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Abstract—A 2-component standby redundant system with
priority is well-known as one of the most fundamental re-
dundant models in the reliability theory. There are many
studies about the 2-component standby redundant system with
priority. In late years, under the situation that only the average
and variance of failure and repair time of each component
are provided, the method for evaluating mean time to failure
(MTTF) in the entire system has been proposed. Furthermore,
by expanding the idea to evaluate MTTF under such a situation,
an evaluation method for the variance of failure time in the
entire system has been established. In this study, the procedure
for obtaining the reliability function in the entire system by
utilizing the mean and variance of system failure time is
developed based on the maximum entropy principle.

Index Terms—method of Lagrange multiplier, maximum
entropy principle, system reliability, 2-component standby re-
dundant system with priority.

I. INTRODUCTION

IN modern society that various systems have become more
complex and complicated with progress of technology,

high reliability in various systems in the society have been
required. Hence, the research and development in the reli-
ability field is active. In the details, see textbooks in the
reliability field such as Gertsbakh [1] and Birolini [2].

A 2-component redundant system with priority is well-
known as one of the most fundamental redundant models
in the reliability theory. There are many studies about the
2-component standby redundant system with priority. Zhang
and Wang [3] and Yuan and Meng [4] have discussed a 2-
component standby redundant system with priority in use.
Also, Leung et al. [5] have investigated a standby redun-
dant system with priority in repair. As their results, some
important reliability indices and optimal operating policy of
components in 2-component redundant system have been
suggested. Note that it has been assumed in their studies
that all distributions about failure and repair times of each
component are respectively specified and exactly provided as
respective exponential distributions.
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On the other hand, Buzacott [6] and Osaki [7], [8] have
considered the 2-component redundant system consisting of
priority and standby components, where the priority com-
ponent is used whenever it is available. When the priority
component falls in failure, it starts to be repaired immediately
and the standby component starts to operate. If the standby
component falls in failure during repairing the priority com-
ponent, the entire system becomes down. Then, under the
assumption that the respective failure and repair times of both
components are explicitly provided as known probability
distributions, Buzacott [6] and Osaki [7], [8] have derived
individually their theoretical formulae of mean time to failure
(MTTF) of the entire system.

Note that the evaluation formulae of MTTF derived by
Buzacott and Osaki require any probability density func-
tions (PDFs) and/or cumulative distribution functions (CDFs)
about failure and repair times in the respective components.
That is, the theoretical evaluation methods of MTTF of the
2-component standby redundant system with priority sug-
gested by Buzacott and Osaki have required the prerequisite
that the probability distributions of failure and repair times
in each component are respectively specified as particular
functions. However, it is considerably difficult to satisfy
this prerequisite in practice. If we cannot identify explicitly
the probability distributions about failure and repair times
in each component, the methods mentioned above would
not be applicable. In contrast, the mean and variance are
the required minimum information on characterizing the
probability distribution. In most practical cases, the mean
and variance in a probability distribution will be at least
known based on historical information. Hence, also for the
probability distributions about failure and repair times in
respective components, we can assume that respective the
mean and variance of failure and repair times in respective
components are respectively provided based on historical
information.

In recent years, Takemoto and Arizono [9] have proposed
the evaluation method of MTTF in the 2-component standby
redundant system with priority under the limited information
that only mean and variance about failure and repair times
in the respective components are provided. Then, Takemoto
and Arizono have considered the situation that the prob-
ability distributions about failure and repair times can be
approximated as a mixed Erlang distribution. Under this
situation, Takemoto and Arizono develop a new approxima-
tion procedure for evaluating the MTTF of the system by
combining some results of the Markov analysis based on
Erlang distributions. As the result, the approximate formula
for computing the MTTF in the the 2-component standby
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redundant system with priority has been constructed as the
closed form under the limited information that only mean
and variance about failure and repair times are provided.
Furthermore, through expanding the evaluation procedure
considered by Takemoto and Arizono [9], Oigawa et al. [10]
have proposed the evaluation of the variance of failure time
in the 2-component redundant standby system with priority
in the case that only mean and variance about failure and
repair times of each component are provided. It goes without
saying that MTTF is effective as an index for evaluating the
reliability of the system. Similarly, the variance of failure
time in the 2-component standby system with priority is also
an important index.

