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Abstract—This paper deals with the problem of delay-
range-dependent robust stability for neutral systems with non-
differentiable time-varying delay and nonlinear perturbations.
By applying a novel Lyapunov-Krasovskii functional approach,
Wirtinger-based integral inequality and Peng-Park’s integral in-
equality, decomposition technique of constant matrix, descriptor
model transformation, Leibniz Newton formula and utilization
of zero equation, new delay-range-dependent robust stability
criteria are derived in terms of linear matrix inequalities (LMIs)
for the considered systems. Numerical examples are given to
illustrate that the presented effective method.

Index Terms—neutral system, Lyapunov-Krasovskii func-
tional, linear matrix inequality, model transformation, time-
varying delay.

I. INTRODUCTION

T IME delay is frequently a source of instability and a
source of generation of oscillation in many dynamic

systems such as networked control systems, biological sys-
tems, mechanical systems, and chemical or process control
systems [23]. Thus, analysis and synthesis problem for
systems with time-varying delay have become an important
issue and a large variety of problems have been researched
since the nineties by several researchers [5], [6], [17].

In some physical system, the system models can be
described by functional differential equation of neutral type,
which the models depend on the state delay but also depend
on the state derivatives, are often encountered in various
fields, such as population ecology [8], distributed networks
containing lossless transmission lines [1], heat exchangers,
robots in contact with rigid environments [18], etc. For
interesting research methods, stability criteria for application
neutral stochastic systems and neural networks have been
discussed in [12], [16], [27], [28], [29], owing to that accurate
model cannot be easily obtained, the addressed systems in
some existent works always assume that there exist the un-
certainties on the parameters or contain both the linear terms
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and nonlinear ones. On the one hand, in [2], [3], [4], [24]
some LMI criteria on robust stability for uncertain ones have
been deeply derived. Very recently, improved stability for
uncertain systems with time-varying delays were proposed
in [21]. However, there are rooms for further improvements
in the feasible region of criteria for stability.

Stability criteria for time-delay systems are generally
divided into two classes : delay-independent one and delay-
dependent one. Delay-independent stability criteria tend to
be more conservative, especially for small size delay, such
criteria do not give any information on the size of the delay.
On the other hand, delay-dependent stability criteria are
concerned with the size of the delay and usually provide
a maximal delay size. Generally speaking, the latter ones
are less conservative than the former ones when the time-
delay values are small. Many times and efforts have been put
into the development of some techniques and new Lyapunov-
Krasovskii functional because how to choose Lyapunov-
Krasovskii functional and estimate an upper bound of time-
derivative of Lyapunov-Krasovskii functional play key roles
to improve the feasible region of stability criteria. Delay-
dependent stability criteria for these systems are established
in terms of linear matrix inequalities (LMIs).

With above motivations, based on Lyapunov stability
theory, an improved stability analysis for neutral systems
with non-differentiable time-varying delay and nonlinear
perturbations delays is derived by the framework of LMIs
which will be introduced in Theorem 9. Some numerical
examples are given to illustrate that the presented effective
method.

Notation:
The following notations will be accounted in this paper:
let Rn and Rn×m denotes n-dimensional Euclidean space
with vector norm ||.|| and set of n×m matrices, respectively.
A matrix P is symmetric positive definite, write P > 0, if
PT = P and xTPx > 0 for all x ∈ Rn,x ̸= 0.

II. PRELIMINARIES

Consider the following neutral system with non-
differentiable time-varying discrete delay and nonlinear per-
turbations of the form

ẋ(t)− Cẋ(t− r(t))
= Ax(t) +Bx(t− h(t)) + f1(t, x(t))
+f2(t, x(t− h(t))) + f3(t, ẋ(t− r(t))), t > 0;
x(t) = ϕ(t), t ∈ [−h̄, 0];

(1)
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where x(t) ∈ Rn is the state variable, r(t) is neutral interval
time-varying delays, h(t) is the time-varying delay satisfying

0 ≤ r1 ≤ r(t) ≤ r2, 0 ≤ ṙ(t) ≤ rd, (2)
0 ≤ h(t) ≤ hM , (3)

where r1, r2 and hM are positive real constants. ϕ(t) is initial
condition function, A, B and C are constant matrices. The
uncertainties f1(.), f2(.) and f3(.) represent the nonlinear
parameter perturbations with respect to the current state x(t),
the delayed state x(t − h(t)) and the neutral delayed state
ẋ(t− r(t)), respectively, and are bounded in magnitude

fT
1 (t, x(t))f1(t, x(t)) ≤ α2xT (t)x(t), (4)
fT
2 (t, x(t− h(t)))f2(t, x(t− h(t)))

≤ β2xT (t− h(t))x(t− h(t)), (5)
fT
3 (t, ẋ(t− r(t)))f3(t, ẋ(t− r(t)))

≤ η2ẋT (t− r(t))ẋ(t− r(t)), (6)

where α, β and η are given positive real constants.

