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Abstract— To measure a vector field it is needed to use a field 

sensor. This type of sensors measures both the direction and 

magnitude of a vector, e.g., magnetometers and accelerometers. 

These devices divide the physical space in two or three 

dimensions so that the sensor detects the components of the 

field in two or three axes respectively. 

Usually, before using the data acquired from this sort of 

sensors, it is necessary to do a previous mathematical 

processing to guarantee that the measured field is truly 

proportional to the actual vector field. This is called 

calibration. 

This work was developed for the self-calibration of a two-

dimensional magnetometer used in a Robotracer for robotics 

competitions. However, the calibration can be done for any 

two-dimensional field sensor. For the proposed process, the 

sensor must be surrounded by a constant field because the 

calibration algorithm adjusts the sensor data using the fact 

that the magnitude of the field is constant. 

 The algorithm uses a linear model for the calibration of the 

sensor data. Then, to find the optimal values for the calibration 

constants, a Standard Gradient Descent algorithm was 

implemented. 

The results of the implementation for different devices are 

presented in this work. It is showed the results for three 

accelerometers, MPU-6050, ADXL345 and FALCON-GX 

digital IMU. Time of execution is analyzed for each device 

using the soft-core processor NIOS II. The processor was 

running at 100 MHz of clock with 50% duty cycle. It is inside 

the FPGA EP4CE22F17C6N, Altera´s Cyclone IV family. All 

this work was done using the DE0-Nano development board. 

 

Index Terms—Angle Estimation, Dual Extended Kalman 

Filter, Sensor Fusion, Kalman Filter, Tilt Estimation.  

 

I. INTRODUCTION  

 field sensor is a sensor that measures both the direction 

and magnitude of a vector field. For example, a 

magnetometer can detect the magnitude and  
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direction of a magnetic field. Similarly, an accelerometer 

can sense the gravitational field. 

  This type of sensors is very useful in applications where 

there is a constant field surrounding the sensor board, 

because the constant direction of this field can be used as a 

reference to measure the angle of orientation of the sensor 

board. For example, an accelerometer can be used to 

measure the tilt, and a magnetometer can be used as a 

compass. 

  Usually, before using these sensors, it is needed to 

implement a routine to ensure consistency between the 

detected values in each axis. This means that, before using 

the data acquired from the sensor, it is necessary to do a 

previous mathematical processing to guarantee that the 

measured field is proportional to the actual vector field. 

In many type of situations, this pre-processing or 

calibration algorithm must be part of the firmware of the 

device or equipment. This usually happens in robotics 

applications. For instance, in intelligent robot contests as 

Micromouse or Robotracer competitions [8], robots need to 

have an Inertial Measurement Unit (IMU) to control their 

position and orientation. The contestants prefer to calibrate 

the magnetometer sensor in the competition circuit because 

the magnetic field can change according to many 

circumstances, and there is not enough time to take data and 

execute an algorithm in a computer. 

This work was developed to calibrate a magnetometer of a 

robot for Robotracer competitions. Nevertheless, the 

implementation can be used for the self-calibration of any 

two-dimensional field sensor. The only requirement is that 

there must be a constant field surrounding the sensor when 

the sensor is being calibrated. In fact, in the fourth section 

“Implementation and Results” it is showed how the 

algorithm is used to calibrate a two axes accelerometer. 

The implementation is done on a NIOS II [1] single core 

processor running at 100 MHz, inside the FPGA 

EP4CE22F17C6N, using the DE0-Nano development board 

[2]. The calibration algorithm adjusts the sensor data using, 

as a main assumption, the fact that the magnitude of the 

vector field must be a constant. Then, it is assumed a linear 

model for the calibration of the sensor data. Finally, a 

Standard Gradient Descent algorithm was used to find the 

optimal values for the calibration constants. This is specified 

in the next section. 

 

 

A 
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II. MATHEMATICAL MODEL  

For the calibration, a linear model is going to be assume 

for each axis, this is represented as: 

 

              

                                               

 

    : i-th sensor reading for the x-axis. 

    : i-th sensor reading for the y-axis. 

   : i-th calibrated reading for the x-axis. 

   : i-th calibrated reading for the y-axis. 

             Constants that define the linear model. 

 

In this model,    and    can take any real value, this means 

that the sensor reading can be translated by any value. But    

and    can take any value except zero, because multiplying a 

sensor reading by zero makes no sense. 