Through the above researches, we can evaluate MTTF and
the variance of failure time quantitatively. Then, we can eval-
uate qualitatively the reliability of a 2-component standby
redundant system with priority by MTTF and variance of
failure time. For example, even if MTTF is large and in the
case that the variance of failure time is relatively large, it is
imagined to cause a problem in reliability.

In this study, we consider the reliability function in order to
evaluate quantitatively the system reliability in the situation
that only mean and variance about failure and repair times
are provided as the limited information. Since the mean
and variance of failure time in the entire system have
been evaluated based on the considerations by Takemoto
and Arizono [9] and Oigawa et al. [10], we consider to
develop the probability density function about failure time
in the entire system based on the the mean and variance of
failure time in the entire system. However, there are many
probability distributions with the same values in the first
and second order moments. Hence, we adopt the maximum
entropy principle to develop the system reliability function
through identifying the the probability density function about
failure time in the entire system under the constraints of
the mean and variance of failure time in the entire system.
The procedure based on the maximum entropy principle
in the information theory is widely known as an elegant
approach for deriving the probability density function under
the constraints of the values of moments in the probability
distribution.

II. DETAILS OF 2-COMPONENT STANDBY REDUNDANT
SYSTEM WITH PRIORITY

We consider the 2-component standby redundant system
composed of Component 1 having priority and Component
2 which is a standby component. In this case, the component
with priority means a component which is always used when-
ever it is available. In contrast, the standby component means
a component which stands by whenever the component with
priority is available. When the priority component falls in
failure, it starts to be repaired immediately and the standby
component starts to operate. If the standby component falls
in failure during repairing the priority component, the entire
system becomes down. The outline of behavior in this
system is illustrated in Figure 1. The solid line represents
the operating status of each component. The dashed line
represents the repair status of Component 1, the dashed-
dotted line represents the standby status of Component 2.
In addition, the dotted arrowhead connecting Component 1
and Component 2 represents the switching of components.

Component 1 (priority Component)

Component 2 (standby Component) System Down

in operation

in standby

in repair

switching

Fig. 1. 2-component standby redundant system with priority

Initially, at time t = 0, Component 1 is working, and
Component 2 is in the standby state. At this time, the standby
time of the Component 2 is not included in its lifetime. When
Component 1 fails, it starts to be repaired immediately and
then Component 2 starts to work. If the repair of Component
1 has been completed and Component 2 is still working, then
Component 1 starts to work immediately, and Component 2
is in a standby state. However, if Component 2 fails during
the repair of Component 1, the entire system goes down.
The switching of components is reliably executed, and it is
assumed that the switchover time is instantaneous.

III. OUTCOME OF PREVIOUS LITERATURE

For the 2-component standby redundant system of Figure
1, Buzacott [6] has derived MTTF under the situation that
the failure and repair time distributions of each component
are explicitly prescribed as individual specific probability
distributions On the other hand, under the situation that
Component 2 has an exponential failure time distribution,
Osaki [7], [8] has derived MTTF of the 2-component standby
redundant system of Figure 1. All the distribution functions
of the failure and repair times in each component have to
be explicitly specified for evaluating MTTF by using the
theoretical formulae by Osaki and Buzacott.

However, in some practical situations, it is difficult to
know exactly the probability distributions of failure and
repair times. On the other hand, in most practical cases,
the mean and variance about failure and repair times in
respective components will be at least known based on
historical information.

In recent years, Takemoto and Arizono [9] and Oigawa
et al. [10] have respectively considered the evaluations of
mean time to failure and variance of failure time in the 2-
component standby redundant system illustrated in Figure 1.
In these evaluations, the followings have been assumed:

i) The failure time distribution of Component 1 has
the cumulative distribution function (CDF) F1(t) with
mean EF1

= 1/λ1 and variance VF1
.

ii) The repair time of Component 1 obeys the probability
distribution G1with mean EG1

and variance VG1
.

iii) The failure time of Component 2 obeys the probability
distribution F2with mean EF2 and variance VF2 .

They have considered the approximation where the repair
(or failure) time distribution in Component 1 (or 2) is
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transformed into a mixed Erlang distribution under the con-
straints of mean EG1 (or EF2 ) and variance VG1 (or VF2 ).
Then, the system has been reconstructed by four types of
tentative systems based on the combinations of respective
Erlang distributions in the mixed Erlang distributions for
the repair time distribution of Component 1 and the failure
time distribution of Component 2. The respective tentative
systems have been analyzed using Markov process theory
because the state transition in the respective tentative systems
can be expressed by a state transition diagram based on an
exponential distribution. MTTFs in the respective tentative
systems are weightedly summed up using the ratios of
mixture on the mixed Erlang distribution.

