

Abstract— This paper describes implementation of a Fuzzy

Logic controller into a Raspberry Pi 2B+ platform. The

development was made using Octave software and C++

language for implement the mathematical model for the

controller. The Linux distribution used was Raspbian. Several

tests were performed to try out how good can be a control

system mounted over low cost platform. The tests performed

consisted on measure the response of the controller when the

reference is fixes and when it is variable. The run times for the

algorithm implemented and the CPU consumption form the

system were measured.

The tests results shows that is possible implement this type

of control using this approach, but raises a question to answer.

It is possible to implement whatever kind of controller from its

mathematical model using low cost embedded platform? The

experiments showed when the controller is most sophisticated

the computational cost grows. The time for initialization

resulted bigger than others types of simplest controllers but to

the end the control was possible.

Index Terms— Embedded automatic control, Octave, Fuzzy

Control, Raspberry Pi B2+. Linux

I. INTRODUCTION

N automatic control, there are several options to build the

controller for a system. It can be from classical feedback

control, PID control, Fuzzy Logic control, Neural Network

control, combination of them and others most advanced.

The most popular controller for its mathematical

simplicity and good performance is called PID

(Proportional, Integral, and Derivative) [6]. For many

applications, the PID controller is enough, but in others is

necessary to improve the performance of controller. One

problem of PID controller is the big over shutting and large

stabilization time.

 This project implements a Fuzzy Logic controller as an

alternative control for processes. A fuzzy controller produce

a response faster than PID and follows the reference with

greater fidelity when it is fixed as well as when is variable.

 The plant to control is the same as in [1]. A two coupled

DC motors, one is the plant and the other is the sensor that

Manuscript received May 8, 2017; revised May 10, 2017.

R. A. Ponguillo is the Coordinator of the Basic Electronics Area and

Researcher of the Vision and Robotics Center at the Escuela Superior

Politécnica del Litoral, ESPOL, Faculty of Electrical and Computer

Engineering, Campus Gustavo Galindo, Km 30.5 Via Perimetral, P.O. Box

09-01-5863, Guayaquil, Ecuador (e-mail: rponguil@espol.edu.ec).

feedback the input. The procedures to make the data

acquisition and test the system are described in [1].

For implement the fuzzy logic controller [2] is necessary

to analyze the plant, write the membership functions and

test the system to validate the model.

II. PROCEDURES

A. Fuzzy Model

For begin to specify the algorithm used inside of the fuzzy

control, first should determine the membership functions for

each control variables. As input it has, the voltage delivered

for the generator in continuous way and feedback to the

system. Also, was defined the PWM signal as the output of

the system in which is controlled the duty cycle.

 Although the input signal received from the sensor is a

voltage, in the membership function was used the error of

this voltage when it is compared with the reference signal,

such as showed in the figure 1.

Fig. 1. Membership function for the voltage error

Where the proposed membership functions for the input

voltage are:

EZ : Error Zero

EFP : Error Few Positive

EP : Error Positive

EMP :Error Too Positive

EFN : Error Few Negative

EN : Error Negative

ETN : Error Too Negative

Respect to the output, the membership functions showed

in the Fig. displays seven levels for linguistics labels for the

duty cycle.

Deployment of a Low Cost Fuzzy Controller

Using Open Source Embedded Hardware and

Software Tools

Ronald A. Ponguillo, Member, IAENG

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Fig. 2. Membership function for duty cycle

The membership functions for the duty cycle are showed

below:

DCZ : Duty Cycle Zero

DCFP : Duty Cycle Few Positive

DCP : Duty Cycle Positive

DCTP : Duty Cycle Too Positive

DCFN : Duty Cycle Few Negative

DCN : Duty Cycle Negative

DCTN : Duty Cycle Too Negative

B. Algorithm for Fuzzy Control Generation

In the figure 3 is presented the algorithm implemented

for the code generation process. Unlike PID controller, in

fuzzy controller is necessary to define fuzzification and

defuzzification processes. Fuzzification process refers to the

extraction on the membership function, the index that

represent the input value, for this case, the voltage error. On

the other hand, defuzification process imply to convert the

fuzzy sets to a numeric value for generate the control signal,

in this work is the PWM duty cycle. There are several

methods for defuzzification of a data set: centroid, middle of

maximum (MOM), last of maximum (LOM), among others.

In this project was used to the centroid method.

C. Observations in Code Programming

The code written for run in the Raspberry Pi [5] was written

in C++ language and use dependencies for to do interface

with Octave and use functions and toolbox for automatic

control of Octave.

