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Abstract—Solving the inverse optimal control problem for
discrete-time nonlinear systems requires the construction of a
stabilizing feedback control law based on a control Lyapunov
function (CLF). However, there are few systematic approaches
available for defining appropriate CLFs. We propose an ap-
proach that employs Bayesian filtering methodology to param-
eterize a quadratic CLF. In particular, we use the ensemble
Kalman filter (EnKF) to estimate parameters used in defining
the CLF within the control loop of the inverse optimal control
problem formulation. Using the EnKF in this setting provides
a natural link between uncertainty quantification and optimal
design and control, as well as a novel and intuitive way to find
the one control out of an ensemble that stabilizes the system the
fastest. Results are demonstrated on both a linear and nonlinear
test problem.

Index Terms—inverse optimal control, Bayesian statistics,
nonlinear filtering, ensemble Kalman filter (EnKF).

I. INTRODUCTION

THE aim of nonlinear optimal control [1], [2] is to deter-
mine a control law for a given system that minimizes

a cost functional relating the state and control variables.
The solution to this problem relies on solving the Hamilton-
Jacobi-Bellman (HJB) equation, which has been solved for
linear systems [3] but is very difficult to solve for general
nonlinear systems [4], [5]. An alternate approach is to find
a stabilizing feedback control first, then establish that it
optimizes a specified cost functional – this is known as the
inverse optimal control problem.

Solving the inverse optimal control problem for discrete-
time nonlinear systems requires the construction of a stabiliz-
ing feedback control law based on a control Lyapunov func-
tion (CLF). However, there are few systematic approaches
available for defining appropriate CLFs. Available meth-
ods parameterize quadratic CLFs using a recursive speed-
gradient algorithm [6], particle swarm optimization [7] or,
more recently, the extended Kalman filter (EKF) [8].

This work develops a novel approach employing Bayesian
filtering methodology to parameterize a quadratic CLF. In
particular, we use the ensemble Kalman filter (EnKF) to
estimate parameters used in defining the CLF within the
control loop of the inverse optimal control problem. Using
the EnKF in this setting provides a natural link between
uncertainty quantification and optimal design and control,
as well as an intuitive way to find the one control out of an
ensemble that drives the system to zero the fastest.
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In the Bayesian framework, unknown parameters are mod-
eled as random variables with probability density functions
representing distributions of possible values. The EnKF is a
nonlinear Bayesian filter which uses ensemble statistics in
combination with the classical Kalman filter equations for
state and parameter estimation [9]–[11]. The EnKF has been
employed in many settings, including weather prediction
[12], [13] and mathematical biology [11]. To the authors’
knowledge, this is the first proposed use of the EnKF in
inverse optimal control problems. The novelty of using the
EnKF in this setting allows us to generate an ensemble of
control laws, from which we can then select the control law
that drives the system to zero the fastest. While the nonlinear
problem has no guarantee of a unique control, we use the
control ensemble to find the best solution starting from a
prior distribution of possible controls.

The paper is organized as follows. We review the main
ideas behind optimal control and inverse optimal control in
Section II and nonlinear Bayesian filtering and the EnKF
in Section III. In Section IV, we describe the application
of the EnKF to parametrizing the CLF for inverse optimal
control problem. The results in Section V demonstrate the
effectiveness of the EnKF CLF procedure on both a linear
and nonlinear test example.

II. OPTIMAL AND INVERSE OPTIMAL CONTROL

In this section we describe the optimal control problem and
inverse optimal control problem for discrete-time nonlinear
systems using similar notations as in [8]. For details on feed-
back control methodology for nonlinear dynamic systems,
see, e.g., [14].

