

Implementing a Standard Gradient Descent

Algorithm on FPGA Embedded Processor for

Two-Dimensional Field Sensor Calibration

Herman I. Veriñaz, Edgar M. Vela, Member, IAENG, Ronald A. Ponguillo, Member, IAENG

Abstract— To measure a vector field it is needed to use a field

sensor. This type of sensors measures both the direction and

magnitude of a vector, e.g., magnetometers and accelerometers.

These devices divide the physical space in two or three

dimensions so that the sensor detects the components of the

field in two or three axes respectively.

Usually, before using the data acquired from this sort of

sensors, it is necessary to do a previous mathematical

processing to guarantee that the measured field is truly

proportional to the actual vector field. This is called

calibration.

This work was developed for the self-calibration of a two-

dimensional magnetometer used in a Robotracer for robotics

competitions. However, the calibration can be done for any

two-dimensional field sensor. For the proposed process, the

sensor must be surrounded by a constant field because the

calibration algorithm adjusts the sensor data using the fact

that the magnitude of the field is constant.

 The algorithm uses a linear model for the calibration of the

sensor data. Then, to find the optimal values for the calibration

constants, a Standard Gradient Descent algorithm was

implemented.

The results of the implementation for different devices are

presented in this work. It is showed the results for three

accelerometers, MPU-6050, ADXL345 and FALCON-GX

digital IMU. Time of execution is analyzed for each device

using the soft-core processor NIOS II. The processor was

running at 100 MHz of clock with 50% duty cycle. It is inside

the FPGA EP4CE22F17C6N, Altera´s Cyclone IV family. All

this work was done using the DE0-Nano development board.

Index Terms—Angle Estimation, Dual Extended Kalman

Filter, Sensor Fusion, Kalman Filter, Tilt Estimation.

I. INTRODUCTION

 field sensor is a sensor that measures both the direction

and magnitude of a vector field. For example, a

magnetometer can detect the magnitude and

Manuscript received June 29, 2017; revised July 16, 2017.

 H. I. Veriñaz is with the Escuela Superior Politécnica del Litoral,

ESPOL, Faculty of Natural Science and Mathematics, Campus Gustavo

Galindo, Km 30.5 Via Perimetral, P.O. Box 09-01-5863, Guayaquil,

Ecuador (e-mail: hverinaz@espol.edu.ec).

 E. M. Vela is Electronics and Telecommunications Engineer, graduated

at Escuela Superior Politécnica del Litoral, ESPOL, Faculty of Electrical

and Computer Engineering, Campus Gustavo Galindo, Km 30.5 Via

Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador (e-mail:

emvela@espol.edu.ec).

 R. A. Ponguillo is the Coordinator of the Basic Electronics Area and

Researcher of the Vision and Robotics Center at the Escuela Superior

Politécnica del Litoral, ESPOL, Faculty of Electrical and Computer

Engineering, Campus Gustavo Galindo, Km 30.5 Via Perimetral, P.O. Box

09-01-5863, Guayaquil, Ecuador (e-mail: rponguil@espol.edu.ec).

direction of a magnetic field. Similarly, an accelerometer

can sense the gravitational field.

 This type of sensors is very useful in applications where

there is a constant field surrounding the sensor board,

because the constant direction of this field can be used as a

reference to measure the angle of orientation of the sensor

board. For example, an accelerometer can be used to

measure the tilt, and a magnetometer can be used as a

compass.

 Usually, before using these sensors, it is needed to

implement a routine to ensure consistency between the

detected values in each axis. This means that, before using

the data acquired from the sensor, it is necessary to do a

previous mathematical processing to guarantee that the

measured field is proportional to the actual vector field.

In many type of situations, this pre-processing or

calibration algorithm must be part of the firmware of the

device or equipment. This usually happens in robotics

applications. For instance, in intelligent robot contests as

Micromouse or Robotracer competitions [8], robots need to

have an Inertial Measurement Unit (IMU) to control their

position and orientation. The contestants prefer to calibrate

the magnetometer sensor in the competition circuit because

the magnetic field can change according to many

circumstances, and there is not enough time to take data and

execute an algorithm in a computer.

This work was developed to calibrate a magnetometer of a

robot for Robotracer competitions. Nevertheless, the

implementation can be used for the self-calibration of any

two-dimensional field sensor. The only requirement is that

there must be a constant field surrounding the sensor when

the sensor is being calibrated. In fact, in the fourth section

“Implementation and Results” it is showed how the

algorithm is used to calibrate a two axes accelerometer.

The implementation is done on a NIOS II [1] single core

processor running at 100 MHz, inside the FPGA

EP4CE22F17C6N, using the DE0-Nano development board

[2]. The calibration algorithm adjusts the sensor data using,

as a main assumption, the fact that the magnitude of the

vector field must be a constant. Then, it is assumed a linear

model for the calibration of the sensor data. Finally, a

Standard Gradient Descent algorithm was used to find the

optimal values for the calibration constants. This is specified

in the next section.

