurrently yielding an acceptable precision. The
work of Shoureshi [2] showed that a simple fourth order
model may have a comparable accuracy to the distributed
parameter approach. Fratczak et al. [3] suggest simplification
of the heat exchanger model through orthogonal collocation
method. Other approaches into model simplification have
also been based on the so-called cross-convection model [4]–
[6]. Most of these approaches, however, typically assumes a
complex model structures first particularly in the parameters
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k1 and k2, then fit this model to the data. And if required,
more complex models of spatial temperature distribution is
inserted.

This work presents an entirely different philosophy where
simplified structures based on the cross convection model is
initially assumed. A more sophisticated model of the device
is then gradually built through the system identification
methodology. This approach also allowed an integral based
formulation to be developed that linearizes the optimization
and is robust to noise.

II. METHODOLOGY

A. The Heat Exchanger Model
The liquid-liquid heat exchanger is a two chambered

device, one for the hot fluid flow with volumetric flow rate of
f1 [m3/h], and the other for the cold fluid flow with the flow
rate of f2 [m3/h]. The inlet temperatures are denoted Thot,in [◦

C] for the hot fluid, and Tcold,in [◦ C] for the cooler fluid. The
mathematical symbols for the outlet temperatures are Thot,out
for the hot fluid, and Tcold,out for the cold fluid. In general
the heat exchanger can be described with the schematic of
Figure 1 [6]:

Fig. 1. Schematic of the heat exchanger

The basic mathematical description of the heat exchanger
model can be derived using conventional first principle
considerations. In essence, it is assumed that at steady state
each outlet temperatures Thot,out and Tcold,out is limited by both
the inlet temperatures Thot,in and Tcold,in. This assumption is
due to the principle of heat conservation alone, and does not
need placement of further assumptions regarding the spatial
distribution of the heat inside the chambers. The following
set of differential equations are thus defined:

τ1Ṫhot,out(t) + Thot,out(t) = k1Thot,in(t) + (1− k1)Tcold,out(t)
(1a)

τ2Ṫcold,out(t) + Tcold,out(t) = k2Tcold,in(t) + (1− k2)Thot,out(t)
(1b)
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where τ1 and τ2 [s] are time constants representing the
dynamics of each circuit, and k1 and k2 are positive constant
parameters lumping all the modeling errors including the
rheology of the liquid. This model is known to describe well
the behaviour of the liquid-liquid heat exchangers. However,
for heat exchangers where one of the medium is gas, spatial
information regarding the temperature inside the chambers
needs to be included, rendering this simple model inadequate
for describing the thermal behaviours [6].

B. Integral-based method for system identification of heat
exchanger

The differential equation model of Equations (1a) and (1b)
are two coupled first order linear equations with constant co-
efficients. The signals Thot,in and Tcold,in are considered inputs
into the systems, whereas the outlet temperature signals
Thot,out and Tcold,out are considered outputs. To simplify the
system identification problem, it is assumed that both inputs
and output signals are known or measured. In practice it is
customary to install a thermal sensor at every inlet and outlet
chambers in order to completely monitor the heat exchanger.
For convenience Equations (1a) and (1b) are rewritten:

ẏ1(t) +
1

τ1
y1(t) =

k1
τ1
u1(t) +

1− k1
τ1

y2(t) (2a)

ẏ2(t) +
1

τ2
y2(t) =

k2
τ2
u2(t) +

1− k2
τ2

y1(t) (2b)

where:

Inputs: u1 = Thot,in(t), u2 = Tcold,in(t) (3a)
Outputs: y1 = Thot,out(t), y2 = Tcold,out(t) (3b)

Integrating Equations (2a) and (2b) once with respect to time
yields:

y1 − y10 + a1

∫ t

0

y1(t) dt = a2

∫ t

0

u1 dt+ a3

∫ t

0

y2 dt

(4)

y2 − y20 + b1

∫ t

0

y2(t) dt = a2

∫ t

0

u2 dt+ a3

∫ t

0

y1 dt

(5)

where:

a1 =
1

τ1
, a2 =

k1
τ1
, a3 =

1− k1
τ1

(6a)

b1 =
1

τ2
, b2 =

k2
τ2
, b3 =

1− k2
τ2

(6b)

