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Abstract—The objective of this study is to utilize the Empirical 

Bayes in sequential sampling plan and compare to the 

traditional approaches, single sampling plan and sequential 

sampling plan by variables when data are normally distributed 

under unknown mean but known variance. The probability of 

acceptance for the lot (Pa) and the average number of sample 

size (ASN) are considered as criteria of comparison. It is shown 

that the proposed plan yielded the average number of sample 

size smaller than single sampling plan and sequential sampling 

plan by variables and provided the probability of acceptance 

the lot higher than the traditional approach. Moreover, the 

Empirical Bayes in sequential sampling plan is given the 

approximation of the Pa and ASN more precise than the single 

sampling plan and sequential sampling plan by variables. 

 

Index Terms—Empirical Bayes, Single Sampling Plan, 

Sequential Sampling Plan, Variables Process Mean 

 

I. INTRODUCTION 

The statistical analysis was applied in the acceptance 

sampling plan for inspecting large amounts and it was often 

impossible to inspect all the products in the batch which can 

be reduced the producer’s risk and consumer’s risk. The 

acceptance sampling plan was developed by Dodge and 

Romig in 1920. It can be classified by three main points as 

follows. Firstly, there is non-inspection. Next, 100% 

inspection and thirdly, random inspection, or sampling plan, 

meaning samples are taken randomly for possible defects of 

products and are then subject to acceptance or rejection. 

Advantages for acceptance sampling plan, the majority of 

the inspectors apply the acceptance sampling plan for testing 

for destruction, auditing in case of large lots or using 

suppliers with a good quality history because this method 

might reduce the damage by less handling of the products, 

reduced errors, and saves costs and time in the 

manufacturing process. The acceptance sampling plan by 

variables is the quantitative data which can be measured by 

a continuous scale and assumed to be a normal distribution. 

[1] The advantages are the variables sampling plan, which 

the production in the lots provide more information than the 
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attributes, with the small sample size and high level of 

acceptable quality levels (AQL). The types of variable 

sampling plans can be classified by variables sampling for 

the process parameters and estimation proportion 

nonconforming in the lot. Then, the part for process 

parameters analysis is often assessed by process mean which 

the average is utilized for comparison in acceptance 

sampling plan. Balamurali et al. [2] considered the repetitive 

group in the variables sampling plan and assumed normal 

and lognormal distributions with known and unknown 

variances. The proposed plan was compared with the single 

sampling plan, double sampling plan and sequential 

sampling plan to minimize the average sample number 

(ASN) at acceptable quality levels (AQL) and at limiting the 

quality levels (RQL). Sankle and Singh [3] studied the 

variable single sampling plan when the data were correlated 

with a known variance. Thus, the sequential sampling plan 

often provides a small sample size, which is benefit for cost 

saving. [2] In addition, the sequential sampling plan in 

variables can be performed either one-tailed or two tailed 

testing by indicating specification limits for upper testing, 

lower testing and double testing, respectively. Lam et al. [4] 

studied Bayesian approach in sequential sampling plan by 

variables assuming normally distributed data with unknown 

mean but known variance.  

The Bayesian approach is applied in parameters 

estimation. Its principle is to incorporate information in 

history about parameters, called prior distribution to 

estimate the unknown parameters when the parameters of 

prior distribution, called hyper-parameters, are assumed to 

be known. On the other hand, when the unknown hyper-

parameters are estimated from the observed data it is called 

Empirical Bayes (EB) method. [5] It method is alternative in 

the manufacturing for planning the product inspection which 

benefits is to reduce the amount of waste matter and to 

decrease production costs. Krutchkoff [6] considered the 

Empirical Bayes for estimating hyper-parameter and 

considered mean squared error in the construction of the 

Nike missile, using grain for movement of the rocket. 

