
 

 

Abstract—A new Modified Longest Processing Time 

algorithm and an Iterated Local Search algorithm are 

developed for the scheduling problem in which independent 

jobs are nonpreemptively scheduled on uniform parallel 

machines with the objective of minimizing the makespan, i.e., 

the completion time of the last job. Our computational results 

show that the Modified Longest Processing Time algorithm is 

able to reduce the average error, to increase the number of 

optimal solutions, and to determine a greater number of best 

solutions with respect to the Longest Processing Time 

algorithm. Furthermore, the Iterated Local Search algorithm 

is shown to be effective in reducing the average error 

significantly and yielding optimal solutions in over 80% of the 

tested instances. 

 
Index Terms—scheduling, uniform parallel machines, 

longest processing time algorithm, iterated local search 

algorithm 

 

I. INTRODUCTION 

This paper considers the uniform machine scheduling 

problem, denoted by Q||Cmax [1]. Given n independent jobs 

J = {1, ..., j, ..., n} with processing times    such that    ≥ ... 

≥    ≥ ... ≥    and m uniform machines M = {1, ..., i, ..., m} 

with processing speed    such that    ≥ ... ≥    ≥ ... ≥    = 1, 

the objective of Q||Cmax is to assign the n jobs to the m 

machines in such a way to minimize the makespan. Without 

loss of generality, we assume that the processing times are 

integers. Also, all jobs and machines are available at time 

zero, and no job preemption is allowed. A schedule is 

represented by an m-partition S = {  , ...,   , ...,   } of the 

set J, where    is the subset of jobs assigned to machine i, i 

= 1, ..., m. Thus, the total processing time of job subset   , 

T(  ), is        
 and the completion time for    is C(  ) = 

        . The makespan for schedule S, Cmax(S), is equal 

to           {C(  )}. An optimal schedule is defined as one 

where its makespan is at the minimum.  Q||Cmax is known 

to be strongly NP-Hard for m ≥ 2, see [2].  

The classical Longest Processing Time (LPT) heuristic 

was developed by Graham [3] initially for solving the 

scheduling   problem    of   independent   jobs  on   equivalent  
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machines, denoted by P||Cmax, see [1]. Gonzalez, Ibarra, 

and Sahni [4] adapted the LPT heuristic for solving 

Q||Cmax; their LPT heuristic considers the jobs sorted in 

non-increasing order with respect to the processing times, 

and iteratively assigns each job to the machine on which it 

will complete first. Gonzalez, Ibarra, and Sahni [4], Dobson 

[5], and Friesen [6] discussed the worst-case bounds of the 

LPT heuristic on multiple uniform machines. Mireault, 

Orlin, and Vohra [7] found the worst-case bound of LPT as 

an explicit function of the ratio of machine speeds for two 

uniform machines. Massabó, Paletta, and Ruiz-Torres [8] 

developed a posterior worst-case bound of the LPT 

algorithm for two uniform machines. Friesen and Langston 

[9] and Chen [10] analyzed the worst-case bounds of 

MULTIFIT scheduling on uniform processors. Koulamas 

and Kyparisis [11] studied the LPT algorithm for Q2||Cmax 

when the k longest jobs are first scheduled optimally, and 

then the remaining jobs are scheduled according to the LPT 

algorithm. 

Horowitz and Sahni [12] developed a dynamic 

programming algorithm to derive the optimal solution; 

however, it has an exponential time complexity in the worst 

case. Hochbaum and Shmoys [13] presented a polynomial 

approximation scheme for the problem. The papers by Lin 

and Liao [14] and Liao and Lin [15] proposed optimal 

solution algorithms, based on lexicographic search, to solve 

the two-machine and the multiple machines cases, 

respectively. 

