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Abstract—The problem of optimal guaranteed cost control
for exponential stability of nonlinear system with mixed time-
varying delays via feedback control is considered. The mixed
time-varying delays consisting of both discrete and distributed
delays are considered without assuming the differentiability
of the time-varying delays. Based on an improved Lyapunov-
Krasovskii functional with triple integral terms and employing
Newton-Leibniz formula, Jensen’s inequality and reciprocal
convex combination technique, new delay-dependent sufficient
conditions for the existence of guaranteed cost feedback control
for the system are given in terms of linear matrix inequalities
(LMIs), which can be checked numerically by using the effective
LMI toolbox in MATLAB. Finally, a numerical example is given
to illustrate the effectiveness and improve over some existing
results in the literature.

Index Terms—exponential stability analysis, nonlinear sys-
tem, guaranteed cost control, feedback control, discrete and
distributed time-varying delays

I. INTRODUCTION

IN the scope of functional differential equations, stability
and control problem has been the subject of investigable

research attention. In most control engineering practice, it
is always desirable to design a control system which is
not only stabilizable but also guarantees an adequate level
of performance. The guaranteed cost control was first put
forward by Chang and Peng [5] and introduced by a lot of au-
thors, which different design approaches have been proposed
for systems with delay [11-14]. In [15], author designed
state feedback guaranteed cost control of nonlinear systems
with time-varying delay. By applying Lyapunov-Krasovskii
functional method and linear matrix inequality technique,
new delay-dependent sufficient conditions for designing the
state feedback guaranteed cost control are derived. Optimal
cost controller for linear system with mixed time-varying
delays state and control has been considered in [18]. By
improving Lyapunov-Krasovskii functionals with Newton-
Leibniz formula, the sufficient conditions for the existence
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of an optimal cost state feedback control for the system have
been derived in term of LMIs.

Time-delay systems have actually been studied by several
researchers. This may be the new emerging applications
in engineering (such as network controlled systems) com-
pounded with new theoretical results, that allowed one to
solve some open problems (decoupling problems, stabiliza-
tion, robustness, H∞ control, etc.) and less conservative
results. Absolutely, applications motivate the need of theory,
which in return makes the control applications feasible.

Stability criteria for time-delay systems can be divided into
two types: delay-dependent and delay-independent. Delay-
dependent stability criteria are concerned with the size of
the delay and usually provide a maximal delay size. On
the other hand, delay-independent stability criteria tend to
be more conservative, especially for small size delay, such
criteria do not give any information on the size of the delay.
There are many different methods given to deal with the
stability problem. Among the well-known Lyapunov stability
method, the Lyapunov functional is a powerful tool for
stability analysis of time delay systems. Delay-dependent
stability criteria for these systems are established in terms
of linear matrix inequalities (LMIs).

In this research, we have considered the optimal guaran-
teed cost control problem for a class of nonlinear system
with mixed time-varying delays. The mixed time-varying
delays consisting of both discrete and distributed delays are
considered without assuming the differentiability of the time-
varying delays. Based on an improved Lyapunov-Krasovskii
functional with triple integral terms and employing Jensen’s
inequality, Newton-Leibniz formula and reciprocal convex
combination technique. A performance measure for the sys-
tem is considered by a quadratic cost function. The feedback
stabilizing controllers are designed to satisfy with exponen-
tial stability. We give sufficient conditions for existence of
the feedback guaranteed cost control in terms of LMIs, which
can be determined by utilizing MATLABs LMI control
toolbox. A numerical example is presented to show the
effectiveness of the proposed method.

II. PRELIMINARIES

Notations
The following notation will be used in this paper : R+

denotes the set of all real nonnegative numbers; Rn denotes
the n−dimensional space and ‖ · ‖ denotes the Euclidean
vector norm; An×m denotes the space of all matrices of
(n×m) -dimensions; AT denotes the transpose of matrix A;
A is symmetric if A = AT ; I denotes the identity matrix;

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



λ(A) denotes the set of all eigenvalues of A; λmin(A) =
min{Reλ;λ ∈ λ(A)}; λmax(A) = max{Reλ;λ ∈ λ(A)};
xt = {x(t + s) : s ∈ [−h, 0]}; ||xt|| = sups∈[−h,0] ||x(t +
s)||; C([0, t],Rn) denotes the set of all Rn-valued continuous
functions on [0, t]; L2([0, t],Rm) denotes the set of all Rm-
valued sguare integrable functions on [0, t]; Matrix A is
called positive definite (A > 0) if xTAx > 0 for all
x ∈ Rn, x 6= 0; Matrix A is called semi-positive definite
(A ≥ 0) if xTAx ≥ 0 for all x ∈ Rn; A > B means
A − B > 0. The symmetric term in a matrix is denoted by
*.