Lemma 1. (Jensen’s Inequality) For any symmetric positive
definite matrix Q, positive real number h, and vector function
ẋ(t) : [−h, 0] → Rn such that the following integral is well
defined, then

−h

∫ 0

−h

ẋT (s+ t)Qẋ(s+ t)ds

≤ −
(∫ 0

−h

ẋ(s+ t)ds
)T

Q
(∫ 0

−h

ẋ(s+ t)ds
)
.

Lemma 2. (Wirtinger-based integral inequality [25]) For
any matrix Z > 0, the following inequality holds for all
continuously differentiable function x : [α, β] → Rn :

−(β − α)

∫ β

α

ẋT (s)Zẋ(s)ds ≤ ωTΘω,

where ω = [xT (β), xT (α), 1
β−α

∫ β

α
xT (s)ds]T

and Θ =

−4Z −2Z 6Z
∗ −4Z 6Z
∗ ∗ −12Z

 .

Lemma 3. (Peng-Park’s integral inequality [19],[20]) For

any matrix
[
Z S
∗ Z

]
≥ 0, positive scalars τ and τ(t)

satisfying 0 < τ(t) < τ , vector function ẋ : [−τ, 0] → Rn

such that the concerned integrations are well defined, then

−τ

∫ t

t−τ

ẋT (s)Zẋ(s)ds ≤ ωTΘω,

where ω = [xT (t), xT (t− τ(t)), xT (t− τ)]T

and Θ =

−Z Z − S S
∗ −2Z + S + ST Z − S
∗ ∗ −Z

 .

Lemma 4. [10] For a positive matrix M , the following
inequality holds:

− (α− β)2

2

∫ α

β

∫ α

s

xT (u)Mx(u)duds

≤ −
(∫ α

β

∫ α

s

x(u)duds
)T

M
(∫ α

β

∫ α

s

x(u)duds
)
.

Lemma 5. [10] For a positive matrix M , the following
inequality holds:

− (α− β)3

6

∫ α

β

∫ α

s

∫ α

u

xT (λ)Mx(λ)dλduds

≤ −
(∫ α

β

∫ α

s

∫ α

u

x(λ)dλduds
)T

×M
(∫ α

β

∫ α

s

∫ α

u

x(λ)dλduds
)
.

Lemma 6. [26] For any constant symmetric positive definite
matrix Q ∈ Rn×n, h(t) is discrete time-varying delays with
(3), vector function ω : [−hM , 0] → Rn such that the
integrations concerned are well defined, then

−hM

∫ 0

−hM

ωT (s)Qω(s)ds

≤ −
∫ 0

−h(t)

ωT (s)dsQ

∫ 0

−h(t)

ω(s)ds

−
∫ −h(t)

−hM

ωT (s)dsQ

∫ −h(t)

−hM

ω(s)ds.

Lemma 7. [26] For any constant matrices Q1, Q2, Q3 ∈
Rn×n, Q1 ≥ 0, Q3 > 0,

[
Q1 Q2

∗ Q3

]
≥ 0, h(t) is

discrete time-varying delays with (3) and vector function
ẋ : [−hM , 0] → Rn such that the following integration is
well defined, then

−hM

∫ t

t−hM

[
x(s)
ẋ(s)

]T [
Q1 Q2

∗ Q3

] [
x(s)
ẋ(s)

]
ds

≤


x(t)

x(t− h(t))
x(t− hM )∫ t

t−h(t)
x(s)ds∫ t−h(t)

t−hM
x(s)ds


T

×


−Q3 Q3 0 −QT

2 0
∗ −Q3 −QT

3 Q3 QT
2 −QT

2

∗ ∗ −Q3 0 QT
2

∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ −Q1



×


x(t)

x(t− h(t))
x(t− hM )∫ t

t−h(t)
x(s)ds∫ t−h(t)

t−hM
x(s)ds

 .

