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Abstract—The native structure of a protein corresponds
to the global minimum of free energy. The replica-exchange
method (REM) has recently been used to search for the energy
minimum in a wide range of protein conformations. For large
systems, however, applying REM can be costly because the num-
ber of replicas required for conformational sampling increases.
In the study reported here, a variant of multidimensional REM
with automatic parameter tuning was developed. The proposed
REM enables us to reduce the number of replicas needed for the
simulation, using the fragment-based expression for the Hamil-
tonian. In our fragment-based REM, we defined the residue
fragments and introduced a replica-exchange process based on
the potential energy of the “target fragment”. The number
of replicas needed in the fragment-based REM depends solely
on the number of degrees of freedom in the target fragment
rather than on the size of the whole system, so the shortcoming
of the conventional REM is overcome. Although there is a one-
to-one correspondence between replicas and temperatures in
the conventional REM, the fragment-based REM treats the
fragment size as a second parameter characterizing the replicas.
Replica groups with a small fragment size accelerate the local
structure refinement, and those with a large fragment size
accelerate the global structure refinement. In this study, an
automatic tuning scheme, which provides appropriate fragment
size adaptively, has also been developed. Computing equilibrium
distributions for peptides, we found that the proposed REM
successfully provides appropriate fragment length and thus
good conformational sampling performance.

Index Terms—protein structure prediction, conformation
sampling, replica-exchange method, protein fragment, adaptive
parameter tuning.

I. INTRODUCTION

PROTEINS are biopolymers in which between a few
dozen and several thousand amino acids are linked

together in a chain. A protein folds into its unique native
conformation under physiological conditions. Its biological
functions are closely related to its conformation; hence, the
analysis of protein tertiary structure is very important for
post-genomic research.

It is widely believed that molecular simulation will become
a powerful tool for elucidating the molecular mechanisms
behind protein folding. Many researchers have recently at-
tempted to predict protein structures using computer simu-
lations along with X-ray structure analysis and other exper-
iments. Computational protein structure prediction is based
on the following hypotheses, known as Anfinsen’s dogma
[1]:
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• Protein tertiary structure is determined solely by the
amino acid sequence information.

• Native protein structure corresponds to the global min-
imum of free energy.

Therefore, assuming that the energy function of the system is
given accurately, the native conformation of proteins can be
calculated using methods similar to optimization algorithms,
the Monte Carlo (MC), or molecular dynamics (MD).

Predicting the structure of a protein solely from its amino
acid sequence remains a difficult challenge. One of the
reasons for this difficulty is the need for an efficient sampling
method that enables searching for the energy minimum
among a huge range of conformations. Because the number
of possible conformations for each protein is immense, each
protein can exist in many states corresponding to the local
energy minima. Because the thermal fluctuations at low
temperatures are small, conventional MD simulations in the
canonical ensemble would be trapped in one of these states.
One way to tackle this multiple-minima problem is to per-
form a simulation based on the non-Boltzmann probability
weight factors so that a random walk in the energy space
can be realized. Compared with the conventional methods,
the random walk allows the simulation to pass any energy
barrier and to sample a much wider phase space. Of these
methods, the replica-exchange method (REM) is well suited
to large-scale parallel computing.

REM was originally developed by Hukushima and Nemoto
[2] for spin glass simulation in the framework of MC
simulations. Sugita and Okamoto [3] applied REM to protein
systems and combined REM with MD (see [4] for a detailed
description of the algorithm). REM considers a number of
non-interacting copies (or replicas) of the original system in
the canonical ensemble at different temperatures. An REM
simulation is realized by alternately performing the following
two steps: (i) each replica is simulated simultaneously and
independently; and (ii) the pairs of replicas at neighboring
temperatures are exchanged based on Metropolis-type cri-
teria. In this way, simulations can escape from metastable
states, but, as explained in Section II.B, applying REM to
large systems becomes costly because the number of replicas
required for conformational sampling increases.

To overcome this difficulty, we have developed a variant
of REM called fragment-based REM, which is based on the
idea that there are correlations between the local amino acid
sequence and the local structure [5]. The number of replicas
needed in the fragment-based REM depends solely on the
number of degrees of freedom in the target residue fragment
focused on, rather than on the size of the whole system, and
so the shortage of the conventional REM is overcome.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



In this study, an automatic tuning scheme, which provides
appropriate fragment size adaptively, has been developed
because the fragment size is the dominant factor for effi-
cient conformational sampling. Using peptide simulations,
we compare the sampling performance among conventional
REM, fragment-based REM, and fragment-based REM with
adaptive fragment-length.