As a consequence, Takemoto and Arizono [9] have defined
MTTF of the entire system as follows:

MTTF = p1p2MTTF(n1,n2)

+ (1− p1)p2MTTF(n1+1,n2)

+ p1(1− p2)MTTF(n1,n2+1)

+ (1− p1)(1− p2)MTTF(n1+1,n2+1) ≡ µ, (1)

where

MTTF(n1,n2) = R̃(n1,n2)(0)

=
1/λ1

1− b̃n1(0)

n2−1∑
j=0

d̃j(n1)(0) +
ã(0)

1− b̃n1(0)

×
n1−1∑
i=0

n2−1∑
j=0

n2−1−j∑
k=0

(
i+ k

k

)
b̃i(0)c̃k(0)d̃j(n1)(0), (2)

1

ni + 1
< φ2

i ≤ 1

ni
, (3)

pi =
(ni + 1)φ2

i −
√
(ni + 1)(1− niφ2

i )

φ2
i + 1

, (4)

φ1 =
√

VG1
/EG1

, (5)

φ2 =
√
VF2/EF2 , (6)

µ1 =
n1 + 1− p1

EG1

, (7)

λ2 =
n2 + 1− p2

EF2

, (8)

R̃(n1,n2)(s) = ũ(n1)(s)

n2−1∑
i=0

d̃i(n1)(s)

+ ã(s)ṽ(n1)(s)

n1−1∑
i=0

n2−1∑
j=0

n2−1−j∑
k=0

(
i+ k

k

)
× b̃i(s)c̃k(s)d̃j(n1)(s), (9)

ã(s) =
1

s+ µ1 + λ2
, (10)

b̃(s) =
µ1

s+ µ1 + λ2
, (11)

c̃(s) =
λ2

s+ µ1 + λ2
, (12)

d̃0(n1)(s) = 1, (13)

d̃j(n1)(s) = w̃(n1)(s)

×
j−1∑
k=0

(
n1 − 1 + j − k

j − k

)
c̃j−k(s)d̃k(n1)(s), (14)

ũ(n1)(s) =
R̃1(s)

1− {1− sR̃1(s)}b̃n1(s)
, (15)

ṽ(n1)(s) =
1− sR̃1(s)

1− {1− sR̃1(s)}b̃n1(s)
, (16)

w̃(n1)(s) =
{1− sR̃1(s)}b̃n1(s)

1− {1− sR̃1(s)}b̃n1(s)
. (17)

The notations of MTTF(n1,n2), MTTF(n1+1,n2),
MTTF(n1,n2+1) and MTTF(n1+1,n2+1) in equation
(1) denote the mean time to failure in the respective
tentative systems. Further, the symbols of pi, φ1, φ2, µ1 and
λ2 denote the parameters in the case of approximating the
repair time distribution of Component 1 and the failure time
distribution of Component 2 to the respective mixed Erlang
distributions. In addition, the notations of R̃(n1,n2)(s), ã(s),
b̃(s), c̃(s), d̃j(n1)(s), ũ(n1)(s), ṽ(n1)(s) and ũ(n1)(s) mean
the functions derived by Takemoto and Arizono [9] for
evaluating MTTF in the 2-component standby redundant
system. Further, R1(t) = 1−F1(t) and then, R̃1(s) denotes
the Laplace transformation for R1(t).

Further, Oigawa et al. [10] have addressed the derivation
of the variance of the failure time of the considered 2-
component standby redundant system with priority. Denote
the probability density function (PDF) of the failure time
distribution of the entire system by f(t). Then, the Laplace
transformation for f(t) is defined as:

f̃(s) =

∫ ∞

0

e−stf(t)dt. (18)

On the other hand, since the reliability function R(t) of the
entire system is expressed as