Casella [7] studied the Empirical Bayes in the case of 

normal distribution with an unknown mean, known variance 

in prior normal distribution. Gupta and Liang [8] developed 

the Empirical Bayes method in the acceptance sampling plan 

based on the minimum Bayes risk in the selection 

acceptance or the rejection population. Khaledi and Rivaz 

[9] studied the Empirical Bayes prediction under spatial data 

which the hyper-parameters were estimated by the 

maximum likelihood (ML) method and using the EM 

algorithm in the stages of maximization marginal 

distribution. Xu et al. [10] considered the Bayesian 

prediction under Gaussian process regression and applied in 

the mobile sensor networks with the sequential algorithm. 
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The purpose in this study is testing upper specification 

limit (USL) of the process mean using the acceptance 

sampling plan and compared with the single sampling plan, 

the sequential sampling plan by variables and Empirical 

Bayes in sequential sampling plan. In section 2, the 

variables process mean and steps for simulation are 

expressed. Next section 3 and section 4, the traditional 

plans, the single sampling plan and the sequential sampling 

plan by variables are illustrated respectively. The Empirical 

Bayes in sequential sampling plan is interpreted in section 5. 

The final part is the simulation data and conclusion. 

II. VARIABLE PROCESS MEAN 

The testing upper specification limit (USL) for variables 

process mean is specified by the acceptance control chart 

which is considered under six-sigma quality level. Also, it 

has 3.4 defectives per million opportunities ( )p  then the 

process mean assume shift to ±1.5𝜎. The data are assumed 

normal distribution: 
2, ,X N  ( )  the process mean has 

parameters as follows: 1  is acceptable process level (APL) 

and 2  is rejectable process level (RPL). Thus, it can be 

estimated as follows. 

 

    
1

2

( ) 1.5

( ) x

APL x

RPL ACL Z

 

 

 

 
                        (1) 

 

Where ACL is acceptance control limits, it is defined by 

1( ) xACL APL Z    when (0,1)Z N . The 

producer’s risk ( )  is the probability of rejection at the 

APL and the consumer’s risk ( )  is the probability of 

acceptance at the RPL. [11] 

III. SINGLE SAMPLING PLAN 

The single sampling plan by variables in process mean is 

the classical method in the acceptance sampling plan. This 

plan can be calculated the sample size  n  and the 

acceptance limit  a
X as follows. 
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                         (2) 

 

The criterion for comparison the results are as follows. 1. 

Probability of acceptance (Pa) is the probability of 

acceptance of the process when the quality level is defined. 

The graphs of probability of acceptance against the process 

mean are called the operating characteristic (OC) curve. 2. 

Average sample number (ASN) is the average sample size is 

inspected per lot. The graphs of the average sample number 

are against the process mean it is called the ASN curve. The 

making decision for single sampling plan is accept the lot if 

a
x X  or to reject the lot if ,

a
x X  the probability of 

acceptance the lot is defined by P z( )  where 

 a x
z x X    and .ASN n  [12]   

IV. SEQUENTIAL SAMPLING PLAN BY VARIABLES 

The sequential sampling plan by variables can be tested 

by the specification limits for upper, lower and double 

respectively. The samples of this method are taken 

sequentially from the lot. The samples are taken one sample 

then called and then item-by-item sequential sampling and 

more than one sample is taken and then called group 

sequential sampling. The sequential sampling for the item-

by-item plan was developed from the sequential probability 

ratio test: SPRT) by Wald in 1947. [1] The criteria for 

inspection of the samples are considered by acceptance limit 

line (Y1) and rejection limit line (Y2) which are shown as 

follows. 

 

     
1 1

2 2

Y h s n

Y h s n

   

  
                               (3)                       

 

Specification h1 is the intercept of acceptance line, h2 is 

the intercept of rejection line, s is the slope of the lines and n 

is the sample sizes. Thus, the making decision is accept the 

lot if 11
,

n

ii
x Y


  to reject the batch if  21

n

ii
x Y


  

and continue sampling unit if 1 21
< 

n

ii
Y x Y


 . The 

evaluation the results are the operating characteristic (OC) 

curve and the average sample number (ASN). The 

Probability of acceptance (Pa) and the average sample 

number (ASN) are calculated as follows. [13] 
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where  2

1 2 1 ,h Lb     2

2 2 1 ,h La     

 2 1 2,s      log 1 ,a   

  log 1 ,b       2 1 2 1
2w        

and 2.3026.L   

V. EMPIRICAL BAYES PREDICTION IN SEQUENTIAL 

SAMPLING PLAN 

 The Bayesian approach is the one of methods for 

estimating parameters when assuming unknown parameters 

   but it is to incorporate information in history about 
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parameters, called prior distribution function:
 

 |   and 

are supposed known hyper-parameters  .  Also, the 

Bayes’ theorem can be given by likelihood function:  L   

multiple with the prior distribution function called the 

posterior distribution function:
 
 |h x  as follows.   