II. REPLICA-EXCHANGE METHOD

A. Replica-Exchange Molecular Dynamics Method [3][4]

Let us consider a system of N atoms with their coor-
dinate vectors and momentum vectors, denoted by q ≡
{q1, . . . ,qN} and p ≡ {p1, . . . ,pN}, respectively. The
Hamiltonian H(q,p) of the system is the sum of the kinetic
energy K(p) and the potential energy E(q):

H(q,p) = K(p) + E(q) (1)

In the canonical ensemble, at inverse temperature β, each
state x ≡ {q,p} with the Hamiltonian H(q,p) is weighted
by the Boltzmann factor:

WB(x) = exp {−βH(q,p)} (2)

The system for REM consists of M non-interacting copies
of the original system in the canonical ensemble at M
different temperatures Tm (m = 1, 2, . . . ,M). Let X =

(x
[1]
m(1),x

[2]
m(2), . . . ,x

[M ]
m(M)) represent a state in this gener-

alized ensemble. The state X is specified by the M sets of
coordinates q[i] and momenta p[i] of N atoms in replica
i (i = 1, 2, . . . ,M) at temperature Tm:

x[i]
m ≡ (q[i],p[i])m (3)

Because the replicas are non-interacting, the weighting factor
for the state X in this generalized ensemble is given by the
product of Boltzmann factors for each replica:

WREM(X) = exp

{
−

M∑
i=1

βm(i)H(q[i],p[i])

}
(4)

We now consider exchanging a pair of replicas in the
generalized ensemble. Suppose replicas i and j which are
at temperatures Tm and Tn, respectively, are exchanged:

X = (. . . ,x[i]
m, . . . ,x[j]

n , . . .)

→ X′ = (. . . ,x[j]′

m , . . . ,x[i]′

n , . . .) (5)

For this exchange process to converge toward the equilibrium
distribution, it is sufficient to impose the detailed balance
condition on the transition probability w(X → X′) as:

WREM(X) w(X → X′) = WREM(X′) w(X′ → X) (6)

From Equations (1), (4) and (6), we obtain

w(X → X′)

w(X′ → X)
= exp(−∆) (7)

where

∆ ≡ [βn − βm]
(
E(q[i])− E(q[j])

)
(8)

This can be satisfied, for instance, by the usual Metropolis
criterion:

w(X → X′) ≡ w(x[i]
m|x[j]

n )

=

{
1 (∆ ≤ 0)

exp(−∆) (∆ > 0)
(9)

An REM simulation is realized by alternately performing the
following two steps:

1. Computation of each replica is performed simulta-
neously and independently for a certain number of
MD steps.

2. Pairs of replicas at neighboring temperatures are
exchanged with the transition probability given by
Equation (9).

B. Issues for Large-Scale REM

Exchanges between adjacent replicas should be frequently
accepted for efficient conformational sampling. The rela-
tionship between the number of replicas and the degrees
of freedom in the simulated system has previously been
estimated [6]. Considering the potential energy fluctuations
of two replicas sampling at each target temperature Tn and
Tn − 1 (Figure 1), their instantaneous energy fluctuations
δEn and δEn−1 scale as

√
f Tn and

√
f Tn−1, respectively.

The average energy gap ∆E between the two neighboring
replicas is proportional to f∆T . Here, f is the number of
degrees of freedom and ∆T = Tn − Tn−1. To obtain a rea-
sonable acceptance ratio, the replica energy gap, ∆E, needs
to be similar to the energy fluctuations δEn and δEn−1.
Thus, ∆E/δE should be near unity. Because ∆E/δE is
proportional to ∆T

√
f/T and hence ∆T ≈ 1/

√
f , the

acceptable temperature gap between the neighboring replicas
becomes narrower as the size of the system increases, and the
number of replicas needed increases in proportion to f1/2.
This implies that, for larger systems, more and more replicas
are needed and thus REM becomes impractical for very large
systems such as proteins.

Fig. 1. Schematic Diagram Illustrating the Energy Fluctuations of Simu-
lations at Two Temperatures for Neighboring Replicas

III. DEVELOPMENT OF FRAGMENT-BASED REM
WITH ADAPTIVE FRAGMENT LENGTH

A. Fragment-Based REM [5]

As previously mentioned, a complete amino acid sequence
has a one-to-one correspondence with its unique native
structure. In addition, the existence of a local correlation
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between the sequence and structure has been implied by
studies on knowledge-based protein structure prediction [7].