R(t) = 1−
∫ t

0

f(τ)dτ, (19)

the relationship between the Laplace transformations f̃(s)
and R̃(s) can be given as f̃(s) = 1 − sR̃(s). Then, by
applying the final-value theorem and the L’Hopital’s rule
to the differential calculus forms for this relationship, the
following equations can be shown:

d

ds
f̃(s)|s=0 ≡ f̃ (1)(0) = −E[t] = −µ, (20)

d2

ds2
f̃(s)|s=0 ≡ f̃ (2)(0) = E[t2], (21)

where superscript (i) of the function f̃ (i)(0) means i-th
differentiation of the function f̃(s).
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Therefore, the variance V [t] of the failure time of the con-
sidered 2-component standby redundant system with priority
can be obtained as

V [t] = f̃ (2)(0)−
{
f̃ (1)(0)

}2

≡ σ2, (22)

where

f̃ (2)(0) = p1p2f̃
(2)
(n1,n2)

(0)

+ (1− p1)p2f̃
(2)
(n1+1,n2)

(0)

+ p1(1− p2)f̃
(2)
(n1,n2+1)(0)

+ (1− p1)(1− p2)f̃
(2)
(n1+1,n2+1)(0), (23)

f̃
(2)
(n1,n2)

(0) = −2ũ
(1)
(n1)

(0)

n2−1∑
j=0

d̃j(n1)(0)

− 2ũ(n1)(0)

n2−1∑
j=0

d̃
(1)
j(n1)

(0)

+ 2ã(0)ṽ(n1)(0)

n1−1∑
i=0

n2−1∑
j=0

n2−1−j∑
k=0

(
i+ k

k

)
× b̃i(0)c̃k(0)

{
d̃j(n1)(0)ã(0)

(
1 + i+ k

+
h(n1,n2)(0)

ã(0)

)
− d̃

(1)
j(n1)

(0)

}
, (24)

ũ
(1)
(n1)

(0) = −
VF1

+
(

1
λ1

)2
2
{
1− b̃n1(0)

}
−

1
λ1
b̃n1(0)

{
n1ã(0) +

1
λ1

}
{
1− b̃n1(0)

}2 , (25)

d̃
(1)
j(n1)

(0) = w̃
(1)
(n1)

(0)

j−1∑
k=0

(
n1 − 1 + j − k

j − k

)
× c̃j−k(0)d̃k(n1)(0)

− w̃(n1)(0)

j−1∑
k=0

(
n1 − 1 + j − k

j − k

)
× (j − k)ã(0)c̃j−k(0)d̃k(n1)(0)

+ w̃(n1)(0)

j−1∑
k=0

(
n1 − 1 + j − k

j − k

)
× c̃j−k(0)d̃

(1)
k(n1)

(0), (26)

w̃(1)
n1

(0) = −ṽn1(0)h(n1,n2)(0)b̃
n1(0)

− n1ã(0)b̃
n1(0)ṽn1

(0), (27)

h(n1,n2)(0) = R̃(n1,n2)(0)

+
b̃n1(0)R̃(n1,n2)(0) + n1ã(0)b̃

n1(0)

1− b̃n1(0)
, (28)

where note that the notations of f̃
(i)
(n1,n2)

(0), ũ
(1)
(n1)

(0),

d̃
(1)
j(n1)

(0) and w̃
(1)
n1 (0) are similar to the notation of f̃ (i)(0).

Through the similar way, f̃ (2)
(n1+1,n2)

(0)，f̃ (2)
(n1,n2+1)(0) and

f̃
(2)
(n1+1,n2+1)(0) can be obtained. Remind that the concrete

mathematical expressions of f̃
(2)
(n1+1,n2)

(0)，f̃
(2)
(n1,n2+1)(0)

andf̃ (2)
(n1+1,n2+1)(0) are omitted for convenience of the num-

ber of the paper.

IV. DERIVATION OF RELIABILITY FUNCTION

In this study, based on µ and σ2 derived as equations (1)
and (22), we evaluate the probability density function f(t)
of the failure time of the entire system. As for derivation
of µ and σ2, we have considered that only the mean and
variance of failure and repair times in each component are
given as the limited information. In other words, the basic
condition in this study is that the distribution of failure and
repair times in each component is unknown and not specified.
Hence, we do not suppose a specific distribution type to
evaluate the probability density function f(t) of the failure
time in the entire system. Then, it is widely known that the
maximum entropy principle brings an elegant solution for
deriving the probability density function under the constraints
of the values of moments. Therefore, we apply the maximum
entropy principle to obtain the probability density function
f(t) of the failure time in the entire system.