To write the code for run fuzzy control over Octave is

necessary take some considerations. First, it should initialize

the libraries to use Octave functionalities and peripherals for

interact with the external environment. The lines of code

bellow shows the dependencies that must be imported.

#include <iostream>

#include <octave/oct.h>

#include <octave/octave.h>

#include <octave/parse.h>

#include <octave/toplev.h>

#include <math.h>

extern "C"{ #include "perifericos.h"}

As a second step is necessary to write the additional

functions prototypes, created for rounding, round and

fuzzification.

int rounding(float);

int fuzzification (Matrix,float);

float round(double);

The most important function created is fuzzification().

With this function, error data is taken and search inside the

matrix, the value to the index where this data is inside of

membership function, and then this data is converted in a

fuzzy data. The other two functions round out the values

making this in float rounding and the second one obtain the

upper maximum for an integer number.

Fig. 3. Flowchart for fuzzy control algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

int fuzzification(Matrix e, float error)

{ int i=0;

int n=0;

for(i=0;i<801;i++)

{ if(error == (float)e(0,i))

 { n=i;

 break; }

} return n; }

float round (double value)

{ float tmp = round((double)value*100.0);

tmp = tmp/100.0;

return tmp; }

int rounding (float value)

{ int result=0;

if ((value - floor(value)) <= 0.5)

 result= floor(value);

else result = floor(value) + 1;

return result; }

In the same way as libraries were instantiated, is

necessary to embed the Octave interpreter inside of C++, so

the compiled code can make use of the Octave

functionalities. It is very important write the following lines

in the main function.

string_vector argv (2);

argv(0) = "embedded";

argv(1) = "-q";

octave_main (2, argv.c_str_vec (), 1);

The next step is to define the variables program, specify

the channel for ADC (Analog to Digital Converter) and run

this and the PWM module. At the end, was defined all

matrixes for the error values and duty cycle.

When membership functions are executed, the values

obtained must be saved for the subsequent defuzzification

process. These were place in for loop that takes the next

data from the feedback, as well as the value of the

subtraction between this feedback and the reference for

obtain the error signal. This error signal is fuzzyfied to get

the fuzzy dataset. The following step is to evaluate each

error value in the error membership function and in its

corresponding membership function for duty cycle. Then

the intersection of fuzzy sets was made and the minimum

values were taken, i.e. the values that are below the fuzzy

error.

Once it has the result with fuzzy error, must do the union

of all sets of membership functions for the output, using the

theory of maximum possible values [2]. By taking these

values, was done the defuzzification process applying the

centroid method [2]. This consists of taking all the resulting

data from the union as if it were a mass function and

calculating the center of mass. The result of this

defuzzification will be the new setting value.

defuzzy(0)=cycle_duty;

defuzzy(1)=b(0).matrix_value();

defuzzy(2)= "centroid";

C_duty=feval("defuzz", defuzzy,3);

result = C_duty(0).float_value();

With these new setting values, the next step in the

controller design is the same as PID classical controller

made in [1]. This setting value will be added before. While

error is bigger, the new setting also, however the time of

stabilization is too faster. The round function was used

because the result obtained in the output is a decimal

number with fraction and the value that should be loaded in

the PWM module must be integer.

Like to PID controller, values must be saturated from 0 to

100.

actual_value = actual_value+result;

if (actual_value > 100)

actual_value =100;

else if (actual_value < 0)

actual_value =0;

pwm_value(rounding(actual_value));

It is strong recommended, after the process is completely

executed, to erase the buffers using the next code.

pwm_value(0);

clean_up_and_exit (0);

III. TEST AND RESULTS

The evaluation of effectiveness of software tests must be

consider two aspects: efficiency tests and sufficiency tests.

The efficiency tests involve: performance, run-time and

memory management tests, while the sufficiency tests refer

to coverage tests.

Embedded systems generally are systems that works in

real time. For this reason, the time response is a very

important factor when it is spoken about the quality of the

product. In fact, software developers need to make

performance tests to ensure efficient software.

On the other hand, embedded systems have less resources

than general purpose computers. Associated to performance

are the memory management and consumption of CPU

processing capacity.

A. Performance Test

For performance test, it is needed to measure the run-time

for the system and the time that take executes the C++ code

written. This C++ code also perform the interface function

between the peripherals and the functions developed in

Octave.

Run-time Test on C++

Function clock_gettime

 This function provides the system time. With this can

take the time when an event start and ends. Finding the

difference between these two values it is possible to

determine the initialization time and run-time for each

iteration in the program.

