
 

 

Abstract— Electromechanical impedance (EMI) Method is a 

popular Structural Health Monitoring (SHM) techniques for 

monitoring the integrity of a mechanical structure. The EMI 

method is highly sensitivity to small damage. However, it also 

has a well-known issue, an impedance signal can be changed by 

other ambient variations. It has the difficulty in damage 

measurement with the index-based measurement methods, such 

as RMSD (Root Mean Square Deviation). In this article, we 

studied the application of the Deep Learning technique to 

address this issue. An experimental setup was designed for 

applying the EMI method to monitor the integrity of a metallic 

structure. The damage classification process has been carried 

out with a Deep learning tool. This preliminary study 

demonstrated a very positive result with a reliable 

measurement with the testing configuration. 

 
Index Terms— Fault diagnosis, Structural Health 

Monitoring, Electromechanical Impedance (EMI), Deep 

Convolutional Neural Networks, Deep Learning 

I. INTRODUCTION 

TRUCTURAL health monitoring is a process to detect 

damage of an engineering structure with various 

engineering measurement techniques. The 

Electromechanical impedance (EMI) Method is one of 

popular Structural Health Monitoring (SHM) techniques for 

monitoring the integrity of a mechanical structure by 

examining the variations in the mechanical impendence of 

the structure. The variations in the mechanical impedance 

account the change in structural stiffness, damping and mass 

caused by the damage in the structure [1]. The EMI method 

is highly sensitivity to small damage. However, it also has a 

well-known issue, an impedance signal can be changed by 

other ambient variations, such as temperature, loading, 

sensor coupling etc. It causes the difficulty in damage 

assessment with the index-based measurement methods 

commonly used in the SHM, such as RMSD (Root Mean 

Square Deviation), since the human operator is required to 

interpret a single variated index for assessing damage 

conditions.  

Machine learning is considered as one of the solution to 

tackle the difficulty of damage assessment in the SHM, 

which provides the autonomous SHM with the supervised 

learning. The deep learning has drawn huge amount of 

attention in the field of machine learning due to its superior 

performance in visual pattern recognition [2]. However, it 

has very limited reference in applying the deep learning 
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technique in the SHM application. One of the recent 

example is from [3], which describes the application of deep 

learning technique to characterize the damage in the form of 

cracks on a composite material. However, the paper is 

mainly focusing on the visual inspection of the structure 

rather than examining the intrinsic mechanical property of 

the structure. 

In this article, the application of deep learning technique 

in SHM was studied. An experimental setup was designed 

for applying the EMI method to monitor the integrity of a 

metallic structure. A color bar notation has been proposed in 

this paper to represent the resulted FRF (Frequency 

Reponses Function) [4] from the EMI measurement. The 

damage classification process has been carried out with a 

Deep learning tool. This preliminary study demonstrated a 

reliable measurement with the testing configuration under 

different structural conditions. 

II. ELECTROMECHANICAL IMPEDANCE (EMI) TECHNIQUE 

The EMI technique is based on the mechanical impedance 

property of a mechanical structure. The integrity of 

mechanical structure can be evaluated by monitoring the 

variations in mechanical impendence, which accounts the 

change in structural stiffness, damping and mass caused by 

the damage in the structure. The mechanical impedance can 

be measured by piezoelectric principle, as described as 

electromechanical impedance (EMI) [4] method.  

Under the EMI method, a piezoelectric device, PZT 

patches are pasted onto a structure specimen. The impedance 

analyzer will acquire characteristics impendences over a 

frequency range. The FRF (Frequency Response Function) 

of the specimen will be created as illustrated in the figure 1.   

 
Figure 1 FRF (Frequency Response Function) 

  

In the EMI-based SHM, the key indicator of damage is 

the change in the real part of the impedance of the PZT 

patch [4]. The status of a structure can be assessed by 

monitoring the electrical impedance and comparing it to a 
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baseline (the reference condition) measurement for a 

specified frequency range. One of the popular damage 

assessment techniques is the root mean square deviation 

(RMSD) [5]. The RMSD index is presented as follows: 

 
 

where RMSD represents the damage metric, Zi,1 is the 

impedance of the PZT measured at healthy conditions, and 

Zi,2 is the impedance for the comparison with the baseline 

measurement at frequency interval i. As discussed, the 

reliability of the impedance-based method would be affected 

by different working environmental conditions. The shift of 

Impedance Frequency Spectrum will cause unreliable 

damage detection result, particularly applying ‘Root Mean 

Square Deviation’ (RMSD) detection technique. 