Based on the maximum entropy principle, the identifica-
tion problem of f(t) can be formulated as follows:

Maximize
f(t)

H (f) = −
∫ ∞

0

f (x) log f (x) dx, (29)

subject to ∫ ∞

0

f (x) dx = 1, (30)

∫ ∞

0

xf (x) dx = µ, (31)

∫ ∞

0

(x− µ)
2
f (x) dx = σ2. (32)

By using equations (29)–(32), a Lagrange function is defined
with introducing Lagrange multipliers α1, α2 and α3 as

V = H (f)− α1

{∫ ∞

0

f (x) dx− 1

}
− α2

{∫ ∞

0

xf (x) dx− µ

}
− α3

{∫ ∞

0

(x− µ)
2
f (x) dx− σ2

}
. (33)

Through adopting the variational method to the Lagrange
function V , we have

δV

δf
= −

{
log f(x) + 1

}
− α1 − α2x− α3(x− µ)

2
= 0. (34)

From equation (34), f (x) is expressed as

f(x) = e−1−α1e−α2xe−α3(x−µ)2 . (35)

At the same instant, by partially differentiating V with α1,
α2 and α3, we have equations (30)–(32). Therefore, based
on equations (30)–(32) and (35), f(x) is rewritten as

f (x) = Ce−
(x−m)2

2δ2 , (36)
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where

C = e−1−α1−α3µ
2

e
α3

(
2µα3−α2

2α3

)2

, (37)

m =
2µα3 − α2

2α3
, (38)

δ2 =
1

2α3
. (39)

Accordingly, the derivation of f (x) becomes a problem of
finding C, m and δ2.

Furthermore, by substituting equation (36) for equation
(30), (31) and (32), the following equations can be shown:

C

∫ ∞

0

e−
(x−m)2

2δ2 dx = 1, (40)

C

∫ ∞

0

xe−
(x−m)2

2δ2 dx = µ, (41)

C

∫ ∞

0

(x− µ)
2
e−

(x−m)2

2δ2 dx = σ2. (42)

Then, from equations (40), we can derive as follows:

1

C
=

∫ ∞

0

e−
(x−m)2

2δ2 dx. (43)

Moreover, by multiplying both sides of equation (43) by
1/

√
2πδ2, we obtain the following equation:

1√
2πδ2

1

C
=

1√
2πδ2

∫ m

0

e−
(x−m)2

2δ2 dx

+
1√
2πδ2

∫ ∞

m

e−
(x−m)2

2δ2 dx. (44)

The right side means the upper side probability function
of the normal distribution with mean m and variance δ2.
Through the variable transformation of t = (x−m) /δ,
equation (44) is converted to

1√
2πδ2

1

C
=

1√
2π

∫ 0

−m
δ

e−
t2

2 dt+
1

2
. (45)

Further, by replacing t by
√
2τ , equation (45) is expressed

as

1√
2πδ

1

C
=

1

2
+

1√
π

∫ 0

− m√
2δ

e−τ2

dτ

=
1

2
− 1

2

(
2√
π

∫ − m√
2δ

0

e−τ2

dτ

)

=
1

2
− 1

2
erf

(
− m√

2δ

)
. (46)

Then, the function erf (z) is known as the error function as
follows:

erf (z) =
2√
π

∫ z

0

e−t2dt. (47)

The error function is frequently used in probability theory,
statistics, material science, and partial differential equation.
Further, the error function and confluent hypergeometric
function have the following relationship:

erf(x) =
2x√
π

1F1

(
1

2
;
3

2
;−x2

)
. (48)

Note that the confluent hypergeometric function is classified
as special functions. Then, the confluent hypergeometric
function is defined as

1F1 (β; γ; z) =
Γ(γ)

Γ(β)

∞∑
n=0

Γ(β + n)

Γ(γ + n)

zn

n!
. (49)

Furthermore, the following Kummer transformation can be
applied to be confluent hypergeometric function:

1F1 (β; γ; z) = e−z
1F1 (γ − β; γ;−z) . (50)

Consequently, based on equation (48) and (50), equation (46)
is transformed as follows

C =
1√

πδ2

2 +me−
m2

2δ2 1F1

(
1; 3

2 ;
m2

2δ2

) . (51)

Further, as for equations (41) and (42), we have respectively
the following equations:

C =
µ−m

δ2e−
m2

2δ2

, (52)

C =
µ2 + σ2 −m2 − δ2

mδ2e−
m2

2δ2

. (53)