We propose a Modified Longest Processing Time 

(MLPT) algorithm and an Iterated Local Search (ILS) 

algorithm for solving uniform parallel machine scheduling 

problem with minimum makespan objective. MLPT 

modifies the Longest Processing Time (LPT) algorithm of 

Gonzalez, Ibarra, and Sahni [4]. The main difference is in 

the rule used to assign the job subsets   , i = 1, ..., m, to the 

machines. In our algorithm the assignment of job subsets   , 

i = 1, ..., m, can change if it involves an improvement of the 

makespan; where s in Gonz lez, Ib rr ,  nd S hni’s LPT 

algorithm each    is always assigned to the machine   . ILS 

is an improvement procedure, using MLPT as the seed 

solution. We evaluate the effectiveness of the proposed 

procedures through a large-scale computational study. The 

computational results show that the MLPT algorithm is able 

to reduce the average error, to increase the number of 

optimal solutions, and to find a larger number of best 

solutions with respect to the LPT algorithm. Moreover, the 

ILS algorithm significantly reduces the average error and 

provides optimal solutions in over 80% of the tested 

instances.  

The rest of this paper is organized as follows. A new 

Modified Longest Processing Time (MLPT) algorithm is 

proposed in Section 2 and an Iterated Local Search (ILS) 
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algorithm is proposed in Section 3. The results of a 

computational experimentation are reported in Section 4. 

II. A MODIFIED LPT ALGORITHM 

The basic idea of this procedure is that when a job is 

assigned to the machine on which it will complete first, an 

improvement can be obtained by exchanging the job sets 

between two machines. MLPT(S) considers the jobs sorted 

in non-increasing order with respect to the processing times, 

and iteratively it: 

 assigns each job to one of the m job subsets, and 

 reassigns the job subsets to the machines if necessary 

with the objective of minimizing the makespan. 

This procedure is a modified version of the Gonzalez, 

Ibarra, and Sahni’s LPT algorithm. The main difference is in 

the rule used to assign the job subsets Si, i = 1, ..., m, to the 

machines. In our algorithm the assignment of job subsets Si, 

i = 1, ..., m, can change if it involves an improvement of the 

makespan; whereas in Gonzalez, Ibarra, and Sahni’s LPT  

algorithm each Si is always assigned to the machine Mi. 

Formally, the procedure can be described as follows. 

 

MLPT(S) Procedure 

 Sort the jobs in non-increasing order with respect to pj, 

j = 1, ..., n. Set Si =   for each i = 1, ..., m. Initialize 

Cmax(S) = 0. 

 For j = 1 to n: 

- Find i∗ = arg mini=1,...,m 
        

  
 . If assigning job j 

to machine i∗ does not change the current 

makespan, Cmax(S), then set Si* = Si*   {j}; 

otherwise, 

- Compute (i∗, l∗) = arg mini=1,...,m{maxl=1,...,m 

 
        

  
 
     

  
 } and assign the job j to the machine 

i∗ by setting Si* = Si*  {j}. If i∗ ≠ l∗, then exchange 

Si* with Sl*. Update Cmax(S). 

End for. 

 Return S. 

III. ITERATED LOCAL SEARCH ALGORITHM 

An Iterated Local Search algorithm, see Lourenço, 

Martin, and Stützle [16, 17], is based on building a sequence 

of locally optimal solutions by using the following 

framework: 

 

a.  Generate an initial solution.  

b. Use a local search procedure to improve the initial 

solution.  

c.  Repeat 

- Perturb the local optimum solution to obtain a new 

starting solution; 

-  Use a local search procedure to improve the 

starting solution; 

- Use an acceptance criterion to determine from 

which solution the search of new starting point 

should continue;  

Until termination condition is met. 

 

Following these ideas, our algorithm constructs the initial 

solution by the MLPT(S) procedure and improves by 

applying the local search procedure LS(S). Then, it 

iteratively perturbs the current local optimum solution S in 

order to obtain a new starting solution   , and generates a 

new local optimum solution    by using LS(S). The best of S 

and    is chosen as the current local optimum solution S. 

Thus, the perturbation is always performed on the best 

current solution S of a given iteration (acceptance criterion). 

Two perturbation procedures are considered with the aim of 

leading to the exploration of regions of the solution space 

not previously visited.  These procedures, referred to as 

First Diversification Procedure (FDP(S,  ,h)) and Second 

Diversification Procedure (SDP(S,  ,h)), perturb the current 

local optimum solution S by obtaining a new starting 

solution    in function of the parameter h, 1 ≤ h ≤ m. The 

algorithm terminates when no improvement is realized after 

m iterations, or when a lower bound is achieved. The lower 

bound LB[P −W] determined by Lin and Liao [14] is used in 

the termination test of the algorithm. For the sake of 

completeness the lower bound LB[P−W] is described as 

follows. Let’s consider P =         , S =         ,    = 

       , W =         , and K = (P − W). Compute LB[0] = 

P/S, and LBi,k  = (wi + k)/si for i = 1, ..., m and k = 1, ..., K. 