Equations (4) and (5) can be rearranged to yield the integral
formulation of ymodel(t):

y1,model = y10 − a1
∫ t

0

y1(t) dt+ a2

∫ t

0

u1 dt+ a3

∫ t

0

y2 dt

(7)

y2,model = y20 − b1
∫ t

0

y2(t) dt = a2

∫ t

0

u2 dt+ a3

∫ t

0

y1 dt

(8)

where all the integrals appearing in Equations (7) and (8)
are computed by the trapezium rule. Substituting y1,model =
y1,data and y2,model = y1,data for all t ∈ {t1, . . . , tN} gives a

set of N equations by 8 unknowns which is written in the
matrix form:

Ap = b (9)

where:

A =
[
M1|M2

]
(10)

M1 =

[
1N×1 0N×1

0N×1 1N×1

]
, M2 =

[
I1,N×3 0N×3

0N×3 I2,N×3

]
(11)

I1,N×3 =

−
∫ t1
0
y1 dt

∫ t1
0
u1 dt

∫ t1
0
y2 dt

...
...

...
−
∫ tN
0

y1 dt
∫ tN
0

u1 dt
∫ tN
0

y2 dt

 (12)

I2,N×3 =

−
∫ t1
0
y2 dt

∫ t1
0
u2 dt

∫ t1
0
y1 dt

...
...

...
−
∫ tN
0

y2 dt
∫ tN
0

u2 dt
∫ tN
0

y1 dt

 (13)

p =



y10
y20
a1
a2
a3
b1
b2
b3


, b =



y1(t1)
...

y1(tN )
y2(t1)

...
y2(tN )


(14)

1M×1 =M × 1 matrix of ones (15)
0M×N =M ×N matrix of zeroes (16)

Solving Equations (9) - (16) by linear least squares yields
the parameters a1, a2, a3 and b1, b2, b3. This process deter-
mines the identified model for the output temperatures signal
y1 and y2 based on the measured data. The algorithm is
summarized in a flowchart of Figure 2.

Fig. 2. Algorithm for identifying parameters a1, a2, a3, b1, b2, b3 from
the model of Equations (7) - (8)

III. RESULTS AND DISCUSSION

A. Application to simulated heat exchanger

To provide an initial proof-of-concept for the algorithm
of Figure 2, a numerical test is proposed. In light of this
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the heat exchanger model of Equations (2a) and (2b) is used
with the following parameters:

k1 = 0.93, τ1 = 100 (17)
k2 = 0.95, τ2 = 150 (18)

These parameters are chosen arbitrarily, not based on any
physical measurements, and chosen purely to serve the
purpose of being proof-of-concept. The simulated responses
y1(t) and y2(t) are sampled at a rate of 200 Hz. Applying
the algorithm of Figure 2 yields the following parameters:

a1 = 0.01, a2 = 0.0093, a3 = 0.0007 (19)
b1 = 0.0067, b2 = 0.0063, b3 = 0.0003 (20)

Figure 3(a) compares the identified model y1,model of Equa-
tion (7) to the simulated data. Figure 3(b) compares the
identified model y2,model of Equation (8) to the simulated data
of Figure 2. This result shows that the modelled response
matches the data very accurately as expected.

Fig. 3. The simulated response y2.

B. Setup and data acquisition

The setup for the heat exchanger system is shown in
Figure 4. The unit used is a liquid-liquid heat exchanger with
configurations similar to the one shown in Figure 1. Water is
stored in two reservoirs, one for the hot fluid side which is
referred to as the hot fluid reservoir in future references; and
the other for the cooler fluid side, hereby denoted the cold
fluid reservoir. Water from the hot fluid reservoir is pumped
into a the heat exchanger system via a 12 V DC motor, and
likewise for the fluid from the cold fluid reservoir. A 2 kW
heater is connected to the hot fluid chamber to provide the
required heating. A variable current source is connected to
the heater motor to allow the adjustment of the heat, with 4
mA representing a relative heating level of 0% and 20 mA
representing a relative heating level of 100%. These relative
percentage representations simplify the computations, and
are common in instrumentation engineering. Four resistance
temperature detectors (RTDs) are installed at each inlets and
outlets of the fluid circuits to measure temperature input
and output signals u1(t), y1(t), u2(t) and y2(t). The overall
heat exchanger system is connected to a LabView system
via a digital to analogue converter to allow real time access
to changing control gains, for data acquisition and viewing
the signals. Data from the LabView system is compiled and
saved as an .xls file, and includes time t and all the input

signals u1(t), u2(t), y1(t) and y2(t). Matlab is used for all
numerical calculations in this work.