 

  
   

 
   

|
|

|

L
h x L

M x

   
   




     

 

On the other hand, when the unknown hyper-parameters 

are estimated from the observed data it is called Empirical 

Bayes (EB) approach. In addition, the hyper-parameters can 

be obtained from the marginal distribution function with 

using the maximum likelihood (ML) method as follows. 

 

       | | |M x     f x d


        

 

Assuming the data are continuously characteristics. [5]  

However, the Empirical Bayes method is developed for 

the estimating new observed data or prediction a future 

observation 1( )nx   when based on full dataset 

1 2 3( , , , ..., nx x x x  or ),x  called the Empirical Bayes 

prediction approach. Therefore, the prediction a future 

observation can obtained from posterior predictive 

distribution function is provided by 

 

    1 1( | )   | | .n nh x x f x h x d


      

 

Assuming the samples data ( )x  are continuous 

characteristics and independently and   1 |nf x   is the 

function of the future observation. [14] 

In this study, we consider 
2

0( , ),X N    unknown 

mean    but known variance 
2

0( )  and assume 

informative prior on  :
 

2( , )N    when  is 

parameter,   and 
2 are hyper-parameters. The steps for 

finding the hyper-parameter estimators can be accorded as 

follows: firstly, specification the marginal likelihood 

distribution function is provided by  
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              (6) 

 

Next, this is not a closed form then can be determined by 

ML method and then the likelihood function of x  given   

and 
2  is given by 

 

  
2 2( | , ) ( | , )L x M x    .  

 

Then, the hyper-parameters estimators of the  and 
2

with ML method are ˆ x 
 
and 

2 2

0
ˆ n   respectively. 

Thus, the both ̂ and 
2̂ are replaced in the posterior 

distribution function. For the stage of the estimation 

parameter, it can be obtained by the posterior distribution 

function as follow.  
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Thus, the posterior distribution function of | x  is normal 

distribution as follows 

 

 | ,  x N M H   

 

where    2 2 2 2

0 0
ˆ ˆ ˆM nx n       and 

 2 2 2 2

0 0
ˆ ˆ .H n       

Finally, determination the posterior predictive distribution 

function of 1 |nx x  is  
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Also, the posterior predictive distribution function is 

normal distribution as follows     

 

 
2

1 0| ( ,  )nx x N M H   .  

 

where the mean of posterior predictive distribution function 

1( | ) ,nE x x M   the same as the mean of posterior 

distribution function and the variation of posterior predictive 

distribution function is 
2

1 0( | ) .nV x x H   

 Moreover, the Empirical Bayes prediction can apply in the 

acceptance sampling plan which is utilized in the part of the 

sequential sampling plan. Then, the mean of posterior 

distribution function of this method is estimated sequentially 

and is compared with the acceptance line and the rejection 

line. The criteria for the making decision is accept the lot if 

1 1( | )nE x x Y  , to reject the lot if 1 2( | )nE x x Y   and 

continue sampling unit when 1 1 2( | ) <nY E x x Y . [15] 

VI. NUMERICAL COMPARISONS OF PERFORMANCE 

The data are simulated under normal distribution: 

0 1X N( , )  with unknown mean ( )  but known 

variance (
2

0 =1), assuming informative priors 

2( , )N    which the hyper-parameters   and 
2 are 

estimated by ML method are given by ̂ = 1.5027 and      
2̂ = 0.02. The lot size is N = 1,000, the sample size is      

n = 50 and the number of iteration is t  = 1,000. The 

proportion of defective at APL is p = 0.00034 under                

six-sigma process,  = 0.05 and  = 0.10. In addition, 

TABLE I show the average  x  and the mean of posterior 

predictive distribution  1( | )nE x x  are specified by the 

single sampling plan (Single SP), sequential sampling plan 

by variables (SSP) and EB in sequential sampling plan (EB 

in SSP) and are classified by the probability of acceptance 

(Pa) and the average sample number (ASN) as follows. 

