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Abstract—The problem of mixed H∞ and passivity analysis
for neural networks with mixed time-varying delays which
consist of discrete and distributed time-varying delays via
feedback control is investigated. Based on designing feedback
controller and constructing a Lyapunov-Krasovskii functional
(LKF) comprising novel integral terms, the neural networks
system is exponentially stable satisfying mixed H∞ and passivity
performance. Moreover, improved Jensen inequalities and con-
vex combination idea are utilized to derive sufficient conditions
in terms of linear matrix inequalities (LMIs). A numerical
example is employed to demonstrate the effectiveness of the
proposed method.

Index Terms—neural networks, mixed H∞ and passivity
analysis, exponential stability, Lyapunov-Krasovskii functional,
discrete and distributed time-varying delays

I. INTRODUCTION

IN the past decades, neural networks have been studied
by abundant researchers due to their fruitful applications

in many areas such as pattern recognition, signal processing,
optimization problems, automatic control engineering, paral-
lel computation and so on [1], [2], [8], [20], [27]. Meanwhile,
it is well known that time delay is a usual phenomenon that
occurs in neural networks and existence of time delay which
usually causes a source of poor performance, oscillation,
divergence and even instability of the system [22]. Moreover,
time delay is often encountered in a neural networks model
due to communication time and the finite switching speed of
the amplifiers in hardware implementation [28]. Thus stabil-
ity analysis for neural networks with constant, discrete time-
varying and distributed time-varying delays have received a
great deal of attention [4], [7], [11], [12], [25].

On the other hand, the passivity play important roles of
stability of neural networks with time delay and is more
attractive to attention. The main key of passivity theory is
that the passive properties can keep the system internally
stable and represent the property of energy consumption.
Particularly, it is effective tool related to the circuit analysis
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and has received much attention from the control areas.
In addition, it has also been extensively applied in many
physical systems such as fuzzy control, signal processing,
network control [6] and sliding mode control [23]. Hence,
the passivity of neural networks with time delay has studied
in [10], [19], [24], [26]. Also, since H∞ control design
expresses the control problem as a mathematical optimization
problem to finding the controller solution, much attention
of the H∞ approach becomes theoretical and practical
importance [3], [18]. Furthermore, the H∞ approach has
the merit over classical control techniques in that they are
readily applicable to problems involving multivariate systems
with cross-coupling between channels [16]. However, most
recently, combined H∞ and passivity are more interested
attention in the study and this problem with various systems
becomes increasing interest among the researchers and it
was first presented in [13], [14]. Particularly, the problems
of mixed H∞ and passive synchronization for complex
dynamical networks with sampled-data control have been
studied in [17], [21]. Moreover, the problem of memristive
neural networks analysis with mixed H∞ and passivity state
estimation was investigated in [15].

Motivated by above discussions in this paper, we studied
the problem of mixed H∞ and passivity analysis for neural
networks with discrete and distributed time-varying delays
via feedback control which researchers have not studied
yet. The purpose is to focus on the exponential stability
satisfying mixed H∞ and passivity performance for the
neural networks such that a Lyapunov-Krasovskii functional
comprising double, triple and quadruple integral terms and
designing feedback controller are utilized. Moreover, im-
proved Jensen inequalities and convex combination idea are
employed to derive sufficient conditions in terms of linear
matrix inequalities (LMIs). Finally, a numerical example is
provided to demonstrate the effectiveness of the proposed
method.

Notation:
The following notations will be used in this paper, R and Rn

denote the set of real numbers and the n-dimentionals real
spaces, respectively. P > 0 or P < 0 denotes that the matrix
P is symmetric and positive definite or negative definite
matrix. The notation PT and P−1 denote the transpose and
the inverse of P , respectively. I denotes the identity matrix
with appropriate dimensions. The symbol ∗ denotes the
symmetric block in a symmetric matrix. diag{. . .} exhibits
block diagonal matrix composed of elements in the bracket.
ei denotes the unit column vector having one element on
its ith row and zeros elsewhere. For x ∈ Rn, the norm of
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x, denoted by ∥x∥, is defined by ∥x∥=
(∑n

i=1 |xi|2
)1/2;

∥x(t + ϵ)∥cl = max{sup−max{h2,k2}≤ϵ≤0 ∥x(t + ϵ)∥2,
sup−max{h2,k2}≤ϵ≤0 ∥ẋ(t+ ϵ)∥2}.