Consider the discrete-time affine nonlinear system

xk+1 = f(xk) + g(xk)uk, x0 = x(0), (1)

where xk ∈ Rn is the state of the system at time k, uk ∈
Rm is the control input at time k, and f : Rn → Rn and
g : Rn → Rn×m are smooth mappings with f(0) = 0 and
g(xk) 6= 0 for all xk 6= 0. The nonlinear optimal control
problem is to determine a control law uk that minimizes the
associated cost functional

V (xk) =
∞∑

n=k

(
L(xn) + uTnEun

)
, (2)

where V : Rn → R+ has V (0) = 0, L : Rn → R+ is
positive semidefinite, and E is a real, symmetric positive
definite m × m weighting matrix. The boundary condition
V (0) = 0 is necessary so that V (xk) can be used as a CLF.
The cost functional (2) can be rewritten as

V (xk) = L(xk) + uTkEuk + V (xk+1). (3)
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For an infinite horizon control problem, the time-invariant
function V ∗(xk) satisfies the discrete-time Bellman equation

V ∗(xk) = min
uk

{
L(xk) + uTkEuk + V ∗(xk+1)

}
. (4)

Taking the gradient of (4) with respect to uk yields the
optimal control

u∗k = −1

2
E−1gT(xk)

∂V ∗(xk+1)

∂xk+1
(5)

which, when substituting into (3), yields the discrete-time
Hamilton-Jacobi-Bellman (HJB) equation

V ∗(xk) = L(xk) + V ∗(xk+1)

+
1

4

∂V ∗T(xk+1)

∂xk+1
g(xk)E

−1gT(xk)
∂V (xk+1)

∂xk+1
. (6)

Since solving the discrete-time HJB equation (6) is very
difficult for general nonlinear systems, an alternative ap-
proach is to consider the inverse optimal control problem.
In inverse optimal control, the first step is to construct a
stabilizing feedback control law, then to establish that the
control law optimizes a given cost functional. By definition,
the control law

u∗k = −1

2
E−1gT(xk)

∂V ∗(xk+1)

∂xk+1
(7)

is inverse optimal if it satisfies the following two criteria:

1) It achieves (global) exponential stability of the equi-
librium point xk = 0 for the system (1).

2) It minimizes the defined cost functional (2), for which
L(xk) = −V with

V := V (xk+1)− V (xk) + u∗k
TEu∗k ≤ 0, (8)

where V (xk) is positive definite.

A control law satisfying the above definition can be defined
using a quadratic control Lyapunov function (CLF) of the
form

V (xk) =
1

2
xTkPxk, (9)

where the matrix P ∈ Rn×n is symmetric positive definite
(i.e., P = PT > 0). Once an appropriate CLF (9) has been
selected, the state feedback control law (7) becomes

u∗k = −1

2

(
E +

1

2
gT(xk)Pg(xk)

)−1
gT(xk)Pf(xk). (10)

Therefore, the problem at hand is to select an appropriate
matrix P to achieve stability and minimize a meaningful cost
function.

As noted in the introduction, currently proposed methods
to estimate the entries of the matrix P in the CLF (9)
include a recursive speed-gradient algorithm [6], particle
swarm optimization [15], and, more recently, use of the
extended Kalman filter [8]. In this work, we propose use
of Bayesian filtering techniques, in particular the ensemble
Kalman filter (EnKF), to estimate the entries of the matrix
P from a distribution of possible values, which allows us to
find the best control out of an ensemble.

III. NONLINEAR BAYESIAN FILTERING AND THE ENKF

We approach the solution to the inverse optimal control
problem from the Bayesian statistical framework, using non-
linear Bayesian filtering methodology to parameterize the
quadratic CLF. In the Bayesian framework, the quantities of
interest (such as the system states or parameters) are treated
as random variables with probability distributions, and their
joint posterior density is assembled using Bayes’ theorem.
In particular, if x denotes the states of a system and y some
partial, noisy system observations, then Bayes’ theorem gives

π(x | y) ∝ π(y | x)π(x), (11)

where the likelihood function π(y | x) indicates how likely
it is that the data y are observed if the state values were
known and the prior distribution π(x) encodes any known
information on the states before taking the data into account.