Lemma 8. [26] Let x(t) ∈ Rn be a vector-valued func-
tion with first-order continuous-derivative entries. Then, the
following integral inequality holds for any constant matrices
X,Mi ∈ Rn×n, i = 1, 2, . . . , 5 and h(t) is discrete time-
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varying delays with (3),

−
∫ t

t−hM

ẋT (s)Xẋ(s)ds ≤

 x(t)
x(t− h(t))
x(t− hM )

T

×

M1 +MT
1 −MT

1 +M2 0
∗ M1 +MT

1 −M2 −MT
2 −MT

1 +M2

∗ ∗ −M2 −MT
2


×

 x(t)
x(t− h(t))
x(t− hM )

+ hM

 x(t)
x(t− h(t))
x(t− hM )

T

×

M3 M4 0
∗ M3 +M5 M4

∗ ∗ M5

 x(t)
x(t− h(t))
x(t− hM )

 ,

where X M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0.

Remark 1. In Lemma 6, 7 and 8, we have modified the
method from [7], [21] and [31], respectively.

III. MAIN RESULTS

In this section, we give our main results. We introduce the
following notations for later use:∑

=
[
Σ(i,j)

]
18×18

, (7)

where Σi,j = ΣT
j,i, i, j = 1, 2, 3, ..., 18,

Σ1,1 = ϵ1α
2I +W1 +W2 +WT

1 +WT
2 + PT

2 A1

+PT
2 B1 +AT

1 P2 +BT
1 P2 + PT

3 + P3 +Q1

+R1 + h2
MQ2 +M1 +MT

1 + hMM3 − 4Q4

−Q5 + h2
MR4 −R6 +

h4
M

4
Q6 − 2h2

MQ7

−h4
M

4
Q8 + Z3,

Σ1,2 = P1 − PT
2 +AT

1 P14 +BT
1 P14 + P15 +R2

+h2
MR5,

Σ1,3 = AT
1 P11 +BT

1 P11 + P12 − PT
4 − 2Q4 + S,

Σ1,4 = −W1 + PT
2 A2 + PT

2 B2 +AT
1 P5 +BT

1 P5

−PT
3 + P6 + PT

4 −MT
1 +M2 + hMM4 +Q5

−S +R6, Σ1,5 = −W2 + L1,

Σ1,6 = −W1 − PT
2 B1 + PT

2 A2 − PT
3 + L2,

Σ1,7 = −W2 + L3, Σ1,8 = −PT
4 ,

Σ1,9 = Σ1,10 = 0,

Σ1,11 = −RT
5 +AT

1 P8 +BT
1 P8 + P9,

Σ1,12 =
6

hM
Q4, Σ1,13 =

√
2hMQ7,

Σ1,14 =
hM

2
Q8, Σ1,15 = PT

2 C,

Σ1,16 = Σ1,17 = Σ1,18 = PT
2 ,

Σ2,2 = (r2 − r1)Q9 − PT
14 − P14 +R3 + hMQ3

+h2
MQ4 + h2

MQ5 + h2
MR6 +

h4
M

4
Q7

+
h6
M

36
Q8 + h2

MZ1 + r2Z2,

Σ2,3 = −P11 − PT
16,

Σ2,4 = −P5 + PT
14A2 + PT

14B2 − PT
15 + P16,

Σ2,5 = 0, Σ2,6 = −PT
14B1 + PT

14A2 − PT
15,

Σ2,7 = 0, Σ2,8 = −PT
16, Σ2,9 = Σ2,10 = 0,

Σ2,11 = −P8, Σ2,12 = Σ2,13 = Σ2,14 = 0,

Σ2,15 = PT
14C, Σ2,16 = Σ2,17 = Σ2,18 = PT