II. PRELIMINARIES

Consider the following neural network model with both
discrete time-varying delay and distributed time-varying de-
lay:

ẋ(t) = −Ax(t) +Bf(x(t)) + Cg(x(t− h(t)))

+D

∫ t−k1(t)

t−k2(t)

j(x(s)) ds+ Eω(t) + u(t),

z(t) = C1x(t) + C2x(t− h(t)) (1)

+C3

∫ t−k1(t)

t−k2(t)

j(x(s)) ds+ C4ω(t),

x(t) = ϕ(t), t ∈ [−ϱ, 0],

where n denotes the number of neurons in the network,
x(t) = [x1(t), x2(t), . . . , xn(t)]

T ∈ Rn is the neuron state
vector, z(t) ∈ Rn is the output vector, ω(t) ∈ Rn is the deter-
ministic disturbance input which belongs to L2[0,∞), u(t) ∈
Rn is the control input, f(x(t)), g(x(t)), j(x(t)) ∈ Rn are
the neuron activation functions, A = diag{a1, a2, . . . , an}
is a positive diagonal matrix, B,C,D are interconnection
weight matrices, E,C1, C2, C3, C4 are given real matrices,
ϕ(t) is the initial function. The variable h(t) and ki(t)
(i = 1, 2) represent the discrete and distributed time-varying
delays that satisfy 0 ≤ h1 ≤ h(t) ≤ h2, 0 ≤ k1 ≤
k1(t) ≤ k2(t) ≤ k2 where h1, h2, k1, k2, ϱ = max{h2, k2}
are known real constant scalars.

The following assumptions are made for later use.
(H1) The activation function f is continuous and there exist

constants F−
i and F+

i such that

F−
i ≤ fi(α1)− fi(α2)

α1 − α2
≤ F+

i

for all α1 ̸= α2, and let F̃i = max{|F−
i |, |F+

i |}, where
f = [f1, f2, . . . , fn]

T and for any i ∈ {1, 2, . . . , n},
fi(0) = 0.

(H2) The activation function g is continuous and there exist
constants G−

i and G+
i such that

G−
i ≤ gi(α1)− gi(α2)

α1 − α2
≤ G+

i

for all α1 ̸= α2, and let G̃i = max{|G−
i |, |G

+
i |}, where

g = [g1, g2, . . . , gn]
T and for any i ∈ {1, 2, . . . , n},

gi(0) = 0.
(H3) The activation function j is continuous and there exist

constants J−
i and J+

i such that

J−
i ≤ ji(α1)− ji(α2)

α1 − α2
≤ J+

i

for all α1 ̸= α2, and let J̃i = max{|J−
i |, |J+

i |}, where
j = [j1, j2, . . . , jn]

T and for any i ∈ {1, 2, . . . , n},
ji(0) = 0.

The state feedback controller takes the following form:

u(t) = Kx(t). (2)

By substituting equation (2) into equation (1), we get

ẋ(t) = (K −A)x(t) +Bf(x(t)) + Cg(x(t− h(t)))

+D

∫ t−k1(t)

t−k2(t)

j(x(s)) ds+ Eω(t),

z(t) = C1x(t) + C2x(t− h(t)) (3)

+C3

∫ t−k1(t)

t−k2(t)

j(x(s)) ds+ C4ω(t),

x(t) = ϕ(t), t ∈ [−ϱ, 0].

To derive the main results, we will introduce the follow-
ing definitions and lemmas.

Definition 1. [21] The system (3) with ω(t) = 0 is exponen-
tially stable, if there exist two constants η > 0 and ϖ > 0
such that

∥x(t)∥2 ≤ ηe−ϖt∥x(ϵ)∥cl. (4)

Definition 2. [21] For given scalar σ ∈ [0, 1], the system (3)
is exponentially stable and satisfies a mixed H∞/passivity
performance index δ, if the following two conditions can be
guaranteed simultaneously:

(1) the system (3) is exponentially stable in view of Defi-
nition 1.

(2) under zero original condition, there exists a scalar δ > 0
such that the following inequality is satisfied:∫ Tp

0

[
−σzT (t)z(t) + 2(1− σ)δzT (t)ω(t)

]
dt

≥ −δ2
∫ Tp

0

[
ωT (t)ω(t)

]
dt, (5)

for any Tp ≥ 0 and any non-zero ω(t) ∈ L2[0,∞).