Motivated by our desire to enhance the sampling of a
fraction of the residue fragments of a protein, we proposed a
replica-exchange process based on the potential energy of the
“target fragment”, F . In this study, we defined the residue
fragments as depicted in Figure 2. Instead of preparing
replicas with different temperatures, in our proposed method,
fragment REM (FREM), we introduced replicas with differ-
ent Hamiltonians. In FREM, the m-th replica is defined by
the Hamiltonian Em(i)(q

i):

Em(i)(q
i) ≡ Sm(i)

∑
k∈F

Ek
AA(q

i) +
∑
k/∈F

Ek
AA(q

i) (10)

where Ek
AA(q

i) is the potential energy of the k-th amino
acid (k = 1, 2, . . . , NAA) in replica i, and Sm(i) is a scaling
factor. This is followed by a procedure similar to that based
on the original replica-exchange criterion, resulting in the
following transition probability for replica-exchange:

wFREM(xi|xj) =

{
1 for ∆FREM ≤ 0

exp(−∆FREM) for ∆FREM > 0

(11)

where

∆FREM

≡ β(Sn(j) − Sm(i))

{∑
k∈F

Ek
AA(q

i)−
∑
k/∈F

Ek
AA(q

j)

}
(12)

Fig. 2. Definition of Three-residue Length Fragments. Each Circle
Represents an Amino Acid

Note that, when the target fragment size equals the total
number of amino acids, and so the whole Hamiltonian
is scaled (i.e., Em(q) = SmE(q)), it precisely corre-
sponds to the conventional REM with the inverse temper-
ature βm = βSm; both give the same Boltzmann factor
exp {−βSmE(q)}. In FREM, instead of flattening the en-
ergy landscape by scaling the whole Hamiltonian, only part
of the Hamiltonian specific to the degrees of freedom in the
target fragment is weakened by scaling. By doing this, we
can change the “effective temperature” of the partial system.
The number of replicas needed in FREM thus depends solely

on the number of degrees of freedom in the target fragment
rather than on the size of the whole system, and so the
shortcoming of conventional REM that we mentioned in the
previous chapter is overcome.

During the FREM simulation, as shown in Figure 3, only
the randomly chosen target fragment is simulated over a
range of “effective temperatures” (in other words, over a
range of Smβ) with periodic exchanges performed according
to Equations (11) and (12), while the remainder of the system
is maintained at the same temperature for all replicas. After
several hundred exchange attempts, the next target fragment
is chosen randomly.

Fig. 3. Schematic Illustration of the FREM, with Four Replicas

Sugita et al. [8] proposed a multidimensional extension
of REM in which the Hamiltonian of the system depends
on a parameter, with different parameter values for different
replicas. Fukunishi et al. [9] developed an alternative REM
called Hamiltonian REM, which is a specific case of multidi-
mensional REM. Although we employ a common approach,
this is the first time that the fragment-based expression for
the Hamiltonian (Equations (11) and (12)) has been used in
this way.

Non-local interaction in the amino acid sequence is the
dominant factor for the formation of β-sheet structures,
whereas local hydrogen bonding is crucial for α-helices.
Thus, it is anticipated that the fragmentation will not work
well for a β-sheet structures.

The multiple fragment-size replica-exchange method
(MFREM) is a two-dimensional extension of FREM for β-
sheet-rich proteins. We treat the “fragment size” Nζ(ζ =
1, 2, . . . , NL

rep) as a second parameter characterizing the
replicas and write the Hamiltonian for the i-th replica as:

Em,ζ(q
i) ≡ Sm

Nζ∑
k∈F

Ek
AA(q

i) +

NAA−Nζ∑
k/∈F

Ek
AA(q

i) (13)

where m = 1, 2, . . . , NT
rep and the total number of replicas

Nreplica = NT
rep × NL

rep. Although replica i and the scal-
ing factor Sm are in one-to-one correspondence in FREM,
replica i and the parameter set (Sm, Nζ) are in one-to-one
correspondence in MFREM (see Figure 4).

In MFREM, the following replica-exchange processes are
performed alternately:
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Fig. 4. Schematic Illustration of the MFREM, with Nine Replicas

1. Pairs of replicas corresponding to neighboring
temperatures, (Sm, Nζ) and (Sm+1, Nζ) are ex-
changed. This is called “T-exchange”.

2. Pairs of replicas corresponding to “neighboring”
fragment size, (Sm, Nζ) and (Sm, Nζ+1) are ex-
changed. This is called “L-exchange”.