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

II. MATHEMATICAL MODEL

For the calibration, a linear model is going to be assume

for each axis, this is represented as:

 : i-th sensor reading for the x-axis.

 : i-th sensor reading for the y-axis.

 : i-th calibrated reading for the x-axis.

 : i-th calibrated reading for the y-axis.

 Constants that define the linear model.

In this model, and can take any real value, this means

that the sensor reading can be translated by any value. But

and can take any value except zero, because multiplying a

sensor reading by zero makes no sense.

Now, the main assumption of the model is that the

measured field is constant. Thus, its magnitude is also a

constant:

 (1)

Ideally, equation (1) holds for any . That is, given

some and column vectors filled with “m” sensor data

points, the aim is to find the and that best fit the

model (1) for those points. First, the problem is simplified

removing one unknown:

 (2)

 (3)

Notice that equation (2) is valid because the value of the

constant is different from zero. Thus, the model used is:

 Constants that define the linear model.

To find these a, b and d values, the equation (3) is

expressed in a linear form:

 (4)

Where:

 With the equation (4), now it is can write a matrix linear

model to implement the regression.

 (5)

 : Vector containing the sensor data of the y axis.

 : Vector containing the squares of each component of

the vector x2.

 : Vector containing the sensor data of the x axis.

 : Vector containing the squares of each component of

the vector y.

 : Vector full of ones.

 : Vector containing the optimal constants to be found

with the gradient descent algorithm.

Notice, that this is a linear regression problem and it has a

well-known solution:

 (6)

In this work, the matrix equation (6) will not be used.

Instead, the optimal vector will be found using a standard

gradient descent algorithm.

After the vector is found, the a, b, d and r constants are

calculated using the following expressions derived from (4):

With these constants and with the equations (2) (3), the

sensor can be calibrated.

III. GRADIENT DESCENT

To find the optimal vector a standard gradient descent

algorithm is used [3]. The following recursive equations

allows to calculate each of the four components of the

gradient of the cost function:

Where m is the number of samples
 is the i-th

component of the vector in (5), and the value

corresponds to the expression:

 : the i-th component of the vector.

Replacing the corresponding values of
 , the equations

for the components of the gradient are:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

 (7)

 (8)

 (9)

 (10)

Finally, each component of the vector is calculated

recursively as:

 (11)

The constant is known as the learning rate and was set

by trial and error until reaching the least time of

convergence. In this work, the vector is initialized with a

vector filled with zeros.

Before implementing the gradient descent algorithm, all

features are scaled. It is necessary to do this scaling or

normalization of the inputs for the algorithm to work

properly. The following scaling factors were defined:

 (12)

 (13)

 (14)

 (15)

With these factors defined, each input can be normalized

in the following manner:

 (16)

 (17)

 (18)

 (19)

Where
 and are the outputs of the sensor read directly.

Then, when the gradient descent algorithm is executed,

the scaled vector , output of the algorithm, is related with

the not scaled vector with the equation:

 (20)

Equations from (7) to (20) where implemented in the

embedded processor NIOS II.

IV. IMPLEMENTATION AND RESULTS

The Gradient Descent algorithm was implemented in a

NIOS II [1][8] single core processor running at 100 MHz

clock frequency, inside the FPGA EP4CE22F17C6N,

Altera´s Cyclone IV family, using DE0-Nano development

board [2].

Four different sensors were tested: MPU-6050[4],

ADXL345 [5] (included on DE0-Nano board), FALCON-

GX digital IMU [6] and LSM303DLHC [7]. The ADXL345,

MPU-6050 and LSM303DLHC were sampled each 30 ms

and interfaced via I2C protocol. The FALCON-GX uses RS-

232 serial protocol and data was sampled each 50 ms. All

sensors are accelerometers except the LSM303DLHC. This

last one sensor works as both, accelerometer and

magnetometer.

All accelerometers were rotated around an axis parallel to

the earth surface, and the magnetometer was rotated around

an axis normal to the earth surface.

As mentioned in (11), vector is obtained recursively.

Algorithm run until reaching the minimum error condition:

 (21)

Evolution of can be seen from Figure 1 to Figure 5,

each corresponds to a calibrated sensor.

Fig. 1. Optimal constants for Falcon-GX accelerometer.

a) Theta’s first component. b) Theta’s second component. c) Theta’s third

component. d) Theta’s fourth component.

Fig. 2. Optimal constants for ADXL345 accelerometer.

a) Theta’s first component. b) Theta’s second component. c) Theta’s third

component. d) Theta’s fourth component.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Fig. 3. Optimal constants for MPU-6050 accelerometer.

a) Theta’s first component. b) Theta’s second component. c) Theta’s third

component. d) Theta’s fourth component.