Consider a nonlinear system with mixed time-varying
delay of the form

ẋ(t) = Ax(t) +Bx(t− h1(t)) + C

∫ t

t−d1(t)

x(s)ds

+ f(t, x(t), x(t− h1(t)),

∫ t

t−d1(t)

x(s)ds, u(t))

+ U(t), (1)

U(t) = D1u(t) +D2u(t− h2(t)) +D3

∫ t

t−d2(t)

u(s)ds,

x(t) = φ(t), t ∈ [−d3, 0], d3 = max{h1M, h2, d1, d2},

where x(t) ∈ Rn, u(t) ∈ Rm are the state and control,
respectively, the control u(·) ∈ L2([0, t],Rm), u(t) =
Kx(t),K is constant matrix gain, φ(t) ∈ C([−d3, 0],Rn)
is the initial function with the norm

||φ|| = supt∈[−d3,0]

√
||φ(t)||2 + ||φ̇(t)||2,

A,B,C,D1, D2, D3 are given constant matrices with appro-
priate dimensions, the delay functions hi(t), di(t), i = 1, 2
satisfy the condition

0 ≤ h1m ≤ h1(t) ≤ h1M, 0 ≤ h2(t) ≤ h2,

0 ≤ d1(t) ≤ d1, 0 ≤ d2(t) ≤ d2,

η = h1M − h1m

and f(·) : R+ × Rn × Rn × Rn × Rm → Rn is a given
continuous function satisfying f(t, 0, 0, 0, 0) = 0,∀t ∈ R+,
and f(t, x, y, z, u) satisfy Lipschitz condition with respect to
(x, y, z, u), such that ∃a, b, c, d > 0 :

||f(t, x, y, z, u)|| ≤ a||x||+ b||y||+ c||z||+ d||u||. (2)

Define the following quadratic cost function of the asso-
ciated system (1) as follows :

J =

∫ ∞
0

L(t, x(t), x(t− h1(t)),

∫ t

t−d1(t)

x(s)ds, u(t))dt,

(3)

where

L(·) ≤ xT (t)Z1x(t) + xT (t− h1(t))Z2x(t− h1(t))

+

(∫ t

t−d1(t)

xT (s)ds

)
Z3

(∫ t

t−d1(t)

x(s)ds

)
+ uT (t)Y1u(t),

Z1, Z2, Z3 ∈ Rn×n and Y1 ∈ Rm×m are positive definite
matrices.

The objective of this paper is to design a feedback con-
troller u(t) = Kx(t) and a finite number J∗ > 0, such that
the resulting closed-loop system

ẋ(t) = (A+D1K)x(t) +Bx(t− h1(t))

+ C

∫ t

t−d1(t)

x(s)ds+ f(t, x(t), x(t− h1(t)),∫ t

t−d1(t)

x(s)ds,Kx(t)) +D2u(t− h2(t))

+D3

∫ t

t−d2(t)

u(s)ds (4)

is exponentially stable and the value J(u) ≤ J∗.

Definition 1. Given α > 0. The zero solution of closed-loob
system (4) is α-exponentially stabilizable if there exists a
positive number N > 0, such that every solution x(t, φ)
satisfies the following condition

||x(t, φ)|| ≤ Ne−αt||φ||, ∀t ∈ R+.

Definition 2. Consider the control system (1). If there exist
a continuous stabilizing state feedback control law u∗(t) =
Kx(t) and a positive number J∗ such that the zero solution
of the closed-loop system (4) is exponentially stable and the
value (3) satisfies J(u∗) ≤ J∗ then the cost value J∗ is a
guaranteed cost value, u∗(t) is a guaranteed cost controller
of the system.

Proposition 3. [9]. (Cauchy inequality) For any symmetric
positive definite matrix N ∈Mn×n and x, y ∈ Rn we have

±2xT y ≤ xTNx+ yTN−1y.