In each of these two processes, pairs of replicas are simul-
taneously exchanged, and the pairing is further alternated
between the two possibilities. The acceptance criterion for
these replica exchanges is given by equation (9), where
equation (8) now becomes

∆ ≡ β
{[
Em(i),ζ(q

j) + En(j),ζ(q
i)
]

−
[
Em(i),ζ(q

i) + En(j),ζ(q
j)
]}

(14)

for T-exchange, and

∆ ≡ β
{[
Em,ζ(I)(q

J) + Em,η(J)(q
I)
]

−
[
Em,ζ(I)(q

I) + Em,η(J)(q
J)
]}

(15)

for L-exchange. In MFREM, replica groups with a small
fragment size Nζ accelerate the local structure refinement.
On the other hand, replica groups with a large Nζ accelerate
the global structure refinement.

B. Influence of Fragment Length on Performance of
Fragment-Based REM

In MFREM, fragment sizes are expected to have a strong
influence on conformational sampling performance. Here,
the sensitivity of MFREM’s performance to the selection of
fragment size was first evaluated using computation for a 16-
residue poly-alanine chain as an example. In the numerical
experiments, 16 replicas were simulated at eight different
temperatures with two different fragment sizes (there are
NL

rep = 2 fragment sizes at NT
rep = 8 temperatures, so

that the total number of replicas is given by Nreplica =
NT

rep × NL
rep = 16) as depicted in Figure 5. We compared

potential energy histograms for various combinations of
fragment lengths. The parameters characterizing the replicas
are summarized in Table 1. For all calculations, a distance-
dependent dielectric, which mimics the presence of a solvent,
was used. Electrostatic and Van del Waals interactions were
calculated without using a distance-related cut-off, using

the direct summation method. The MD time step was set
to 0.5 fs. Starting from the fully extended conformation,
we performed 250-ps equilibration MD, followed by a 1-ns
production MD run. The AMBER ff94 forcefield [10] was
used.

Fig. 5. Configuration of Replicas Used for Numerical Experiments

Median values of the total potential energy of poly-
alanine at 200 K for each combination of the fragment size
obtained by MFREM are shown in Table 2. Figure 6 provides
histograms of the total potential energy of poly-alanine at 200
K obtained by conventional REM and MFREM. Here, for
MFREM, the results with combination of the fragment size
with the best (minimum) median value and with the worst
(maximum) median value are shown. When appropriate
fragment size was provided in MFREM, we succeeded in
efficiently sampling low-energy structure with fewer replicas
than conventional REM. On the other hand, it can be seen
that the performance can be degraded compared with that of
conventional REM if inappropriate fragment size is provided.

MFREM

MFREM

Fig. 6. Histogram of the Total Potential Energy of Poly-alanine at 200 K
Obtained by Conventional REM (Upper) and by MFREM (Lower)

C. Adaptive Control of Fragment Length

Although the necessity of selecting an appropriate frag-
ment length in MFREM has been indicated in the previous
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TABLE I
SUMMARY OF THE REPLICA PARAMETERS FOR THE α-HELIX PEPTIDE SIMULATIONS

Conventional REM MFREM

No. of replicas 16, 32 16 (NT
rep = 8, NL

rep = 2)

Temperaturesa (K) (200, 217, 236, 257, 279, 303, 330, 359, (200, 239, 286, 342, 409, 489, 585, 700)
390, 424, 461, 501, 544, 592, 643, 700) for 16 replicas

(200, 208, 217, 226, 235, 245, 255, 265, 276, 288, 299,
312, 325, 338, 352, 366, 382, 397, 414, 431, 448, 467,

486, 506, 527, 549, 571, 595, 620, 645, 672, 700) for 32 replicas
Replica-exchange interval (fs) 10 10
Fragment size (residue) — (Nξ=1, Nξ=2) = (2,6), (2,10), (2,14), (2,18),

(6,10), (6,14), (6,18), (10,14) (10,18), (14,18)
a For MFREM, “effective temperatures” of the target fragment. The remainder of the system is maintained at 200 K.