Testing memory consumption and CPU utilization

Sysbench tool in Linux

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

 Embedded Systems are characterized by its limited

amount of available memory. For this reason, a good

embedded software must have an adequate use of memory.

Sysbench tool are a set of libraries that enable to make some

specifics testing in a Linux system [4]. Among the tests

carried out by this library:

 Calculate the first 5000 prime numbers

 Reading and writing data transfer rate

TOP Tool in Linux

Typically, operating systems have tools for measuring

and controlling the processes they are running. In Linux, the

TOP tool is the one that performs this function, since it

provides all the necessary information in terms of CPU

utilization, run- time, memory usage among other data.

In this case, the use of this tool allows read the

information about the percentage of CPU consumption for

the Fuzzy controller.

Run-time test of Fuzzy controller

For test the Fuzzy controller in the Raspberry Pi board it

was developed the next steps:

1) Connect the Raspberry Pi 2B+ board to the plant.

2) Connect the RJ45 cable among Raspberry board and

network connection.

3) Turn on the system.

4) Open a terminal with SSH protocol in a PC, and

connect with Raspberry Pi board using the IP

address: 200.126.1.160:22.

5) In PC terminal enter user: pi and password:

raspberry. If all is right should appear the prompt

raspberrypi#

6) When the terminal session is open, find the folder

/raspberry_c++ and run the commands for

compile the Fuzzy controller:

raspberrypi# mkoctfile --link-stand-alone -lrt -

lpthread -lpigpio control_fuzzy_mediciontiempo.cc

perifericos.o -o control_fuzzy_mediciontiempo

7) When the compilation process is finished, run the

controller using the comand:

raspberrypi#sudo ./control_fuzzy_mediciontiempo

CPU consumption test for Fuzzy controller

To obtain the CPU consumption, the following steps were

taken:

1) Connect the Raspberry Pi 2B+ board to the plant.

2) Connect the RJ45 cable among Raspberry board and

network connection.

3) Turn on the system.

4) Open a terminal with SSH protocol in a PC, and

connect with Raspberry Pi board using the IP

address: 200.126.1.160:22.

5) In PC terminal enter user: pi and password:

raspberry. If all is right should appear the prompt

raspberrypi#

6) When the terminal session is open, find the folder

/raspberry_c++ and run the commands for

compile the Fuzzy controller:

raspberry# mkoctfile --link-stand-alone -lrt -

lpthread -lpigpio control_fuzzy.cc perifericos.o -o

control_fuzzy

7) Before to run the controller, in the PC, open another

console with SSH connection such as step 4. Run

the command:

raspberry# top –d 0.5 –b >> reporte_completo.txt

8) Step 7 started the acquisition data for CPU processes

and saving in file reporte_completo.txt. Now in the

first SSH terminal should be run:

raspberry# ./control_fuzzy

9) Once the execution of the controller is finished, the

TOP tool is also stopped top. In the session opened

in step 7 it ends with Ctrl+C keys combination.

10) The file obtained in step 7 contains all processes

that runs in the system. It is important filter data for

the process control_fuzzy only. The command used

was:

raspberry# cat reporte_completo.txt | grep

control_fuzzy >> reporte_cpu.txt

CPU, File Reading and Writing Benchmark using Sysbench

Tool

As mentioned before, Sysbench is a tool that allows

quantify the capacity and performance of Linux systems [4].

Test perform in this stage consist of the next steps:

1) Open a SSH session in a PC, then in the console

must execute the command for install sysbench:

sudo apt-get install sysbench

2) Once the program was installed, type the command

to create a process for calculate the first 5000

prime numbers.

sudo sysbench --test=cpu --cpu-max-prime=5000

run

3) When the step 2 is finished, it is displayed a

complete report that shows the details of execution.

For calculate the time to read and write in the memory, the

following steps are executed:

1) Prepare the files for data transfer, typping:

sysbench --test=fileio --file-total-size=2G

prepare

2) After that files are created, it started the data transfer

from SDCard running the command:

sysbench --test=fileio --file-total-size=2G --file-

test-mode=rndrw --init-rng=on --max-time=300 --

max-requests=0 run

3) At the end, when the data transfer is completed, a

report with the transfer rates and another relevant

information of the process is generated.

B. Results for Fuzzy Control Test

 The physical connections for the hardware tests, were

implemented like to [1], using the Diligent acquisition

system and the same plant.

It can be seen in Fig. , the result of Fuzzy control has less

overshoot and ripple compared with PID controller in [1].

On the other hand, with fuzzy is required greater impulse

for go from zero to the reference value, but when the error

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

decrease, the fuzzy controller follow better its reference

than the PID in [1].