Proposition 4. [9]. (Schur complement lemma) Given con-
stant symmetric matrices X,Y and Z with appropriate
dimensions satisfying X = XT , Y = Y T > 0, then
X + ZTY −1Z < 0 if and only if[

X ZT

∗ −Y

]
< 0 or

[
−Y Z
∗ X

]
< 0.

Proposition 5. [17]. For any constant matrix Z = ZT > 0
and positive numbers h, h̄ such that the following integrals
are well defined, then

(i)−
∫ t

t−h
x(s)TZx(s)ds

≤ − 1

h

(∫ t

t−h
x(s)ds

)T
Z

(∫ t

t−h
x(s)ds

)
.

(ii)−
∫ −h
−h̄

∫ t

t+s

x(τ)TZx(τ)dτds ≤ − 2

h̄2 − h2
×(∫ −h

−h̄

∫ t

t+s

x(τ)dτds

)T
Z

(∫ −h
−h̄

∫ t

t+s

x(τ)dτds

)
.

Proposition 6. [17]. Let f1, f2, ..., fN : Rm → R have
positive values in an open subset D of Rm. Then, the
reciprocally convex combination of fi over D satifies

min{ri|ri>0,
∑

i ri=1}
∑
i

1

ri
fi(t)

=
∑
i

fi(t) + maxgi,j(t)

∑
i6=j

gi,j(t)
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subject to

gi,j : Rm → R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)
gi,j(t) fj(t)

]
≥ 0 .

III. MAIN RESULTS

The following theorem gives sufficient conditions for
designing a guaranteed cost controller for system (1).

Theorem 7. Given α > 0. Consider the system (1) and the
cost function (3). If there exist symmetric positive definite
matrices P, Q1, Q2, R1, R2, R3, R4, S1, T1, T2, W1, W2

and W3 satisfying the following LMIs

Φ =

 Φ11 Φ12 Φ13

∗ Φ22 Φ23

∗ ∗ Φ33

 < 0, (5)

then

u(t) = −1

2
DT

1 P
−1x(t), t ∈ R+ (6)

is a guaranteed cost controller and the guaranteed cost value
is

J∗ = λ2||φ||2.

Moreover, the solution x(t, φ) satisfies

||x(t, φ)|| ≤
√
λ2

λ1
e−αt||φ||, ∀t ∈ R+,

where

Φ11 =


M1,1 M1,2 M1,3 M1,4 M1,5

∗ M2,2 0 0 0
∗ ∗ M3,3 0 0
∗ ∗ ∗ M4,4 0
∗ ∗ ∗ ∗ M5,5

 ,

Φ12 =


0 M1,7 M1,8 M1,9 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M5,6 M5,7 M5,8 0 0

 ,

Φ13 =


M1,11 M1,12 M1,13 M1,14 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 M5,14 0

 ,

Φ22 =


M6,6 0 0 0 0
∗ M7,7 M7,8 0 0
∗ ∗ M8,8 0 0
∗ ∗ ∗ M9,9 M9,10

∗ ∗ ∗ ∗ M10,10

 ,

Φ23 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 M9,14 0
0 0 0 0 0

 ,

Φ33 =


M11,11 0 0 0 0
∗ M12,12 0 0 0
∗ ∗ M13,13 0 0
∗ ∗ ∗ M14,14 M14,15

∗ ∗ ∗ ∗ M15,15

 ,

M1,1 = [A+ αI]P + P [A+ αI]T + (a+ b+ c+ 0.5d)I

−D1D
T
1 + dD1D

T
1 + 0.25D1Y1D

T
1 +Q1 +Q2

+ d2
1T2 + 3e2αh2D2S1D

T
2 + 2e2αd2D3T1D

T
3

− e−2αh1mR1 − e−2αh1MR2 − 2e−4αh1mW1

− 2e−4αh1MW2 −
2e−4αh1M(h1M − h1m)