Lemma 3. [5], [9] Suppose 0 ≤ η1 < η2 and x(t) ∈ Rn,
for any positive definite matrix P the following inequalities
holds:

−(η2 − η1)

∫ t−η1

t−η2

xT (s)Px(s) ds

≤ −
∫ t−η1

t−η2

xT (s) dsP

∫ t−η1

t−η2

x(s) ds

− (η22 − η21)

2

∫ −η1

−η2

∫ t

t+β

xT (s)Px(s) ds dβ

≤ −
∫ −η1

−η2

∫ t

t+β

xT (s) ds dβP

∫ −η1

−η2

∫ t

t+β

x(s) ds dβ

−η32
6

∫ 0

−η2

∫ 0

β

∫ t

t+λ

xT (s)Px(s) ds dλ dβ

≤ −
∫ 0

−η2

∫ 0

β

∫ t

t+λ

xT (s) ds dλ dβ

× P

∫ 0

−η2

∫ 0

β

∫ t

t+λ

x(s) ds dλ dβ.

Lemma 4. [17] For a positive definite matrix R > 0, any
a differentiable function {x(u)|u ∈ [a, b]}, the following

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



inequality hold:

∫ b

a

ẋT (α)Rẋ(α) ≥ 1

b− a
[x(b)− x(a)]

T
R [x(b)− x(a)]

+
3

b− a

[
x(b) + x(a)− 2

b− a

∫ b

a

x(α) dα

]T

×R

[
x(b) + x(a)− 2

b− a

∫ b

a

x(α) dα

]
.

III. MAIN RESULTS

In this section, the sufficient conditions which ensure
the neural networks system (3) to be exponentially stable
satisfying mixed H∞ and passivity performance index δ are
given. For the convenience of presentation, we denote

F1 =diag{F−
1 F+

1 , F−
2 F+

2 , . . . , F−
n F+

n },

F2 =diag
{
F−
1 + F+

1

2
,
F−
2 + F+

2

2
, . . . ,

F−
n + F+

n

2

}
,

G1 =diag{G−
1 G

+
1 , G

−
2 G

+
2 , . . . , G

−
nG

+
n },

G2 =diag
{
G−

1 +G+
1

2
,
G−

2 +G+
2

2
, . . . ,

G−
n +G+

n

2

}
,

J1 =diag{J−
1 J+

1 , J−
2 J+

2 , . . . , J−
n J+

n },

J2 =diag
{
J−
1 + J+

1

2
,
J−
2 + J+

2

2
, . . . ,

J−
n + J+

n

2

}
,

ξT (t) =
[
xT (t), ẋT (t), xT (t−h1), x

T (t−h2), x
T (t−h(t)),

fT (x(t)), gT (x(t− h(t))), jT (x(t)), 1
h1

∫ t

t−h1
xT (s) ds,

1
h2

∫ t

t−h2
xT (s) ds, 1

h(t)−h1

∫ t−h1

t−h(t)
xT (s) ds,

1
h2−h(t)

∫ t−h(t)

t−h2
xT (s) ds,

∫ t−k1(t)

t−k2(t)
jT (x(s)) ds,∫ −h1

−h(t)

∫ t

t+β
xT (s) ds dβ,

∫ −h(t)

−h2

∫ t

t+β
xT (s) ds dβ, ωT (t)

]
.

Theorem 5. For given scalars h1, h2, k1, k2, β1, β2, δ and
σ ∈ [0, 1], if there exist eleven n× n matrices P > 0, Q1 >
0, Q2 > 0, R1 > 0, R2 > 0, U > 0, L > 0, X1 > 0, X2 >
0, N > 0, Z and three n×n positive diagonal matrices Y1 >
0, Y2 > 0, Y3 > 0 such that the following LMI holds:

Ξ + Ξ1 < 0, (6)
Ξ + Ξ2 < 0, (7)

wherein,

Ξ1 =− e15X1e
T
15,

Ξ2 =− e14X1e
T
14,

Ξ =
[
π(i,j)

]
16×16

,

with: π(i,j) = π(j,i),

π(1,1) = Q1 +Q2 − 4R1 − 4R2 + σCT
1 C1 − F1Y1

−J1Y3 + 2β1Z − 2β1N
TA+

(h2
2−h2

1)
2

4 X1

− (h2
2−h2

1)
2

4 X2,
π(1,2) = P − β1N

T + β2Z
T − β2N

TA,
π(1,3) = −2R1,
π(1,4) = −2R2,
π(1,5) = σCT

1 C2,
π(1,6) = F2Y1 + β1N

TB,
π(1,7) = β1N

TC,
π(1,8) = J2Y3,
π(1,9) = 6R1,
π(1,10) = 6R2,
π(1,13) = σCT

1 C3 + β1N
TD,

π(1,14) =
h2
2−h2

1

2 X2,

π(1,15) =
h2
2−h2

1

2 X2,
π(1,16) = σCT

1 C4 − (1− σ)δCT
1 + β1N

TE,
π(2,2) = h2

1R1 + h2
2R2 + (h2 − h1)