Bayesian filtering methods rely on the use of discrete-
time stochastic equations describing the model states and ob-
servations to sequentially update the joint posterior density.
Assuming a time discretization tk, k = 0, 1, . . . , T , with the
observations yk occurring possibly in a subset of the discrete
time instances (where yk = ∅ if there is no observation
at tk), we can write an evolution-observation model for
the stochastic state and parameter estimation problem using
discrete-time Markov models. The state evolution equation

Xk+1 = F (Xk) + Vk+1, Vk+1 ∼ N (0,Qk+1), (12)

where F is a known propagation model and Vk+1 is an
innovation process, computes the forward time propagation
of the state variables Xk given parameters θ, while the
observation equation

Yk+1 = G(Xk+1) +Wk+1, Wk+1 ∼ N (0,Rk+1), (13)

where G is a known operator and Wk+1 is the observation
noise, predicts the observation at time tk+1 based on the
current state and parameter values.

Letting Dk =
{
y1, y2, . . . , yk

}
denote the set of obser-

vations up to time tk, the stochastic evolution-observation
model allows us to sequentially update the posterior distri-
bution π(xk | Dk) using a two-step, predictor-corrector-type
scheme:

π(xk | Dk) → π(xk+1 | Dk) → π(xk+1 | Dk+1) (14)

The first step (the prediction step) employs the state evolution
equation (12) to predict the values of the states at time
tk+1 without knowledge of the data. The second step (the
analysis step or observation update) then uses the observation
equation (13) to correct the prediction by taking into account
the data at time tk+1. If there is no data observed at tk+1,
then Dk+1 = Dk and the prediction density π(xk+1 | Dk)
is equivalent to the posterior π(xk+1 | Dk+1). Starting with
a prior density π(x0 | D0), D0 = ∅, this updating scheme
is repeated until the final posterior density is obtained when
k = T .

A. Ensemble Kalman Filter

The ensemble Kalman filter [9], [10] is a Bayesian filter
which uses ensemble statistics in combination with the
classical Kalman filter equations to accommodate nonlinear
models. While there are versions of the EnKF that perform
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joint state and parameter estimation [11], [16], for our
purposes we need only consider the standard EnKF for state
estimation, which will be adapted in the following section
for the inverse optimal control problem. To avoid confusion
with the states of the control system (1), here we denote
the states in the filter as ak, k = 0, . . . , T , as opposed to the
typical xk notation. The EnKF algorithm for state estimation
is outlined as follows.

Assume the current density π(ak | Dk) at time tk is
represented in terms of a discrete ensemble of size N ,

Sk|k =
{
(a1k|k), (a

2
k|k), . . . , (a

N
k|k)
}
. (15)

In the prediction step, the states at time tk+1 are predicted
using the state evolution equation (12) to form a state
prediction ensemble,

ajk+1|k = F (ajk|k) + vjk+1, j = 1, . . . , N, (16)

where vjk+1 ∼ N (0,Qk+1) represents error in the model
prediction. Ensemble statistics yield the prediction ensemble
mean

ak+1|k =
1

N

N∑
j=1

ajk+1|k (17)

and covariance matrix

Γk+1|k =
1

N − 1

N∑
j=1

(ajk+1|k − ak+1|k)(a
j
k+1|k − ak+1|k)

T.

(18)
When an observation yk+1 arrives, an artificial observation

ensemble is generated around the true observation, such that

yjk+1 = yk+1 + wj
k+1, j = 1, . . . , N (19)

where wj
k+1 ∼ N (0,Rk+1) represents the observation error.