(h1M + h1m)
W3,

M1,2 = P, M1,3 = D1, M1,4 = d2
2D1, M1,5 = BP,

M1,7 = e−2αh1mR1, M1,8 = e−2αh1MR2, M1,9 = CP,

M1,11 =
2e−4αh1m

h1m
W1, M1,12 =

2e−4αh1M

h1M
W2,

M1,13 =
2e−4αh1M

(h1M + h1m)
W3, M1,14 = PAT − 0.5D1D

T
1 ,

M2,2 = − (2aI + Z1)−1, M3,3 = −2e2αh2S1,

M4,4 = − 4d2
2T1,

M5,5 = − 2e−2αh1MR3 + e−2αh1M(R4 +RT4 ),

M5,6 = P, M5,7 = e−2αh1MR3 − e−2αh1MR4,

M5,8 = e−2αh1MR3 − e−2αh1MRT4 , M5,14 = PBT ,

M6,6 = − (2bI + Z2)−1,

M7,7 = − e−2αh1mQ1 − e−2αh1mR1 − e−2αh1MR3,

M7,8 = e−2αh1MRT4 ,

M8,8 = − e−2αh1MQ2 − e−2αh1MR2 − e−2αh1MR3,

M9,9 = − e−2αd1T2, M9,10 = P, M9,14 = PCT ,

M10,10 = − (2cI + Z3)−1, M11,11 =
−2e−4αh1m

h2
1m

W1,

M12,12 =
−2e−4αh1M

h2
1M

W2, M13,13 =
−2e−4αh1M

(h2
1M − h2

1m)
W3,

M14,14 = h2
1mR1 + h2

1MR2 + (h1M − h1m)2R3 + h2
1mW1

+ h2
1MW2 + (h1M − h1m)h1MW3

+ 3e2αh2D2S1D
T
2 + 2e2αd2D3T1D

T
3

+ (a+ b+ c+ 0.5d)I − 2P,

M14,15 = h2
2D1,M15,15 = −4h2

2S1,

λ1 = λmin(P−1),

λ2 = λmax(P−1) + h1mλmax(P−1Q1P
−1)

+ h1Mλmax(P−1Q2P
−1)

+ h3
1mλmax(P−1R1P

−1)

+ h3
1Mλmax(P−1R2P

−1)

+ (h1M − h1m)3λmax(P−1R3P
−1)

+
1

4
h3

2λmax(P−1D1S
−1
1 DT

1 P
−1)

+
1

4
d3

2λmax(P−1D1T
−1
1 DT

1 P
−1)

+ d3
1λmax(P−1T2P

−1)

+ h3
1mλmax(P−1W1P

−1)

+ h3
1Mλmax(P−1W2P

−1)

+ (h1M − h1m)h2
1Mλmax(P−1W3P

−1).

Proof: Let Y = P−1, y(t) = Y x(t). Using the
feedback control (3), we consider the LyapunovKrasovskii
functional for the closed-loop system (4),

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



V (t, xt) =
12∑
i=1

Vi(t, xt),

where

V1(·) = xT (t)Y x(t),

V2(·) =

∫ t

t−h1m

e2α(s−t)xT (s)Y Q1Y x(s)ds,

V3(·) =

∫ t

t−h1M

e2α(s−t)xT (s)Y Q2Y x(s)ds,

V4(·) = h1m

∫ 0

−h1m

∫ t

t+s

e2α(θ−t)ẋT (θ)Y R1Y ẋ(θ)dθds,

V5(·) = h1M

∫ 0

−h1M

∫ t

t+s

e2α(θ−t)ẋT (θ)Y R2Y ẋ(θ)dθds,

V6(·) = η

∫ −h1m

−h1M

∫ t

t+s

e2α(θ−t)ẋT (θ)Y R3Y ẋ(θ)dθds,

V7(·) = h2

∫ 0

−h2

∫ t

t+s

e2α(θ−t)u̇T (θ)S−1
1 u̇(θ)dθds,

V8(·) = d2

∫ 0

−d2

∫ t

t+s

e2α(θ−t)uT (θ)T−1
1 u(θ)dθds,

V9(·) = d1

∫ 0

−d1

∫ t

t+s

e2α(θ−t)xT (θ)Y T2Y x(θ)dθds,

V10(·) =

∫ 0

−h1m

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)YW1Y ẋ(θ)×

dθdsdτ,

V11(·) =

∫ 0

−h1M

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)YW2Y ẋ(θ)×

dθdsdτ,

V12(·) =

∫ −h1m

−h1M

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)YW3Y ẋ(θ)×

dθdsdτ.