Fig. 4. The heat exchanger apparatus

C. Application of the proposed algorithm

Consider an initial data from the heat exchanger unit as
shown in Figures 5. The data used is obtained by setting the
variable current source to output 8 mA, which is equivalent
to the relative heating level of 25%. Note that this data
is obtained from an open loop test, representing an initial
stage of the modeling. Normally the test being conducted
is a step response test, however due to constant heating the
accumulation of the heat inside both circuits, the responses
ends up increasing in shape of the ramp function. This
response in theory still contains many sinusoidal waves,
thus provides all the necessary dynamics to do the system
identification.

Fig. 5. The response y2(t) for the case of 25% relative heating.

Applying the algorithm of Figure 2 yields the following
parameters:

a1 = 0.1009, a2 = 0.0327, a3 = 0.0671 (21)
b1 = −0.0630, b2 = −0.0539, b3 = −0.0107 (22)

Figure 7 compares the identified model y2,model of Equation
(8) to the measured data of Figure 2. These results show
that even though the measured data are corrupted by encoder
noise as well as quantization noise, both of which are
not Gaussian in nature, the modelled response captures the
important dynamics very well.
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Fig. 6. The response y2(t) for the case of 25% relative heating.

D. Extending the model
Note that the linear model of Equations (7) and (8) does

not explicitly take into account the constant heating of the 2
kW heater, however some experimental tests can be done
to identify such effect. Consider Experiment 1 which is
undertaken by changing the heating current by the following
function i(t) defined:

i(t) =



i0, for 0 ≤ t ≤ t1
i1 for t1 ≤ t ≤ t2
i2, for t2 ≤ t ≤ t3
i3, for t3 ≤ t ≤ t4
i4, for t4 ≤ t ≤ tend

(23)

i0 = 8mA, i1 = 10mA, i2 = 12mA,
i3 = 14mA, i4 = 16mA (24)

where Tm ∈ {tm−1, tm},m = 1, 2, 3 denote the interval
during which the heat exchanger reaches the steady state.
This experiment represents a continuous step response tests
in which the temperature inside both chambers are allowed
to accumulate. For each current level of Equation (24), the
algorithm of Figure 2 is applied to identify the parameters
a1, a2, a3 and b1, b2, b3 on the measured data. Figures 7(a)
and 7(b) plot the identified a1 and b1. The parameters a2,
a3, b2 and b3 are not shown to conserve space.

The response shown in Figure 7(a) suggests an increasing
trend from i = 8 mA to i = 10 mA, with a decreasing trend
from i = 10 mA to i = 12 mA, then an increasing trend
therefter, thereby obscuring an engineer from discerning a
pattern or a relationship from this plot. This pattern obscurity
could be attributable to the outlier at either i = 10 mA or
i = 12 mA. Nonetheless the pattern can be made clearer
through the operation defined:

p1 =
−1
|p1|

, p = a, b (25)

Notice that Equation (25) is similar to the first expression of
Equations (6a) and (6b). The presence of the absolute value
operator makes the patterns clearer to discern. Figures 11(a)
and (b) show the result of applying Equation (25) to Figures
7(a) and (b). These plots now suggest a power relationship
of the form:

fpower(i) =
N∑
j=1

aji
j . (26)

Fig. 7. (a) The identified a1 parameters for the application of i(t) in
Experiment 1 and (b) The identified b1 parameters.

where aj are constant to be determined, with respect to the
time constants τ1 and τ2, with an increasing trend of the time
constants after i=15 mA as the heating input gets larger.
This observation deviates from the actual physics, where
the time constant relationship should suggest a decreasing
trend as the heating input increases, in line with heat transfer
phenomenon. However, a closer look at the data at i=14 mA
and i=16 mA reveals that these set of data are in fact obtained
with a much shorter timespan than those with smaller heating
input, in order to prevent malfunction of the pump motor,
which can only physically endures a temperature of up to
60◦C. Such a shorter timespan means that the system may
not have yet reached the steady state when its data is used
in analysis, resulting in an increasing trend at i=14 mA and
i=16 mA as seen in Figure 8(a) and 8(b).

To ensure that all data sets are of an equal timespan,
consider implementing Experiment 2 which is undertaken
by changing the heating current by i2(t) defined: defined:

i(t) =



i1, for 0 ≤ t ≤ t1
0 for t1 ≤ t ≤ troom temp.

i2 for troom temp. ≤ t ≤ t2
0 for t2 ≤ t ≤ troom temp.

i3, for troom temp. ≤ t ≤ t3
0 for t3 ≤ t ≤ troom temp.

i4, for troom temp. ≤ t ≤ tend

(27)

{i1, ..., i4} ≡ Equation (24) (28)

where the time interval {tm, troom temp.}, m = 1, 2, 3 denotes
the time required for cooling down from the steady state
of the previous step test to the room temperature, and
{troom temp., tn}, n = 2, 3 denotes the time required for
undertaking a step test until the system reaches the steady
state.
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Fig. 8. (a) The identified time constants τ1 for the application of i(t) in
Experiment 1 and (b) The identified time constants τ2 for the application
of i(t) in Experiment 1.