III. ISSUES OF RMSD TECHNIQUE 

An experimental setup was designed for applying the EMI 

method to monitor the integrity of a metallic structure as 

illustrated in figure 2.  

 

 

 

 

 

 

 

 

Figure 2 Measurement Equipment setup 

 

The Structural variation was artificially introduced by 

attaching a mass [7] with an aluminum structure as 

illustrated in figure 3. The loading mass is a bolt-and-nut 

with 10g in weight loosely attached to the structure as 

illustrated in figure 3. 

 
Figure 3  Aluminum Structure without the loading mass/with 

the loading mass 

 

A piezoelectric patch (PZT sensor) is attached to the 

structure for monitoring the structural integrity. A 

professional impedance analyzer WK3260B is used to 

getting the impedance of the PZT patch over a typical 

frequency range (100kHz ~ 500kHz). The measured data is 

acquired with a data logging software. In the experiment, 

more than two hundred sets of data were collected with two 

loading conditions, they are labelled with Loading (with 

Loading mass) and No-Loading (without the loading mass). 

 

The collected data are evaluated with a selected data as 

the baseline. The RMSD values are calculated over the 

whole frequency spectrum. However, it is reported that the 

effective frequency range for RMSD evaluation of a given 

structure is usually determined by a trial and error approach 

[4]. With reviewing the calculated RMSD, it is found a 

variation in the RMSD value for different measurements 

under the same loading condition as illustrated in figure 4, 

the variation may be contributed by instrumentation 

condition or environmental condition, such as temperature 

change.  

 
Figure 4 RMSD result for different loading conditions 

 

As illustrated in the figure 4, it is difficult for users to set 

the threshold value for identifying the structural conditions 

(No-loading/Loading) based on the RMSD value as some 

overlapping area of the RMSD value for both “Loading” and 

“No-loading” conditions. 

IV. CONDITION CLASSIFICATION WITH DEEP LEARNING 

With considering the difficulties encountering with 

RMSD approach, the Deep Learning [8] technique is 

evaluated to apply in the condition classification of our 

damage detection experiment. Deep Learning is one of 

machine learning methods commonly used in image 

recognition tasks. The deep learning process is divided into 

two phases. The first phase is the Training Phase, a large 

dataset is collected with the corresponding labels. It is used 

to teach the Machine Learning process how to classify 

different groups of images. A machine learning algorithm is 

adopted for summarizing the dataset into a Training set. The 

Training set will be utilized in the Predication Phase by the 

Trained Classifier. The Deep learning technique uses 

multiple transformation steps to extract features from model 

automatically. It is an advantage to adopt the Deep learning 

technique in SHM applications as the prior knowledge of 

structural model is not required. Convolutional Neural 

Networks (CNNs) is one of Deep learning architectures that 

has proven successful for image analysis [9]. Different 

models implementing CNNs have been proposed [10] to 

improve the image classification performance. The major 

differences among the different models are the number of 

layers and the interconnection structures.  

To apply the deep learning technique, the Condition 

classification was modelled as an image classification 

problem. One of the approach is to visualize a FRF as a line-

chart type image as illustrated in figure 1. The shape of the 

line-chart can be characterized to represent the EMI 

response of the structure. However, the effectiveness for 
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visualizing the FRF in this approach is questionable. To 

preserve the detail of the FRF, the required resolution should 

be more than 1000 x 1000 in pixels. This image size will 

make our model to be incompatible for most of popular 

CNNs models as illustrated in figure 5 such as AlexNet, 

GoogLeNet[10]. It also increases the computational 

complexity even if we create our own CNN model. 