It is easy to check that

λ1||x(t)||2 ≤ V (t, xt) ≤ λ2||xt||2, ∀t ≥ 0. (7)

Taking the derivative of Vi(t, xt) along the solution of the
system by using Newton-Leibniz formula, condition (2),
Proposition 3, Proposition 5, Proposition 6, we have

V̇ (t, xt) + 2αV (t, xt) ≤ ξT (t) Π ξ(t)− L(·) (8)

where

ξT (t) =

[
yT (t), yT (t− h1(t)), yT (t− h1m), yT (t− h1M),∫ t

t−d1(t)

yT (s)ds,

∫ t

t−h1m

yT (τ)dτ,

∫ t

t−h1M

yT (τ)dτ,∫ t−h1m

t−h1M

yT (τ)dτ, ẏT (t)

]
,

Π =

 Π11 Π12 Π13

∗ Π22 Π23

∗ ∗ Π33

 < 0, (9)

Π11 =

 N1,1 N1,2 N1,3

∗ N2,2 N2,3

∗ ∗ N3,3

 ,
Π12 =

 N1,4 N1,5 N1,6

N2,4 0 0
N3,4 0 0

 ,
Π13 =

 N1,7 N1,8 N1,9

0 0 N2,9

0 0 0

 ,
Π22 =

 N4,4 0 0
∗ N5,5 0
∗ ∗ N6,6

 ,
Π23 =

 0 0 0
0 0 N5,9

0 0 0

 ,
Π33 =

 N7,7 0 0
∗ N8,8 0
∗ ∗ N9,9

 ,
N1,1 = [A+ αI]P + P [A+ αI]T + (a+ b+ c+ 0.5d)I

−D1D
T
1 + dD1D

T
1 + 0.25D1Y1D

T
1 +Q1 +Q2

+ d2
1T2 + 3e2αh2D2S1D

T
2 + 2e2αd2D3T1D

T
3

− e−2αh1mR1 − e−2αh1MR2 − 2e−4αh1mW1

− 2e−4αh1MW2 −
2e−4αh1M(h1M − h1m)

(h1M + h1m)
W3

+ P (2aI + Z1)P + 0.5e−2αh2D1S
−1
1 DT

1

+ 0.25d2
2D1T

−1
1 DT

1 ,

N1,2 = BP, N1,3 = e−2αh1mR1, N1,4 = e−2αh1MR2,

N1,5 = CP, N1,6 =
2e−4αh1m

h1m
W1,

N1,7 =
2e−4αh1M

h1M
W2, N1,8 =

2e−4αh1M

(h1M + h1m)
W3,

N1,9 = PAT − 0.5D1D
T
1 ,

N2,2 = − 2e−2αh1MR3 + e−2αh1M(R4 +RT4 )

+ P (2bI + Z2)P,

N2,3 = e−2αh1MR3 − e−2αh1MR4,

N2,4 = e−2αh1MR3 − e−2αh1MRT4 , N2,9 = PBT ,

N3,3 = − e−2αh1mQ1 − e−2αh1mR1 − e−2αh1MR3,

N3,4 = e−2αh1MRT4 ,

N4,4 = − e−2αh1MQ2 − e−2αh1MR2 − e−2αh1MR3,

N5,5 = − e−2αd1T2 + P (2cI + Z3)P, N5,9 = PCT ,

N6,6 =
−2e−4αh1m

h2
1m

W1, N7,7 =
−2e−4αh1M

h2
1M

W2,

N8,8 =
−2e−4αh1M

(h2
1M − h2

1m)
W3,

N9,9 = h2
1mR1 + h2

1MR2 + (h1M − h1m)2R3 + h2
1mW1

+ h2
1MW2 + (h1M − h1m)h1MW3

+ 3e2αh2D2S1D
T
2 + 2e2αd2D3T1D

T
3

+ (a+ b+ c+ 0.5d)I − 2P + 0.25h2
2D1S

−1
1 DT

1 ,
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Using Proposition 4 (Schur complement lemma), condition
(5) is equivalent to the condition Π < 0. Thus, from (5)−(9)
,we obtain

V̇ (t, xt) + 2αV (t, xt) ≤ −L(·), ∀t ∈ R+. (10)

Since L(·) > 0, we have

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ∈ R+. (11)

Integrating both sides of (11) from 0 to t, we obtain

V (t, xt) ≤ V (0, x0)e−2αt, ∀t ∈ R+.