The algorithm of Figure 2 is again used to identify param-
eters a1, a2, a3 and b1, b2, b3, as was done for Experiment 1.
Figures 9(a) and (b) plot the identified a1 and b1. Again the
parameters a2, a3, b2 and b3 are not shown to save space.

Fig. 9. (a) The identified a1 parameters for the application of i(t) in
Experiment 2 and (b) The identified b1 parameters.

The results of Figures 9(a) and (b) suggest a concave trend
for parameter a1, and an increasing trend for parameter b1 as
the current increases. Figure 10(a) and (b) show the result of
applying Equation (25) to Figures 9(a) and (b) as was done
for Figures 7(a) and (b) in Experiment 1. These plots now

Fig. 10. (a) The identified time constants τ1 for the application of i(t) in
Experiment 2 and (b) The identified time constants τ2 for the application
of i(t) in Experiment 2.

suggest a decaying power relationship of the form:

fpower(i) =
N∑
j=1

αji
−j . (29)

The fitting of Equation (29) to Figures 10(a) and (b) now
better agrees with the physics, since the time constants τ1
and τ2 now decay with respect to higher inputs, in contrast
to results from Experiment 1. Figures 11(a) and (b) plot the
relationship between parameters k1 and k2 against i(t).

Note that these plots share the same trends as Figures
10(a) and (b). This feature is expected, since the parameters
a1 and b1 as well as a2 and b2 differ only by a multiplicative
constant. Equation (29) is now fitted to Figures 10(a) and (b),
as well as 11(a) and (b) using the command lsqnonlin in
Matlab. The matches are shown in Figures 12(a) and (b) for
τ1 and τ2, and Figures 13(a) and (b) for k1 and k2.

These results suggest that the proposed method can be
used to extend the linear model to include nonlinear effects of
a given phenomena. This approach is different from typical
approaches in the literature, where the values of the time
constants τ as well as k are typically assumed to have
certain characteristics and then this ’assumed’ characteristics
is fit into the data. The assumed characteristics could also
introduce dynamics which are not formally part of the
actual phenomenon, and may as well masks any predictable
physical laws from being uncovered.

IV. CONCLUSION

This paper has presented an integral based method for
the system identification and modeling of the linear heat
exchanger. The proposed method formulates the the model
through the use of integrals, thus rendering a nonconvex
optimization problem into simple linear optimization. The
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Fig. 11. (a) The identified time constants k1 for the application of i(t) in
Experiment 2 and (b) The identified time constants k2 for the application
of i(t) in Experiment 2.

Fig. 12. (a) The identified time constants τ1 for the application of i(t) in
Experiment 2 against the fitted model of Equation (29) and (b) The identified
time constants τ2 for the application of i(t) in Experiment 2 against the
model function of Equation (29).

convection heat exchanger model is firstly assumed, whereby
all the inlet and outlet temperatures are measured or known.
The presence of the encoder noise, as well as quantization
noise from the ADQ unit, had no effect on the identified
parameters nor the resulting model. This result is further
testament of the proposed algorithm, suggesting that it could

Fig. 13. (a) The identified parameters k1 for the application of i(t) in
Experiment 2 against the fitted model of Equation (29) and (b) The identified
k2 for the application of i(t) in Experiment 2 against the model of Equation
(29).

be robust to any type of noise distribution.
Two experiments were conducted to further investigate the

effect of the heating current on the identified parameters.
The first experiment involved a series of increasing step
changes where the heating input current varies linearly. The
second experiment is designed whereby the heating current
in Experiment 1 is administered only when the system is at
the ambient room temperature. The identified time constants
were found to have a power relationship where there is a
decreasing trend of τ and k as i increases. These results
suggest that the proposed method can be used to extend
the linear model to include nonlinear effects of a given
phenomena.

The investigations undertaken in this paper only take into
account the effect of the heating inputs on the time constant
τ and factor k. Investigations into the relationships of the
flow f within the chambers, as well as the heating input will
be part of the immediate future works.
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