The observation ensemble is compared to the observation
model predictions,

ŷjk+1 = G(ajk+1|k), j = 1, . . . , N (20)

which is computed using the observation function G as in
(13). The posterior ensemble at time tk+1 is then computed
by

ajk+1|k+1 = ajk+1|k + Kk+1

(
yjk+1 − ŷ

j
k+1

)
(21)

for each j = 1, . . . , N , where the Kalman gain is defined as

Kk+1 = Σaŷ
k+1

(
Σŷŷ

k+1 + Rk+1

)−1
(22)

with Σaŷ
k+1 denoting the cross covariance of the state pre-

dictions ajk+1|k and observation predictions ŷjk+1, Σŷŷ
k+1

the forecast error covariance of the observation prediction
ensemble, and Rk+1 the observation noise covariance. This
formulation of the Kalman gain straightforwardly allows
for nonlinear observations, as opposed to the more familiar
formula for linear observation models [17]. Use of the
artificial observation ensemble (19) ensures that the resulting
posterior ensemble in (21) does not have too low a variance
[10]. The posterior means and covariances for the states are
then computed using posterior ensemble statistics, and the
process repeats.

IV. ENKF FOR INVERSE OPTIMAL CONTROL

To apply the EnKF to the inverse optimal control problem,
we treat the entries of the symmetric positive definite P
defining the quadratic CLF in (9) as the states of the filter and
apply the following updating procedure to find the control
that drives the system to zero the fastest. At time k, assume
a discrete ensemble of P matrices

Pj
k|k =

Pj
1,1 · · · Pj

1,n
...

. . .
...

Pj
1,n · · · Pj

n,n

 ∈ Rn×n, j = 1, . . . , N,

(23)
where each Pj

k|k is symmetric positive definite. Using sym-
metry to our advantage, we need only update the upper
triangular entries, which we place into vectors

pjk|k =



Pj
1,1
...

Pj
1,n
...

Pj
n,n

 ∈ Rn̂, n̂ =
n(n+ 1)

2
. (24)

As in the prediction step of the filter, we generate a
prediction ensemble

pjk+1|k = pjk|k + vjk+1, vjk+1 ∼ N (0,Q), (25)

where here the propagation function in equation (16) is the
n̂ × n̂ identity matrix and the covariance of the innovation
term vjk+1 is some constant matrix Q. Prediction ensemble
statistics can be computed as in (17)–(18), however they are
not needed for the remaining computations.

Reformulating the prediction ensemble vectors
{pjk+1|k}

N
j=1 into matrices {Pj

k+1|k}
N
j=1, we can compute

the corresponding predicted controls, states, and root mean
square error (RMSE) values for each ensemble member
using the following formulas. The predicted controls are
given by

ujk+1|k = −1

2

(
E +

1

2
gT(xjk|k)P

j
k+1|kg(x

j
k|k)
)−1

· gT(xjk|k)P
j
k+1|kf(x

j
k|k) (26)

as in (10) for each j = 1, . . . , N , which are then used to
generate the state prediction ensemble

xjk+1|k = f(xjk|k) + g(xjk|k)u
j
k+1|k, j = 1, . . . , N (27)

as in (1).
For the analysis step of the filter, we interpret as “obser-

vations” the RMSE values of the states as we drive them
to zero. Since the aim is to find a control that drives the
RMSE to zero, we treat RMSE = 0 as the true “observation”
and generate an observation ensemble using the prescribed
observation noise covariance matrix R as follows:

RMSEj
obs = wj

k+1, wj
k+1 ∼ N (0,R). (28)

We then compare the “observed” RMSEs to the RMSEs of
the predicted states, given by

RMSEj
k+1|k =

√
(xjk+1|k)

2
1 + (xjk+1|k)

2
2 + · · ·+ (xjk+1|k)

2
n

n
(29)
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and compute the posterior ensemble as in (21) using

pjk+1|k+1 = pjk+1|k + Kk+1(RMSEj
obs −RMSEj

k+1|k), (30)

where the Kalman gain is defined as in (22) with Σaŷ
k+1 denot-

ing the cross covariance of the predictions pjk+1|k and RMSE
predictions RMSEj

k+1|k, Σŷŷ
k+1 the forecast error covariance

of the RMSE prediction ensemble, and R the observation
noise covariance. Posterior control law, state, and RMSE
ensembles can be computed after reformulating the posterior
ensemble of entry vectors pjk+1|k+1 into their corresponding
matrices, and ensemble statistics can be computed.