Furthermore, taking condition (7) into account, we have

λ1||x(t, φ)||2 ≤ V (t, xt) ≤ V (0, x0)e−2αt ≤ λ2e
−2αt||φ||2,

then

||x(t, φ)|| ≤
√
λ2

λ1
e−αt||φ||, ∀t ≥ 0,

which implies the exponential stability of the closed-loop
system (4). To find the upper bound of the cost function (3),
we consider the derived condition (10) and V (t, xt) > 0,we
have

V̇ (t, xt) ≤ −L(·), ∀t ∈ R+. (12)

Integrating both sides of (12) from 0 to t, we obtain∫ t

0

L(·) dt ≤ V (0, x0)− V (t, xt) ≤ V (0, x0), ∀t ∈ R+,

because of V (t, xt) > 0. Hence, letting t → ∞, we finally
obtain that

J =

∫ ∞
0

L(·) dt ≤ V (0, x0) ≤ λ2||φ||2 = J∗.

This completes the proof of the theorem.

IV. NUMERICAL EXAMPLES

In this section, we now provide an example to show the
effectiveness of the result in Theorem 7.

Example.1 Consider a nonlinear system and mixed time-
varying delay using feedback control with the following :

ẋ(t) = Ax(t) +Bx(t− h1(t)) + C

∫ t

t−d1(t)

x(s)ds

+ f(t, x(t), x(t− h1(t)),

∫ t

t−d1(t)

x(s)ds, u(t))

+ U(t), (1)

U(t) = D1u(t) +D2u(t− h2(t)) +D3

∫ t

t−d2(t)

u(s)ds,

x(t) = φ(t), t ∈ [−d3, 0], d3 = max{h1M, h2, d1, d2},

where

A =

[
0 0
0 1

]
, B =

[
−2 −0.5
0 −1

]
,

C =

[
−0.2 0

0 −0.1

]
, D1 =

[
2 0
0 3

]
,

D2 =

[
0.1 0
0 0.1

]
, D3 =

[
0.1 0
0 0.1

]
,

Z1 = Z2 = Z3 = Y1 =

[
0.1 0
0 0.1

]
,

a = b = c = d = 0.001, α = 0.01,

h2 = 0.3, h1m = 0.1, h1M = 0.3,

d1 = 0.03, d2 = 0.02.

By using the LMI Toolbox in MATLAB, we obtain

P =

[
4.5599 −0.6159
−0.6159 3.8500

]
,

Q1 =

[
3.8029 0.5375
0.5375 1.8969

]
,

Q2 =

[
4.2538 0.4146
0.4146 1.0766

]
,

R1 =

[
17.9365 −15.9555
−15.9555 48.7317

]
,

R2 =

[
0.3552 −0.7884
−0.7884 2.3270

]
,

R3 =

[
20.7980 −3.6989
−3.6989 18.9409

]
,

R4 =

[
1.0501 −2.6087
−2.6087 7.6735

]
,

S1 =

[
5.2109 −1.8802
−1.8802 12.7356

]
,

T1 =

[
1.0972 −2.2022
−2.2022 6.1546

]
,

T2 =

[
82.1632 −80.0082
−80.0082 205.1834

]
,

W1 =

[
2.4264 −4.0157
−4.0157 12.5592

]
,

W2 =

[
0.5094 −1.1200
−1.1200 3.3355

]
,

W3 =

[
0.1800 −0.2595
−0.2595 0.7044

]
,

K =

[
−0.2241 −0.0359
−0.0538 −0.3982

]
,

and the feedback control is

u(t) =

[
−0.2241 −0.0359
−0.0538 −0.3982

]
x(t),

λ1 = 0.2034, λ2 = 0.4143.

We take the initial condition

φ(t) =

[
0.5sin t
0.5cos t

]
,

||φ|| = 1

and the guaranteed cost value is

J∗ = 0.4143||φ||2 = 0.4143.

By Theorem 1, the system is exponentially stable and solu-
tion x(t, φ(t)) satisfies

||x(t, φ(t)|| ≤ 1.4272e−0.01t, t ≥ 0.
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Fig. 1. The trajectories x1(t), and x2(t) of closed-loop system

V. CONCLUSION

In this paper, we have investigated the problem of optimal
guaranteed cost control for exponential stability of nonlinear
system with mixed time-varying delays via feedback control.
The mixed time-varying delays consisting of both discrete
and distributed delays are considered without assuming the
differentiability of the time-varying delays. Based on an
improved Lyapunov-Krasovskii functional with triple integral
terms, new delay-dependent sufficient conditions for the
existence of guaranteed cost feedback control for the system
are given in terms of linear matrix inequalities (LMIs). A
performance measure for the system is considered by a
quadratic cost function. Finally, a numerical example is given
to illustrate the effectiveness and improve over some existing
results in the literature.
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