 

  

 

TABLE I 

THE PA  AND ASN AT
1,  S

 
AND 

2 FOR SINGLE SP, SSP  

AND EB IN SSP 

 

Mean 
Single SP  SSP and EB in SSP  

Pa ASN Pa ASN 

1.51 1( )  0.10 50 0.95 23.28 

1.71 ( )s  0.57 50 0.56 37.98 

1.92 
2( )  0.95 50 0.10 27.74 

   

For the testing single sampling plan, the acceptance limit 

is 
a

X = 1.6857 refer to (2). Thus, the decision is to accept 

the lot if 
a

x X  or to reject the lot if .
a

x X  The 

comparison between mean  x  and 
a

X = 1.6857 found 

that are to reject the lot for all of the means. The ASN for 

this plan is 50 for all of the means. 

The hypothesis testing USL for the process mean with the 

sequential sampling plan is given by 
0 1

H  :  vs. 

1 2
,H  :   2 1

.   The estimation 1 (APL), 2

(RPL) and the slope S are approximated refer to (1) which 

are 1 = 1.51 and 2 = 1.92 in TABLE I. Also, the Pa for 

single SP, SSP and EB in SSP are classified by mean at 

APL, slope S and RPL. The Pa for single sampling plan 

depended on mean. In contrast, the SSP and EB in SSP 

provided the Pa  at the 1  equal to 0.95 and at the 2  equal 

to 0.10. The ASN of the single sampling plan is 50 per lot for 

all of averages when ASN of the SSP and EB in SSP are a 

smaller than single sampling plan and the both are equality 

and peak at the slope S.  

 

 
 

Fig. 1. Comparison of the Cumulative of Mean of SSP with 

1,Y 2Y and classification by the Sample Size  n  
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Fig. 2. Comparison of the Cumulative of 1( | )nE x x  with 

1,Y 2Y and classification by the Sample Size  n  

 
 

Fig. 3. Comparison Pa  of Single SP, SSP and EB in SSP 

 
 

Fig. 4. Comparison ASN of Single SP, SSP and EB in SSP 

 

We consider Fig. 1. under
0 1

H  :  this method is 

compared with the cumulative of mean ,x( )  
1Y  and 

2Y

which are classified by sample size  .n   When 
1Y  and 

2Y

can determine from refer to (3) where 
1h = 5.4387,                   

2h = 6.9826 and S = 1.7114. Therefore, when the sample 

size is n  = 28 found that the cumulative of mean is less than 

1Y  and then to accept 
0H  or to accept the lot. 

We consider Fig. 2. under
0 1

H  :  the cumulative of 

1( | )nE x x  compare with the 
1Y  and 

2Y  when following 

by sample size  n . At the sample size is n  = 27, the 

1( | )nE x x  is less than Y1 and then to accept 
0H or to 

accept the lot.  

From Fig. 3. the Pa is compared with the single SP, SSP 

and EB in SSP found that the single SP provides the 

smallest Pa and trend to increase when large the average. 

However, the Pa of the SSP and EB in SSP trended to 

decrease when the mean are reduced. The Pa of the SSP is 

given the high and has a wider range than EB in SSP. The Pa 

for EB in SSP have nearly 0.95 and are given the narrow 

range that means the product’s risk a smaller than SSP.  

We consider Fig. 4. the ASN are compared by the three 

methods with mean/ mean of posterior predictive 

distribution. The single SP provides the highest ASN which 

is 50 per lot and the ASN of SSP has between 20 and 28 per 

lot. In contrast, the EB in SSP are given the ASN around 23 

per lot. It can see that the propose plan provides the least 

ASN. 

VII. CONCLUSION 

This paper reviewed the testing USL for process mean of 

the single SP, the SSP and propose plan. The criteria of 

comparison are the Pa and ASN. The majority result of the 

propose plan are provided the high Pa, small the ASN and 

more precise than the traditional approach. It is clear that the 

EB in SSP reduce the product’s risk and safe cost for 

inspection products in the lot. 
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