Furthermore, most of space in the line-chart representing the 

FRF contains no information. Therefore, a more suitable 

visual representation of the FRF should be considered 

instead of the line-chart representation.       
CNNs 

Models 
LeNet-5 AlexNet OverFeat  GoogLeNet VGG-16 

Image Size 28x28 227x227 231x231 224x224 224x224 

Figure 5 Image size of some popular CNN models [10] 

 

Therefore, a color bar semantic as illustrated in figure 6 is 

proposed in this paper to adopt the deep learning for FRF-

based problem. Under the color bar semantic, the vertical 

axis represents the frequency range. To align color bar 

image with the requirement of typical CNNs models, the 

horizontal axis will be extended with same number of data 

points as the vertical axis with same color intensity. 

Furthermore, this color bar semantic can be further extended 

to combine both imaginary part and the real part in the 

horizontal axis, it can maximize the information regarding 

the conditions of a structure with the active signature 

concept [11].   

 

Figure 6 the FRF of the structure in Color bar 

 

The value of the FRF will be encoded with the RGB color 

scheme with following equation 

FRF(f) = R + G x 256 + B x 65536 

where R, G, B are the color intensity for the Red, Green 

and Blue components of the RGB color scheme. For 

example, the impedance value 1500 will be represented by 

R=220, G=5 and B=0.  

For the Deep Learning condition classification 

implementation, an interactive deep learning Training 

System, DIGITS [12] has been adopted. The DIGITS 

provides an intergraded environment for dataset preparation, 

the training network configuration and deployment, the 

training set creation.    

For this experiment, 28 sets of data for the measurement 

with Loading Mass (Labelled with Loading) and 28 sets of 

data for the measurement without Loading Mass (Labelled 

with OK) were selected as the dataset as illustrated in figure 

7. The rest of data is used as testing data for evaluating the 

resulting training set. 

 

Label Serial RMSD Condition Remark

A16 1 0.3584% Load Training Data

A17 2 0.4481% Load Training Data

A18 3 0.4414% Load Training Data

A19 4 0.4305% Load Training Data

A20 5 0.4291% Load Training Data

A21 6 0.4232% Load Training Data

A22 7 0.4232% Load Training Data

A23 8 0.3962% Load Training Data

A24 9 0.3962% Load Training Data

A25 10 0.3880% Load Training Data

A26 11 0.3810% Load Training Data

A27 12 0.3870% Load Training Data  
Figure 7 Selected dataset 

 

Another important consideration for setting up the training 

model is the network selection and configuration. Two 

standard networks, AlexNet and GoogLeNet [10] are 

evaluated. The model based on the AlexNet did not 

converge to the reasonable accuracy within appropriate 

iterations (Epochs). As illustrated in figure 8, the final 

accuracy is around 50%. 

 
Figure 8 Training Curve with AlexNet based model 

 

Moreover, the model based GoogLeNet demonstrated a 

very good performance in training stage with appropriate 

solver and parameters setting as shown in figure 9. The 

general difference among AlexNet and GoogLeNet is the 

number of layers, the number of layers for AlexNet and 

GoogLeNet are 8 layers and 22 layers respectively. The 

result demonstrated that increasing in the complexity of 

CNN network has a favorable effect for this experiment. 

 
Figure 9 Training Curve with GoogLeNet based model 
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The created training set has been verified with the test 

data. The overall performance of the classification 

experiment is summarized in the figure 10. 

 
Figure 10 Classification performance with the developed Deep 

Learning Model 

 

The result is very positive even for data with ambiguous 

RMSD value. For the 156 test data sets, only one error for 

data set #184 was observed as illustrated in figure 11. In 

fact, the error can be corrected by updating the training set 

with data set #184. 

 
Figure 11 the selected predication result 

V. CONCLUSION AND FUTURE WORK 

In this paper, the author proposed a novel framework for 

applying the deep learning method for the condition 

classification of the mechanical structure with the EMI 

technique. The deep learning approach outperformed the 

index-based RMSD approach in the robustness and 

sensitivity even with limited number of training data. The 

feature extraction and the classification process were 

embedded in the deep learning framework without the 

human participation.  

Another contribution of this paper is to model a 

framework facilitating the use of deep learning method in 

any frequency domain SHM and condition monitoring 

problem. In the future, we will use the framework proposed 

for attempting the ambient variation problems of the EMI 

method with a systematic investigation. Furthermore, 

combining several signatures in one color bar image is 

another direction of investigation, such as active signature 

[11], multiple sensors response for identifying the location 

and severity.     
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