TABLE II
MEDIAN OF THE TOTAL POTENTIAL ENERGY (KCAL/MOL) OF
POLY-ALANINE AT 200 K OBTAINED BY MFREM FOR EACH

COMBINATION OF FRAGMENT SIZE

Length of longer fragment (residues)
6 10 14 18

Length of
shorter fragment

(residues)

2 44.7 43.4 29.6 11.5
6 43.7 28.3 10.0

10 45.1 21.0
14 45.5

section, in general, there are few precise and universal
guidelines for configuring such hyper-parameters that gov-
ern the performance: their configuration is problem-specific.
Additionally, the tuning of these parameters is not simple and
generally requires many preliminary calculations. Further-
more, which fragment sizes are suitable may vary at every
stage of the solution search. In this research, we implemented
a function to adaptively select an appropriate fragment length
in the process of structure search in MFREM. During the
simulation, the update frequency of the best (minimum) total
potential energy value is compared for each constant period
between replica groups having different fragment lengths. In
accordance with the comparison result, the fragment lengths
of each replica group of the next period are determined as
follows:

Ll(T + 1) = Ll(T )
Ls(T + 1) = Ls(T ) + ∆L

(Nl(T ) > c ·Ns(T )) (16)

Ll(T + 1) = Ll(T )−∆L
Ls(T + 1) = Ls(T )

(Ns(T ) > c ·Nl(T )) (17)

Ll(T + 1) = Ll(T )−∆L
Ls(T + 1) = Ls(T ) + ∆L

(otherwise) (18)

where Nl(T ) and Ns(T ) are the numbers of updates of the
best (minimum) potential energy value in T phase in the
replica group with a long fragment length and that in the
replica group with a short fragment length, while Ll(T )
and Ls(T ) are the fragment lengths of the replica group
having the long fragment length and that of the replica
group having the short fragment length within the T phase,
respectively. ∆L is the amount of increase or decrease of
the fragment length, and c ≥ 1 is a constant. For example, if

the update frequency of the best (minimum) potential energy
value in the replica group having a long fragment length is
significantly greater than that of the replica group having
a short fragment length, the fragment length of the replica
group having the short fragment length is expanded. When
the update frequencies of both replica groups are about the
same, each fragment length is made longer or shorter.

IV. NUMERICAL EXPERIMENTS

THE sampling efficiency of the proposed methods is
discussed using computations for an α-helical peptide

(16-residue poly-alanine chain) and a β-hairpin peptide (10-
residue Chignolin) as examples. For the β-hairpin peptide
simulations, the AMBER ff96 forcefield [11] was used. Other
settings are the same as in Section III.B.

The 16-residue poly-alanine peptide predominantly adopts
a helical structure below ∼300 K. We computed the equi-
librium distribution at 200 K using MFREM with and
without adaptive control of fragment size, and compared
the conformational sampling performance by examining the
histogram of the total potential energy (Figure 7). Here, for
MFREM without adaptive fragment size, the results with
the combination of fragment size with the best (minimum)
median value and with the worst (maximum) median value
are shown. In the MFREM with adaptive fragment length
(MFREM/AF) proposed in this research, the calculation re-
sult equivalent to the best case in the conventional MFREM is
obtained without any preliminary calculations for parameter
tuning. Time series of the lowest total potential energy
of poly-alanine obtained by conventional MFREM and by
MFREM/AF are shown in Figure 8.

We next performed a benchmark test on Chignolin. We
performed a comparative study similar to that for poly-
alanine. Figure 9 shows the histogram of the total potential
energy of Chignolin at 200 K obtained by conventional
MFREM and by MFREM/AF. As with experiments on an
α-helix, MFREM/AF performs better because a superior
quality of equilibrium distribution can be achieved without
any preliminary runs. Figure 10 provides time series of
the lowest total potential energy of Chignolin obtained by
conventional MFREM with various combinations of frag-
ment size (Nξ=1, Nξ=2) and by MFREM/AF. These analyses
revealed that the proposed MFREM/AF successfully provides
an appropriate fragment length and thus good conformational
sampling performance.
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MFREM

MFREM

MFREM/AF

Fig. 7. Histogram of the Total Potential Energy of Poly-alanine at 200 K
Obtained by Conventional MFREM and by MFREM/AF with 16 Replicas

Fig. 8. Time Series of the Lowest Total Potential Energy of Poly-alanine
Obtained by Conventional MFREM with Various Combinations of Fragment
Size (Nξ=1, Nξ=2) (10 Gray Lines) and by MFREM/AF (Black Line) with
16 Replicas

V. CONCLUSION

AVARIANT of multidimensional REM with automatic
parameter tuning has been developed. We have devel-

oped the fragment-based replica-exchange method, which is
based on the existence of a correlation between the local
amino-acid sequence and the local structure. We found that
the proposed REM reduces the number of replicas needed for
the simulation. Fragment size is the dominant factor for ef-
ficient conformation sampling. An automatic tuning scheme,
which provides appropriate fragment size adaptively, has also
been developed. By performing peptide folding simulations,
we have found that the modified REM successfully provides
appropriate fragment length and thus good conformational
sampling performance.
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