Now, the main assumption of the model is that the 

measured field is constant. Thus, its magnitude is also a 

constant: 

                              (1)  

                                           
 

Ideally, equation (1) holds for any           . That is, given 

some     and     column vectors filled with “m” sensor data 

points, the aim is to find the             and    that best fit the 

model (1) for those points. First, the problem is simplified 

removing one unknown: 

 

      
  

  
    

  

  
     

  

  
    

  

  
   (2) 

                        (3) 

Notice that equation (2) is valid because the value of the 

constant    is different from zero. Thus, the model used is: 

            

           

         Constants that define the linear model. 

                                  

 

To find these a, b and d values, the equation (3) is 

expressed in a linear form: 

 

    
        

                   (4) 

Where: 

       

        

       

            

 

 With the equation (4), now it is can write a matrix linear 

model to implement the regression. 

 

      

                (5) 

   

  

  

  

  

  

 

  : Vector containing the sensor data of the y axis. 

   : Vector containing the squares of each component of 

the vector x2. 

   : Vector containing the sensor data of the x axis. 

   : Vector containing the squares of each component of 

the vector y. 

   : Vector full of ones. 

 : Vector containing the optimal constants to be found 

with the gradient descent algorithm. 

 

Notice, that this is a linear regression problem and it has a 

well-known solution: 

 

             (6) 

In this work, the matrix equation (6) will not be used. 

Instead, the optimal vector will be found using a standard 

gradient descent algorithm. 

After the   vector is found, the a, b, d and r constants are 

calculated using the following expressions derived from (4): 

       
 

      
 

        
 

            

 

With these constants and with the equations (2) (3), the 

sensor can be calibrated. 

 

III. GRADIENT DESCENT 

To find the optimal   vector a standard gradient descent 

algorithm is used [3]. The following recursive equations 

allows to calculate each of the four components of the 

gradient of the cost function: 
 

  

   
  

 

 
     

   
  

   

 

   

         

  

   
  

 

 
     

   

 

   

 

 

Where m is the number of samples   
    is the i-th 

component of the    vector in (5), and the value 

    
   

corresponds to the expression: 
 

    
   

   
      

     
      

     
      

     
         

 

      : the i-th component of the   vector. 

 

Replacing the corresponding values of   
   , the equations 

for the components of the gradient are: 
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Finally, each component of the   vector is calculated 

recursively as: 

  
    

     
  

   
              (11) 

The constant   is known as the learning rate and was set 

by trial and error until reaching the least time of 

convergence. In this work, the   vector is initialized with a 

vector filled with zeros. 

Before implementing the gradient descent algorithm, all 

features are scaled. It is necessary to do this scaling or 

normalization of the inputs for the algorithm to work 

properly. The following scaling factors were defined: 

 

            
            

   (12) 

                         (13) 

                         (14) 

            
            

   (15) 

 

With these factors defined, each input can be normalized 

in the following manner: 

    
  

    
 

  
 (16) 

    
  

    
 

  
 (17) 

     
    

  
 (18) 

     
    

  
 (19) 

 

Where     
 and      are the outputs of the sensor read directly. 

Then, when the gradient descent algorithm is executed, 

the scaled vector  , output of the algorithm, is related with 

the not scaled vector    with the equation: 

       

     
     
     

  

  (20) 

 

Equations from (7) to (20) where implemented in the 

embedded processor NIOS II.  

 

 

 

 

IV. IMPLEMENTATION AND RESULTS  

The Gradient Descent algorithm was implemented in a 

NIOS II [1][8] single core processor running at 100 MHz 

clock frequency, inside the FPGA EP4CE22F17C6N, 

Altera´s Cyclone IV family, using DE0-Nano development 

board [2]. 

Four different sensors were tested: MPU-6050[4], 

ADXL345 [5] (included on DE0-Nano board), FALCON-

GX digital IMU [6] and LSM303DLHC [7]. The ADXL345, 

MPU-6050 and LSM303DLHC were sampled each 30 ms 

and interfaced via I2C protocol. The FALCON-GX uses RS-

232 serial protocol and data was sampled each 50 ms. All 

sensors are accelerometers except the LSM303DLHC. This 

last one sensor works as both, accelerometer and 

magnetometer. 

All accelerometers were rotated around an axis parallel to 

the earth surface, and the magnetometer was rotated around 

an axis normal to the earth surface. 

As mentioned in (11),   vector is obtained recursively. 