14,

Σ3,3 = −PT
13 − P13 −Q1 −R1 −M2 −MT

2

+hMM5 − 4Q4 −Q5 −R6,

Σ3,4 = PT
11A2 + PT

11B2 − PT
12 − P7 + PT

13 −M1

+MT
2 + hMMT

4 +QT
5 − ST +R6,

Σ3,5 = 0, Σ3,6 = −PT
11B1 + PT

11A2 − PT
12,

Σ3,7 = 0, Σ3,8 = PT
13, Σ3,9 = −R2,

Σ3,10 = RT
5 , Σ3,11 = −P10,

Σ3,12 =
6

hM
Q4, Σ3,13 = Σ3,14 = 0, Σ3,15 = PT

11C,

Σ3,16 = Σ3,17 = Σ3,18 = PT
11,

Σ4,4 = ϵ2β
2I + PT

5 A2 + PT
5 B2 +AT

2 P5 +BT
2 P5

−PT
6 − P6 + PT

7 + P7 +M1 +MT
1 −M2

−MT
2 + ST + hMM3 + hMM5 − 2Q5 + S

−R6 −R6T , Σ4,5 = 0,

Σ4,6 = −PT
5 B1 + PT

5 A2 − PT
6 − L2, Σ4,7 = 0,

Σ4,8 = −PT
7 , Σ4,9 = 0, Σ4,10 = −RT

5 ,

Σ4,11 = RT
5 +AT

2 P8 +BT
2 P8 − P9 + P10,

Σ4,12 = Σ4,13 = Σ4,14 = 0, Σ4,15 = PT
5 C,

Σ4,16 = Σ4,17 = Σ4,18 = PT
5 ,

Σ5,5 = −LT
1 − L1 − Z3 + rdZ3, Σ5,6 = 0,

Σ5,7 = −LT
1 − L3,

Σ5,8 = Σ5,9 = Σ5,10 = Σ5,11 = Σ5,12 = Σ5,13 = Σ5,14

= Σ5,15 = Σ5,16 = Σ5,17 = Σ5,18 = 0,

Σ6,6 = −LT
2 − L2 − Z1, Σ6,7 = 0,

Σ6,8 = −Z1, Σ6,9 = Σ6,10 = 0,

Σ6,11 = −BT
1 P8 +AT

2 P8 − P9,

Σ6,12 = Σ6,13 = Σ6,14 = Σ6,15 = Σ6,16 = Σ6,17

= Σ6,18 = 0,

Σ7,7 = −LT
3 − L3 − Z2,

Σ7,8 = Σ7,9 = Σ7,10 = Σ7,11 = Σ7,12 = Σ7,13

= Σ7,14 = Σ7,15 = 0,

Σ7,16 = Σ7,17 = Σ7,18 = 0,

Σ8,8 = −Z1, Σ8,9 = Σ8,10 = 0, Σ8,11 = −P10,

Σ8,12 = Σ8,13 = Σ8,14 = Σ8,15 = Σ8,16 = Σ8,17

= Σ8,18 = 0,

Σ9,9 = −R3, Σ9,10 = Σ9,11 = Σ9,12 = Σ9,13

= Σ9,14 = Σ9,15 = Σ9,16 = Σ9,17 = Σ9,18 = 0,

Σ10,10 = −Q2 −R4,

Σ10,11 = Σ10,12 = Σ10,13 = Σ10,14 = 0,

Σ10,15 = Σ10,16 = Σ10,17 = Σ10,18 = 0
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Σ11,11 = −Q2 −R4,

Σ11,12 = Σ11,13 = Σ11,14 = 0, Σ11,15 = PT
8 C,

Σ11,16 = Σ11,17 = Σ11,18 = PT
8 ,

Σ12,12 =
−12

h2
Q4, Σ12,13 = Σ12,14 = Σ12,15

= Σ12,16 = Σ12,17 = Σ12,18 = 0,

Σ13,13 = −Q7, Σ13,14 = Σ13,15 = Σ13,16

= Σ13,17 = Σ13,18 = 0,

Σ14,14 = −Q6 −Q8, Σ14,15 = Σ14,16

= Σ14,17 = Σ14,18 = 0,

Σ15,15 = ϵ3η
2I − (r2 − r1)(1− rd)Q9,

Σ15,16 = Σ15,17 = Σ15,18 = 0,

Σ16,16 = ϵ1I, Σ16,17 = Σ16,18 = 0,

Σ17,17 = ϵ2I, Σ17,18 = 0,

Σ18,18 = ϵ3I, W1 = P1J, W2 = P2K.