Then, based on equations (52) and (53), the following
equations can be shown:

δ2 = −µm+ µ2 + σ2. (54)

Accordingly, by substituting equation (54) for equation (51)
and (52) (or (53)), we can obtain the following function for
m:

(µ−m)

{√
π(−µm+ µ2 + σ2)

2
+me

− m2

2(−µm+µ2+σ2)

× 1F1

(
1,

3

2
;

m2

2(−µm+ µ2 + σ2)

)}
−(−µm+ µ2 + σ2)e

− m2

2(−µm+µ2+σ2) = 0. (55)

It is difficult to solve analytically equation (55) for m
because that equation (55) contains the confluent hyperge-
ometric function. However, we can derive the value of m
satisfying equation (55) numerically by appropriate search
algorithms such as linear search. It is clear that we can
get the values of δ2 and C by calculated m. Moreover, by
substituting equation (36) for equation (19), we can derive
as follows.

R(t) = C

{√
πδ2

2
− (t−m)

×e−
(t−m)2

2δ2 1F1

(
1;

3

2
;
(t−m)

2

2δ2

)}
. (56)

Thus, the reliability of the entire system can be evaluated
concretely by substituting calculated m, δ2 and C for equa-
tion (56).
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V. NUMERICAL ANALYSIS

In this section, we investigate the validity of our proposal
on evaluating the reliability function with the following
procedures:

i) The mean and variance of failure and repair time in
Component 1 are respectively given. Further, the mean
and variance of failure time in Component 2 are also
given.

ii) The probability distributions for the failure and repair
time in Component 1 and the probability distribution
for the failure time in Component 2 are individually
specified as a particular probability distribution.

iii) Through a million times of trials iterated in the Monte
Carlo simulation under the combination of specified
probability distributions, the reliability in the entire
system on time t is estimated.

iv) The proposed reliability function is compared with the
reliability estimated through the Monte Carlo simula-
tion.

As an example, suppose that EF1 = 1/λ1 = 100.0,
VF1

= 20.02, EG1
= 5.0, VG1

= 1.52, EF2
= 50.0,

and VF2
= 22.52, respectively. Moreover, the failure and

repair time distributions in both components are respectively
defined as the log-normal and/or Weibull distributions. The
log-normal distribution and Weibull distribution are well
known in the reliability field.

Based on the above numerical values and the supposition
for the failure and repair time distributions, the values of µ
and σ2 for the failure times in the entire system are calculated
as the following numerical value:(

µ, σ2
)
= (1106.089, 239852.167) .

Further, m, δ2 and C are obtained as follows:(
m, δ2, C

)
= (1057.804, 345871, 144, 0.000704) .

So, we can evaluate the reliability function in equation (56)
by applying the above values of

(
m, δ2, C

)
.

One of the results of comparing the simulation and the
proposed reliability is shown in Figure 2. In Figure 2, the
failure time distribution F1(t) and the repair time distribution
G1(t) in Component 1 and the failure time distribution
F2(t) in Component 2 are respectively supposed as the
Weibull distribution with mean EF1

and variance VF1
, the

log-normal distribution with mean EG1
and variance VG1

and the Weibull distribution with mean EF2 and variance
VF2 .

From Figure 2, it has been confirmed that the shape of
the reliability function proposed in this study resembles that
of simulation result. Moreover, remark that similar results
have been obtained under different conditions. Consequently,
it has been confirmed that the proposed reliability function
based on the maximum entropy principle is useful as an
approximation method for the reliability evaluation under the
condition that only the mean and variance of failure time in
the entire system can be used.
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Fig. 2. Comparison of reliability based on proposed reliability function
and the simulation results

VI. CONCLUSION

In this study, we have addressed the evaluation method of
the reliability function in the 2-component standby redundant
system with priority. Then, by utilizing the evaluation results
for the mean time to failure by Takemoto and Arizono [9] and
the variance of the failure time by Oigawa et al. [10], we have
succeeded in deriving the evaluation method of the reliability
function in the 2-component standby redundant system with
priority. In concrete, by using only the mean and variance of
the failure time in the entire system, the reliability function
in the 2-component standby redundant system with priority
has been derived based on the maximum entropy principle.

Then, it would like to be the future issue to establish the
way of the optimal preventive maintenance of the system by
using the reliability indices such as the reliability function.
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