Algorithm run until reaching the minimum error condition: 

      
    

                           (21) 

Evolution of    can be seen from Figure 1 to Figure 5, 

each corresponds to a calibrated sensor.  

 
Fig. 1. Optimal constants for Falcon-GX accelerometer. 

a) Theta’s first component. b) Theta’s second component. c) Theta’s third 

component. d) Theta’s fourth component. 

 

 
Fig. 2. Optimal constants for ADXL345 accelerometer. 

a) Theta’s first component. b) Theta’s second component. c) Theta’s third 

component. d) Theta’s fourth component. 
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Fig. 3. Optimal constants for MPU-6050 accelerometer. 

a) Theta’s first component. b) Theta’s second component. c) Theta’s third 

component. d) Theta’s fourth component. 

 

 
Fig. 4. Optimal constants for LSM303DLHC accelerometer. 

a) Theta’s first component. b) Theta’s second component. c) Theta’s third 

component. d) Theta’s fourth component. 

 

 
Fig. 5. Optimal constants for LSM303DLHC magnetometer. 

a) Theta’s first component. b) Theta’s second component. c) Theta’s third 

component. d) Theta’s fourth component. 

 

From   vector,             can be calculated. So, equation 

(11) could be drawn to demonstrate how algorithm works. 

These results are shown from Figure 6 to Figure 10.  

 

The magnitude of the field measured is also given on the 

same figures. These measures varies between accelerometers 

because each one are scaled on its own units determined by 

manufacturer.  

 
Fig. 6. Calibration results for FALCON GX accelerometer. 

 

 

 
Fig. 7. Calibration results for ADXL345 accelerometer. 

 

 

 
Fig. 8. Calibration results for MPU-6050 accelerometer. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



 

 
Fig. 9. . Calibration results for LSM303DLHC accelerometer 

 

 

 
Fig. 10. Calibration results for LSM303DLHC magnetometer 

 

 

 

It can be noticed that not all sensors converge with similar 

behavior. As seen on Table 1, the speed of convergence of 

the algorithm depends on the sensor. This give idea on how 

decalibrated the sensor is working, i.e., for the bigger time of 

convergence, the corresponding sensor is more decalibrated. 
 

 

TABLE 1 

ALGORITHM PERFORMANCE FOR DIFFERENT SENSORS 
Type of Sensor Device Iterations Time 

Accelerometer 

Falcon-GX 26905 89.85 s 

ADXL345 738 2.46 s 

MPU-6050 382 1.27 s 

LSM303DLHC 371 1.23 s 

Magnetometer LSM303DLHC 242 0.80 s 

 

In Figure 7, it is highly visible how the Falcon-GX is 

working far from its reference, so Gradient Descent 

Algorithm takes longer to converge. Otherwise occurs with 

LSM303DLHC accelerometer.  

Although LSM303DLHC magnetometer is decalibrated, 

as shown on Figure 10, it has a shorter convergence time. 

This is because magnetometer reading is not affected by the 

movement of the sensor during the experiment, so there are 

no scattered data points. As accelerometer reads literally 

how sensor moves, it is affected if sensor is not on a uniform 

circular movement. 

Despite all circumstances that cause errors in the reading 

of the sensors, the algorithm runs relatively fast when is 

applied on an embedded platform. 

Another fact to be considered is that the cost function is 

always decreasing for every tested sensor, although some of 

the constants do not appear to be converging. The learning 

rate   from equation (11), was finally set at 0.73. The cost 

function behavior can be seen in Figure 11. Notice that is 

only displayed 0.8 seconds of the runtime. If it is wanted the 

algorithm to be faster, the error condition    could be set 

higher than 0.0000001 (21).  

 

 
Fig. 11. Cost Function vs Time(s) 

a) FALCON GX accelerometer. b) ADXL345 accelerometer. 

c) MPU-6050 accelerometer. d) LSM303DLHC accelerometer. 

e) LSM303DLHC magnetometer. 

 

 

 

V. CONCLUSION  

This paper presented an interesting method for auto 

calibration of sensors based on vectorial field that can be 

used in robotics applications. The method showed includes 

a standard gradient descent algorithm used in some 

machine learning applications. The results validate the 

method and the embedded system used warranties the 

usability in robotics applications. 

 

As a future work, it is proposed to work in test and 

validate the use of this technique in mobile robots, 

specifically in UAV robots. 
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