Theorem 9. For a prescribed scalars r2 > 0, rd ≥ 0 and
hM > 0 the system (1) is asymptotically stable, if there
exist positive definite symmetric matrices P1, R4, R6, Qi,
Zj , i=1,2,..,9, j=1,2,3, any appropriate dimensional matrices,
S, J , K, Rk, Ml, Pm, k=1,2,..,6, l=1,2,...,5, m=2,3,...,16 and
positive real constants ϵ1, ϵ2 and ϵ3 satisfying the following
LMIs [

R1 R2

RT
2 R3

]
> 0, (8)[

R4 R5

RT
5 R6

]
> 0, (9)[

Q5 S
ST Q5

]
≥ 0, (10)Q3 M1 M2

MT
1 M3 M4

MT
2 MT

4 M5

 ≥ 0, (11)∑
< 0. (12)

Proof. Under the condition of the theorem, we will show
the asymptotic stability of system (1). From model transfor-
mation method, we rewrite the system (1) in the following
system:

ẋ(t) = y(t), (13)
0 = −y(t) +Ax(t) +Bx(t− h(t))

+f1(t, x(t)) + f2(t, x(t− h(t)))

+f3(t, y(t− r(t))) + Cy(t− r(t)). (14)

In order to improve of the discrete delay h(t) in (1), let us
decompose constant matrix A and B as

A = A1 +A2, (15)
B = B1 +B2, (16)

where A1, A2, B1 and B2 ∈ Rn×n are real constant matrices.
By utilizing the following zero equation, we obtain

0 = Jx(t)− Jx(t− h(t))− J

∫ t

t−h(t)

ẋ(s)ds, (17)

0 = Kx(t)−Kx(t− r(t))−K

∫ t

t−r(t)

ẋ(s)ds, (18)

where J , K ∈ Rn×n will be chosen to guarantee the
asymptotic stability of the system (1). By (15)-(18), the
system and can be represented by the form

ẋ(t) = y(t) + Jx(t)− Jx(t− h(t))− J

∫ t

t−h(t)

y(s)ds

+Kx(t)−Kx(t− r(t))−K

∫ t

t−r(t)

y(s)ds,

(19)
0 = −y(t) + (A1 +B1)x(t)

+(A2 +B2)x(t− h(t))

−(B1 −A2)

∫ t

t−h(t)

y(s)ds

+f1(t, x(t)) + f2(t, x(t− h(t)))

+f3(t, y(t− r(t))) + Cy(t− r(t)). (20)

Construct a Lyapunov-Krasovskii functional candidates for
the system (19)-(20) of the form

V (t) =
9∑

i=1

Vi(t), (21)

where

V1(t) = ζT (t)EPζ(t),

V2(t) =

∫ t

t−hM

xT (s)Q1x(s)ds

+

∫ t

t−hM

[
x(s)
y(s)

]T [
R1 R2

∗ R3

] [
x(s)
y(s)

]
ds,

V3(t) = hM

∫ 0

−hM

∫ t

t+s

xT (θ)Q2x(θ)dθds

+

∫ 0

−hM

∫ t

t+s

yT (θ)Q3y(θ)dθds,

V4(t) = hM

∫ 0

−hM

∫ t

t+s

yT (θ)Q4y(θ)dθds

+hM

∫ 0

−hM

∫ t

t+s

yT (θ)Q5y(θ)dθds,

V5(t) = hM

∫ 0

−hM

∫ t

t+s

[
x(θ)
y(θ)

]T [
R4 R5

∗ R6

] [
x(θ)
y(θ)

]
dθds,

V6(t) = hM

∫ 0

−hM

∫ t

t+s

yT (θ)Z1y(θ)dθds

+r2

∫ 0

−r2

∫ t

t+s

yT (θ)Z2y(θ)dθds,

V7(t) =
(hM )2

2

∫ t

t−hM

∫ t

s

∫ t

u

xT (λ)Q6x(λ)dλduds

+h2
M

∫ t

t−hM

∫ t

s

∫ t

u

yT (λ)Q7y(λ)dλduds,

V8(t) =
(hM )3

6

∫ t

t−hM

∫ t

s

∫ t

u

∫ t

λ

yT (θ)Q8y(θ)dθdλduds,

V9(t) =

∫ t

t−r(t)

xT (s)Z3x(s)ds

+(r2 − r1)

∫ t

t−r(t)

yT (s)Q9y(s)ds,
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with

E =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

P =


P1 0 0 0 0
P2 P5 P8 P11 P14

P3 P6 P9 P12 P15

P4 P7 P10 P13 P16

 ,

ζ(t) =


x(t)

x(t− h(t))∫ t

t−h(t)
x(s)ds

x(t− hM )
y(t)

 .