2U − 2β2N
T

+
(h3

2−h3
1)

2

36 X2,
π(2,6) = β2N

TB,
π(2,7) = β2N

TC,
π(2,13) = β2N

TD,
π(2,16) = β2N

TE,
π(3,3) = −Q1 − 4R1 − 4U,
π(3,5) = −2U,
π(3,9) = 6R1,
π(3,11) = 6U,
π(4,4) = −Q2 − 4R2 − 4U,
π(4,5) = −2U,
π(4,10) = 6R2,
π(4,12) = 6U,
π(5,5) = −8U −G1Y2 + σCT

2 C2,
π(5,7) = G2Y2,
π(5,11) = 6U,
π(5,12) = 6U,
π(5,13) = σCT

2 C3,
π(5,16) = σCT

2 C4 − (1− σ)δCT
2 ,

π(6,6) = −Y1,
π(7,7) = −Y2,
π(8,8) = (k2 − k1)

2L− Y3,
π(9,9) = −12R1,
π(10,10) = −12R2,
π(11,11) = −12U,
π(12,12) = −12U,
π(13,13) = −L+ σCT

3 C3,
π(13,16) = σCT

3 C4 − (1− σ)δCT
3 ,

π(14,14) = −X1 −X2,
π(14,15) = −X2,
π(15,15) = −X1 −X2,
π(16,16) = σCT

4 C4 − 2(1− σ)δCT
4 − δ2I,

another terms are 0,
then, the system (3) is exponentially stable and satisfies a
mixed H∞/passivity performance index δ. Furthermore, the
desired controller gains can be given as:

K = N−1Z. (8)

Proof. We consider the following Lyapunov-Krasovskii func-
tional candidate for the system (3) as

V (t) =

9∑
i=1

Vi(t), (9)
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where

V1(t) = xT (t)Px(t),

V2(t) =

∫ t

t−h1

xT (s)Q1x(s) ds,

V3(t) =

∫ t

t−h2

xT (s)Q2x(s) ds,

V4(t) = h1

∫ 0

−h1

∫ t

t+s

ẋT (τ)R1ẋ(τ) dτ ds,

V5(t) = h2

∫ 0

−h2

∫ t

t+s

ẋT (τ)R2ẋ(τ) dτ ds, (10)

V6(t) = (h2 − h1)

∫ −h1

−h2

∫ t

t+s

ẋT (τ)Uẋ(τ) dτ ds,

V7(t) = (k2 − k1)

∫ −k1

−k2

∫ t

t+s

jT (x(τ))Lj(x(τ)) dτ ds,

V8(t) =
(h2

2 − h2
1)

2

∫ −h1

−h2

∫ 0

β

∫ t

t+λ

xT (s)X1x(s) ds dλ dβ,

V9(t) =
(h3

2 − h3
1)

6

∫ −h1

−h2

∫ 0

β

∫ 0

λ

∫ t

t+φ

ẋT (s)

×X2ẋ(s) ds dφ dλ dβ.

Time derivatives of Vi(t), i = 1, 2, . . . , 9, along the trajecto-
ries of (3) are as follow:

V̇1(t) = xT (t)Pẋ(t) + ẋT (t)Px(t), (11)
V̇2(t) = xT (t)Q1x(t)− xT (t− h1)Q1x(t− h1), (12)
V̇3(t) = xT (t)Q2x(t)− xT (t− h2)Q2x(t− h2), (13)
V̇4(t) = h2

1ẋ
T (t)R1ẋ(t)

−h1

∫ t

t−h1

ẋT (α)R1ẋ(α) dα, (14)

V̇5(t) = h2
2ẋ

T (t)R2ẋ(t)

−h2

∫ t

t−h2

ẋT (α)R2ẋ(α) dα, (15)

V̇6(t) = (h2 − h1)
2ẋT (t)Uẋ(t)

−(h2 − h1)

∫ t−h1

t−h2

ẋT (α)Uẋ(α) dα, (16)