This process is repeated for each successive time step until
an appropriate control is found, based on some prescribed
stopping criterion. In particular, if we want to find the control
that drives the system to zero the fastest, we can stop when
the minimum RMSE of all ensemble members is less than
some prescribed tolerance.

V. RESULTS

We demonstrate the effectiveness of the proposed method-
ology on two illustrated examples, one involving a linear
system and the other a nonlinear system.

A. Example: Linear System

Consider the discrete-time linear system

xk+1 =

[
0.9974 0.0539
−0.1078 1.1591

]
xk +

[
0.0013
0.0539

]
uk (31)

with initial point x0 = [2, 1], where the goal is to minimize
the performance measure

J =
1

2

N−1∑
k=0

[
0.25(x1)

2
k + 0.05(x2)

2
k + 0.05u2k

]
as described in [18]. We set up the EnKF CLF estimator by
letting

E = 0.05, Q = q0I2, R = r0, (32)

where q0 = 1 × 10−4 and r0 = 1 × 10−3. We generate
uniform prior of size N = 1000 ensemble members on the
upper-triangular entries of the P matrix with minimum value
0.05 and maximum value 0.2. We set the stopping criterion
such that the filter stops when min(RMSE) < 1 × 10−3

to find control that drives system to zero the fastest. After
103 steps, the procedure results in the following matrix P
defining the CLF:

P =

[
1.2429 1.7809
1.7809 2.7101

]
. (33)

Fig. 1 shows the corresponding states x1 and x2, control u,
and RMSE. After an initial transient, the control defined by
this resulting CLF matches the expected control for the linear
system (31) [18].
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Fig. 1. The states x1 and x2, control u, and RMSE for the linear system
(31) corresponding to the CLF with P matrix (33) estimated using the EnKF
CLF procedure.

B. Example: Nonlinear System

Consider the discrete-time nonlinear system

xk+1 = f(xk) + g(xk)uk, x0 =

[
2.5
−1

]
∈ R2 (34)

where

f(xk) =

[
2x1,k sin(0.5x1,k) + 0.1x22,k

0.1x21,k + 1.8x2,k

]
(35)

and

g(xk) =

[
0

2 + 0.1 cos(x2,k)

]
. (36)

This system is also considered in [8]. Here we take

E = 1, Q = q0I2, R = r0 (37)

with q0 = 1 × 10−2 and r0 = 1 × 10−3, and we
generate a uniform prior ensemble of size N = 1, 000
on the upper-triangular entries of P with minimum value
0.001 and maximum value 0.1. We stop the algorithm when
min(RMSE) < 1× 10−3. After 9 steps, the resulting matrix
P defining the CLF that drives the system to zero the fastest
is given by

P =

[
0.2089 0.2300
0.2300 0.2604

]
. (38)

Fig. 2 shows the corresponding states x1 and x2, control u,
and RMSE.

VI. CONCLUSION

In this work we present a novel approach using nonlinear
Bayesian filtering, in particular the EnKF, to parameterize a
quadratic CLF for inverse optimal control. We demonstrate
the effectiveness of using the EnKF to estimate the upper-
triangular entries of the symmetric positive definite matrix
P in (10) on both a linear and nonlinear example. Since
the nonlinear problem does not guarantee a unique solution,
the ensemble formulation allows us to find the control that
stabilizes the system the fastest (i.e. using the least amount
of steps).
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Fig. 2. The states x1 and x2, control u, and RMSE for the nonlinear
system (34) corresponding to the CLF with P matrix (38) estimated using
the EnKF CLF procedure.

While the EnKF was our filter of choice in this work,
the algorithm can be straightforwardly modified to use other
filtering schemes (such as particle filters) instead. Future
work may study if the choice of filter affects the number
of iterations needed to find a CLF matching the prescribed
criteria. We also plan to apply the EnKF CLF method to an
application relating to HIV drug therapy.
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