The time derivative of V (t) along the trajectory of system
(19)-(20) is given by

V̇ (t) =
9∑

i=1

V̇i(t). (22)

From (4), (5) and (6), we obtain for any positive real
constants ϵ1, ϵ2, ϵ3,

ϵ1

(
α2xT (t)x(t)− fT

1 (t, x(t))f1(t, x(t))
)
≥ 0, (23)

ϵ2

(
β2xT (t− h(t))x(t− h(t))

−fT
2 (t, x(t− h(t)))f2(t, x(t− h(t)))

)
≥ 0, (24)

ϵ3

(
η2ẋT (t− r(t))ẋ(t− r(t))

−fT
3 (t, ẋ(t− r(t)))f3(t, ẋ(t− r(t)))

)
≥ 0. (25)

According to (22)-(25), it is straightforward to see that

V̇ (t) ≤ ζT (t)
∑

ζ(t), (26)

where ζT (t)=
[
xT (t), yT (t), xT (t− hM ), xT (t− h(t)),

xT (t− r(t)),
∫ t

t−h(t)
yT (s)ds,

∫ t

t−r(t)
yT (s)ds,∫ t−h(t)

t−hM
yT (s)ds, yT (t− hM ),

∫ t−h(t)

t−hM
xT (s)ds,∫ t

t−h(t)
xT (s)ds,

∫ t

t−hM
xT (s)ds,

√
2
∫ t

t−hM
xT (u)du,∫ t

t−hM

∫ t

u
xT (λ)dλdu, y(t− r(t)), f1(t, x(t)),

f2(t, x(t − h(t))), f3(t, y(t − r(t)))
]
. If the conditions (8)-

(12) hold, then (26) implies that there exists δ > 0 such that
V̇ (t) ≤ −δ ∥x(t)∥2 . Therefore, system (1) is asymptotically
stable.

IV. NUMERICAL EXAMPLES

In this section, numerical example is given to present the
effectiveness of our main results by comparing the upper
bounds of the delays hM .

Example 10. We consider system (1) of the form
ẋ(t)− Cẋ(t− r(t))
= Ax(t) +Bx(t− h(t)) + f1(t, x(t))
+f2(t, x(t− h(t))) + f3(t, ẋ(t− r(t))), t > 0;
x(t) = ϕ(t), t ∈ [−h̄, 0];

(27)

with the parameters

A =

[
−2 0
0 −2

]
, B =

[
0 0.4
0.4 0

]
,

C =

[
0.1 0
0 0.1

]
, α = 0.1, β = η = 0.05. (28)

Decompose matrix A and B as follows : A = A1 + A2,
B = B1 +B2, where

A1 =

[
−1.5 −0.5
−0.1 −1.5

]
, A2 =

[
−0.5 0.5
0.1 −0.5

]
,

B1 =

[
−0.6 0
−0.5 −1.1

]
, B2 =

[
0.6 0.4
0.9 1.1

]
. (29)

Table 1 lists the comparison of the upper bounds delays for
asymptotic stability of system (27) by different methods. It is
clear that our results are superior to those in [4], [14], [15],
[22].

Table 1
Maximum allowable upper bounds hM for the delay is time-varying in
Example 10.

Method
µm 0.5 0.9 1.1 Unknown

rd=0.6
Lakshmanan et al. (2011) [15] - - - 3.9563

Cheng et al. (2013) [4] - - - 4.6235
Qiu et al. (2015) [22] - - - 4.9423

Ours - - - 8.7375
rd=0

Liu et al. (2015) [14] 8.975 8.820 - -
Qiu et al. (2015) [22] 9.646 9.225 - -

Cheng et al. (2013) [4] 9.975 9.756 9.685 -
Ours - - - 9.7967

V. CONCLUSION

The problem of robust stability for neutral systems with
mixed interval time-varying delays and nonlinear perturba-
tions was studied. The restriction on the derivative of the
discrete time-varying delay is removed. By applying a novel
Lyapunov-Krasovskii functional approach, Wirtinger-based
integral inequality and Peng-Park’s integral inequality, de-
composition technique of constant matrix, descriptor model
transformation, Leibniz Newton formula and utilization of
zero equation, an improved delay-range-dependent stability
for considered system are established in terms of linear
matrix inequalities (LMIs). Numerical examples have shown
significant improvements over some existing results.
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