V̇7(t) = (k2 − k1)
2jT (x(t))Lj(x(t))

−(k2 − k1)

∫ t−k1

t−k2

jT (x(α))Lj(x(α)) dα

≤ (k2 − k1)
2jT (x(t))Lj(x(t))− (k2(t)− k1(t))

×
∫ t−k1(t)

t−k2(t)

jT (x(α))Lj(x(α)) dα, (17)

V̇8(t) =
(h2

2 − h2
1)

2

4
xT (t)X1x(t)−

(h2
2 − h2

1)

2

×
∫ −h1

−h2

∫ t

t+β

xT (s)X1x(s) ds dβ, (18)

V̇9(t) =
(h3

2 − h3
1)

2

36
ẋT (t)X2ẋ(t)−

(h3
2 − h3

1)

6

×
∫ −h1

−h2

∫ 0

β

∫ t

t+λ

ẋT (s)X2ẋ(s) ds dλ dβ. (19)

Utilizing Lemma 4., the following relations are easily ob-

tained:

−h1

∫ t

t−h1

ẋT (α)R1ẋ(α) dα

≤ −ξT (t) [e1 − e3]R1 [e1 − e3]
T
ξ(t)

− 3ξT (t) [e1 + e3 − 2e9]R1 [e1 + e3 − 2e9]
T
ξ(t), (20)

−h2

∫ t

t−h2

ẋT (α)R2ẋ(α) dα

≤ −ξT (t) [e1 − e4]R2 [e1 − e4]
T
ξ(t)

− 3ξT (t) [e1 + e4 − 2e10]R2 [e1 + e4 − 2e10]
T
ξ(t),

(21)

−(h2 − h1)

∫ t−h1

t−h2

ẋT (α)Uẋ(α) dα

≤− ξT (t) [e5 − e4]U [e5 − e4]
T
ξ(t)

− 3ξT (t) [e5 + e4 − 2e12]U [e5 + e4 − 2e12]
T
ξ(t)

− ξT (t) [e3 − e5]U [e3 − e5]
T
ξ(t)

− 3ξT (t) [e3 + e5 − 2e11]U [e3 + e5 − 2e11]
T
ξ(t).

(22)

On the other hand, we have the following relation from
Lemma 3.

−(k2(t)− k1(t))

∫ t−k1(t)

t−k2(t)

jT (x(α))Lj(x(α)) dα

≤ −ξT (t)e13Le
T
13ξ(t), (23)

− (h2
2 − h2

1)

2

∫ −h1

−h2

∫ t

t+β

xT (s)X1x(s) ds dβ

≤ −ξT (t)e15X1e
T
15ξ(t)− εξT (t)e15X1e

T
15ξ(t)

− (1− ε)ξT (t)e14X1e
T
14ξ(t)− ξT (t)e14X1e

T
14ξ(t),

(24)

where ε =
h2(t)− h2

1

h2
2 − h2

1

,

− (h3
2 − h3

1)

6

∫ −h1

−h2

∫ 0

β

∫ t

t+λ

ẋT (s)X2ẋ(s) ds dλ dβ

≤ −ξT (t)

[
h2
2 − h2

1

2
e1 − e15 − e14

]
X2

×
[
h2
2 − h2

1

2
e1 − e15 − e14

]T
ξ(t). (25)

Define Y1 = diag{y1, y2, . . . , yn} > 0,
Y2 = diag{ỹ1, ỹ2, . . . , ỹn} > 0 and
Y3 = diag{ŷ1, ŷ2, . . . , ŷn} > 0, we get from assumptions
(H1), (H2) and (H3), respectively, that

[
x(t)

f(x(t))

]T [
−F1Y1 F2Y1

F2Y1 −Y1

] [
x(t)

f(x(t))

]
≥ 0, (26)

[
x(t− h(t))

g(x(t− h(t)))

]T [
−G1Y2 G2Y2

G2Y2 −Y2

] [
x(t− h(t))

g(x(t− h(t)))

]
≥ 0,

(27)[
x(t)

j(x(t))

]T [
−J1Y3 J2Y3

J2Y3 −Y3

] [
x(t)

j(x(t))

]
≥ 0. (28)
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We introduce some auxiliary equality as follows

0 = 2
[
xT (t)β1N

T + ẋT (t)β2N
T
]

×
[
− ẋ(t) + (N−1Z −A)x(t) +Bf(x(t))

+ Cg(x(t− h(t))) +D

∫ t−k1(t)

t−k2(t)

j(x(s)) ds+ Eω(t)
]
.