Something that can observe is the time for convergence

of the control algorithm. For the PID in [1] the stabilization

time is around of 20 seconds while for it new approach is

near to 100 seconds. Really, Octave like Matlab uses matrix

for its calculations. In the PID controller, the constants for

proportional, derivative and integral parts for the controller

are calculated previously. Then for each iteration is figured

out the error output and its products with every constant of

the controller. In the Fuzzy controller, rules for fuzzification

and defuzzification processes employ a large number of

iterations for develop operations among matrixes, which

involve a higher computational cost and can be observed as

demand of five times the initialization time compared with

[1].

To verify how good the controller is, other experiment

was made. In figure 5 can see the response of controller

when the reference is varied from three volts stabilized as

fixed standard value to down and up from this value. The

results show the time for initializing and stabilized the

controller is near to 100 seconds. Then the fuzzy controller

follow the reference signal in each change without increase

the delay or ripple.

C. Results for Software Test

 The response of the whole system is determined for two

parameters: one is the quality and performance of hardware

and the other one is the performance of the software that

runs in this hardware. To validate the performance of

software, four test was developed. The time for each

iteration in the program was taken. It was considered also

the peripheral instantiation and initialization of the

linguistics variables. Others considerations were the time for

error calculate, to make fuzzification and defuzzification

processes and calculate and send the new PWM value. The

complete values for the whole process are shown in Table I.

Per the data in Table I, it can observe that the average

time for iterations in Fuzzy controller is almost 8 times than

in the PID alone [1], 1.9144 vs 0.2432 seconds.

D. Results for CPU Use Test

In fig. 6, it can see the use of CPU in the raspberry Pi

board while the fuzzy controller is running. It can notice

that initially use is around 21% of total ARM Quad Core

Processor before to run the fuzzy control script. Once the

control script is running this value up to 28% peak. This is

due to initialization of peripherals, variables and

environment. After, this consumption decrease to 26.7%

while linguistics variables are initializing and continue

decreasing to 24.9% when takes the data and calculate the

new value for PWM. This results was measured with TOP

tool, which allow view each process that runs in the Linux

system [4].

Fig. 4. Response taken with a fixed reference in Fuzzy controller

Fig. 5. Response for Fuzzy controller when reference is variable

TABLE I

RUNTIMES FUZZY CONTROLLER IN SECONDS

Test Initialization
Sum of

Iterations

Average

Iterations

Slower

Iteration

Total

time

T1 78.7138 463.97 1.9392 2.1503 542.6838

T2 76.2865 459.35 1.9140 2.0714 535.6365

T3 74.6023 448.1800 1.8674 1.9323 522.7823

T4 75.5927 464.8600 1.9369 2.0996 540.4527

Avg. 76.2988 459.090 1.9144 2.0634 535.3888

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

Fig. 6. Percentage of CPU usage while the Raspberry Pi executes PID Fuzzy controller

IV. CONCLUSION

This paper presented a Fuzzy Logic control on

embedded system based on low cost platform Raspberry Pi

B2+ suggested in [1]. The model for Fuzzy controller was

similar as [3]. The results show the Fuzzy control is possible

with proposed technique but the computational cost was

bigger than the previous work. The system was stabilized

but both the time for initialization and number of iterations

for control were bigger. For systems with faster dynamics

requirements it is possible the proposed embedded platform

not work.

As a future work, it is proposed to work to improve

embedded system performance using clustering computing

techniques and parallel programing in Octave.

REFERENCES

[1] Ponguillo, R.A. and Medina, C.V., “Using Open Source

Embedded Hardware and Software Tools in Automatic

Control from Mathematical Model,” in Lecture Notes in

Engineering and Computer Science: World Congress on

Engineering and Computer Science 2016, pp. 333-337.

[2] PASSINO, Kevin M.; YURKOVICH, Stephen;

REINFRANK, Michael. Fuzzy control. Reading, MA:

Addison-Wesley, 1998.

[3] Cadena, A., Ponguillo, R., & Ochoa, D. (2017). Development

of Guidance, Navigation and Control System Using FPGA

Technology for an UAV Tricopter. In Mechatronics and

Robotics Engineering for Advanced and Intelligent

Manufacturing (pp. 363-375). Springer International

Publishing.

[4] MARSH, Nicholas. Introduction to the Command Line: The

Fat Free Guide to UNIX and Linux Commands. CreateSpace,

2010.

[5] Upton, E., & Halfacree, G. (2016). Raspberry Pi User Guide.

[6] Ogata, K., & Yang, Y. (1970). Modern control engineering.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