Fig. 4. Optimal constants for LSM303DLHC accelerometer.

a) Theta’s first component. b) Theta’s second component. c) Theta’s third

component. d) Theta’s fourth component.

Fig. 5. Optimal constants for LSM303DLHC magnetometer.

a) Theta’s first component. b) Theta’s second component. c) Theta’s third

component. d) Theta’s fourth component.

From vector, can be calculated. So, equation

(11) could be drawn to demonstrate how algorithm works.

These results are shown from Figure 6 to Figure 10.

The magnitude of the field measured is also given on the

same figures. These measures varies between accelerometers

because each one are scaled on its own units determined by

manufacturer.

Fig. 6. Calibration results for FALCON GX accelerometer.

Fig. 7. Calibration results for ADXL345 accelerometer.

Fig. 8. Calibration results for MPU-6050 accelerometer.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Fig. 9. . Calibration results for LSM303DLHC accelerometer

Fig. 10. Calibration results for LSM303DLHC magnetometer

It can be noticed that not all sensors converge with similar

behavior. As seen on Table 1, the speed of convergence of

the algorithm depends on the sensor. This give idea on how

decalibrated the sensor is working, i.e., for the bigger time of

convergence, the corresponding sensor is more decalibrated.

TABLE 1

ALGORITHM PERFORMANCE FOR DIFFERENT SENSORS
Type of Sensor Device Iterations Time

Accelerometer

Falcon-GX 26905 89.85 s

ADXL345 738 2.46 s

MPU-6050 382 1.27 s

LSM303DLHC 371 1.23 s

Magnetometer LSM303DLHC 242 0.80 s

In Figure 7, it is highly visible how the Falcon-GX is

working far from its reference, so Gradient Descent

Algorithm takes longer to converge. Otherwise occurs with

LSM303DLHC accelerometer.

Although LSM303DLHC magnetometer is decalibrated,

as shown on Figure 10, it has a shorter convergence time.

This is because magnetometer reading is not affected by the

movement of the sensor during the experiment, so there are

no scattered data points. As accelerometer reads literally

how sensor moves, it is affected if sensor is not on a uniform

circular movement.

Despite all circumstances that cause errors in the reading

of the sensors, the algorithm runs relatively fast when is

applied on an embedded platform.

Another fact to be considered is that the cost function is

always decreasing for every tested sensor, although some of

the constants do not appear to be converging. The learning

rate from equation (11), was finally set at 0.73. The cost

function behavior can be seen in Figure 11. Notice that is

only displayed 0.8 seconds of the runtime. If it is wanted the

algorithm to be faster, the error condition could be set

higher than 0.0000001 (21).

Fig. 11. Cost Function vs Time(s)

a) FALCON GX accelerometer. b) ADXL345 accelerometer.

c) MPU-6050 accelerometer. d) LSM303DLHC accelerometer.

e) LSM303DLHC magnetometer.

V. CONCLUSION

This paper presented an interesting method for auto

calibration of sensors based on vectorial field that can be

used in robotics applications. The method showed includes

a standard gradient descent algorithm used in some

machine learning applications. The results validate the

method and the embedded system used warranties the

usability in robotics applications.

As a future work, it is proposed to work in test and

validate the use of this technique in mobile robots,

specifically in UAV robots.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

REFERENCES

[1] Chu, P. P., "Embedded SOPC Design with NIOS II Processor and

VHDL Examples", Hoboken, NJ: John Wiley & Sons, Inc., 2011.

[2] Terasic Technologies Inc., DE0-Nano User Manual, 2013.

[3] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An

introduction to statistical learning: with applications in R (Vol. 103).

Springer Science & Business Media.

[4] InvenSense, "MPU-6000 and MPU-6050 Product Specification

Revision 3.4", MPU600 Datasheet, Nov. 2010 [Revised Aug. 2013]

[5] Analog Devices, Inc., “3-Axis, ±2 g/±4 g/±8 g/±16 g Digital

Accelerometer ADXL345”, ADXL345 Datasheet Rev. E, 2015

[Revised Jun. 2017]

[6] O-NAVY LLC, “ONI-23505 OEM Digital IMU Module”FALCON-

GX digital IMU Datasheet Rev. A, 2003

[7] STMicroelectronics, “Ultra-compact high-performance eCompass

module: 3D accelerometer and 3D magnetometer”, LSM303DLHC

Datasheet Rev. 2, Nov. 2003

[8] Herman I. Verinaz Jadan, Caril R. Martinez Vera, Ronald A.

Ponguillo, and Vladimir Sanchez Padilla, "Deployment of a

Competition Sprinter Robot over FPGA Platform with Feedback

Control Systems for Velocity and Position," Lecture Notes in

Engineering and Computer Science: Proceedings of The International

MultiConference of Engineers and Computer Scientists 2017, 15-17

March, 2017, Hong Kong, pp660-665

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