(29)

Adding the right-hand sides of (29) to V̇ (t), we can get from
Eq. (11)-(28) that

V̇ (t)+σzT (t)z(t)− 2(1− σ)δzT (t)ω(t)− δ2ωT (t)ω(t)

≤ ξT (t)
(
εΞ(1) + (1− ε)Ξ(2)

)
ξ(t), (30)

where, Ξ(i) = Ξ + Ξi (i = 1, 2) with Ξ and Ξi are defined
in (6), (7). Since 0 ≤ ε ≤ 1, the term εΞ(1) + (1− ε)Ξ(2) is
a convex combination of Ξ(1) and Ξ(2). These combinations
are negative definite only if the following conditions hold
simultaneously:

Ξ(1) < 0, (31)

Ξ(2) < 0, (32)

therefore, (31),(32) is equivalent to (6) and (7).
Thus, according to Eq. (6), (7) we have

V̇ (t) + σzT (t)z(t)− 2(1− σ)δzT (t)ω(t)

− δ2ωT (t)ω(t) < 0. (33)

Then, under the zero original condition, it can be inferred
that for any Tp∫ Tp

0

σzT (t)z(t)− 2(1− σ)δzT (t)ω(t)− δ2ωT (t)ω(t) dt

≤
∫ Tp

0

V̇ (t) + σzT (t)z(t)− 2(1− σ)δzT (t)ω(t)

− δ2ωT (t)ω(t) dt < 0,

which indicates that∫ Tp

0

σzT (t)z(t)− 2(1− σ)δzT (t)ω(t) dt

≤ δ2
∫ Tp

0

ωT (t)ω(t) dt.

In this case, the condition (5) is assured for any non-zero
ω(t) ∈ L2[0,∞). If ω(t) = 0, in view of Eq. (33), we have

V̇ (t) < −σzT (t)z(t) (34)

Applying the same method as in [11], we can find that
the system (3) is exponentially stable. Therefore, according
to Definition 2., the system (3) is exponentially stable and
satisfies a mixed H∞/passivity performance index δ. This
completes the proof.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented to illus-
trate the effectiveness of our results through the maximum
allowable delay bound, which is defined as the maximum
delay value that retains the stability of the system.

Example 6. Consider the system (3) with the following
parameters :

k1 = 0, k2 = 2.0, σ = 0.1, δ = 1, β1 = 0.9, β2 = 0.2,

A =

[
2.5 0
0 2

]
, B =

[
1.3 1
−0.5 0.5

]
, C =

[
0.9 0.5
−0.3 0.4

]
,

D =

[
0.15 0.1
0 −0.3

]
, E =

[
1 0
0 1

]
, C1 =

[
−0.2 0
0 −0.4

]
,

C2 =

[
0.1 0
0 0.1

]
, C3 =

[
0.2 0.1
0.1 −0.4

]
, C4 =

[
0.1 0
0 0.3

]
,

F1 =

[
−0.2 0
0 −0.2

]
, F2 =

[
0.3 0
0 0.1

]
,

G1 =

[
−0.2 0
0 −0.1

]
, G2 =

[
0.3 0
0 0.1

]
,

J1 =

[
0.2 0
0 0.2

]
, J2 =

[
0.3 0
0 0.1

]
and I =

[
1 0
0 1

]
.

LMIs of (6), (7) in Theorem 5. are solved and the
corresponding maximum allowable values of h2 for different
values of h1. The maximum allowable values of h2 are shown
in TABLE I.

TABLE I
THE MAXIMUM ALLOWABLE VALUES OF h2 FOR DIFFERENT VALUES OF

h1

Method h1 = 0 h1 = 0.5 h1 = 1 h1 = 2 h1 = 3

Theorem 5. 1.7133 2.2133 2.7133 3.7133 4.7133

V. CONCLUSION

In this paper, a new criterion has been derived for the
mixed H∞ and passivity analysis of neural networks with
discrete and distributed time-varying delays via feedback
control. By designing feedback controller and a Lyapunov-
Krasovskii functional comprising double, triple and quadru-
ple integral terms have been utilized, the sufficient conditions
guaranteed exponential stability satisfying mixed H∞ and
passivity performance for the neural networks have been ob-
tained. Eventually, a numerical example has been presented
to demonstrate the effectiveness of the proposed method.
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