Sort the LBi,k , i = 1, ..., m and k = 1, ..., K and denote the 

sorted sequence by LB[0] ≤ LB[1] ≤ LB[2] ≤ ... ≤ LB[K] ≤ ... ≤ 

LB[mK]. LB[P −W] is a lower bound on makespan for Q||Cmax. 

The following is a general schema of the proposed ILS(S) 

algorithm. 

 

ILS(S) Algorithm 

Step 0. Perform MLPT(S) to obtain a feasible solutions S = 

{S1, ...,Si, ..., Sm}. If Cmax(S) = LB[P −W], then go to 

Step 6. 

Step 1. Perform LS(S). If Cmax(S) = LB[P −W], then go to Step 

6. 

Step 2. Set h = 1.  

Step 3. Repeat 

a. Perform FDP(S,   ,h);  

b. Perform LS(  ): 
If Cmax(S) > Cmax(  ) then set S =    and if Cmax(S) 

= LB[P −W] then go to Step 6; otherwise, return to 

Step 2; 

If Cmax(S) ≤ Cmax(  ) then set h = h + 1;  

Until h ≤ m. 

Step 4. Set h = 1. 

Step 5. Repeat 

a. Perform (SDP(S,   ,h)); 

b. Perform LS(  ): 
If Cmax(S) > Cmax(  ) then set S =    and if Cmax(S) 

= LB[P −W] then go to Step 6; otherwise, return 

Step 4; 

If Cmax(S) ≤ Cmax(  ) then set h = h + 1; 

Until h ≤ m. 

Step 6. Return S = {S1, ..., Sm} and Cmax(S). 

 

Details of the LS(S), FDP(S,  ,h), and SDP(S,  ,h) procedures 

are available from the authors upon request. 

IV. COMPUTATIONAL RESULTS 

The proposed algorithms were implemented in Fortran 

and all experiments conducted on a personal computer with 

an Intel Core i5 processor. A large number of experiments 

are conducted to test the effectiveness of the proposed 

heuristics. Four experimental parameters, consistent with 

previous experiments by Lin and Liao [14], are considered: 
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(i) the ratio of the number of jobs to the number of 

machines, n/m;  

(ii) number of machines m; 

(iii) job processing requirements pj; and  

(iv) machine speeds si. 

 

Four levels are analyzed for the number of machines 

factor: 3, 4, 5, and 10. Ten levels are analyzed for the n/m 

ratio factor: 2, 3, 4, 5, 10, 20, 30, 40, 50, and 100. The 

integer processing requirements of the jobs were randomly 

generated from a discrete uniform distribution U(1, pmax) 

and we consider four levels for the pmax factor: 25, 50, 100, 

and 200. Finally, machine speeds were randomly generated 

from a uniform distribution U(1, smax) and we consider three 

values for the smax factor: 3, 5, and 7. It is noted that for each 

problem instance the generated speed values were rounded 

off to three decimal places. There are a total of 480 

experimental combinations, and for each combination 100 

replications were made. Hence, we reported the results of 

the total 48,000 instances. Specifically, there are 4,800 

instances for each value of n/m, 12,000 instances for each 

value of m and for each value of pmax, and 16,000 instances 

for each value of smax.  

The performances of the heuristics have been evaluated 

with respect to Lin  nd Li o’s lower bound LB[P −W]. We 

define the following measures: 

 

e%: the average percentage relative error with respect to 

the lower bound and averaged on the number of 

instances for the corresponding parameter. 

o%: the percentage of the number of instances (out of all 

the instances of the corresponding parameter) that 

have been solved to optimality. 

b%: the percentage of the number of times (out of the 

number of instances of the corresponding parameter) 

that the heuristic gives a solution better than the other. 

 

Our computational results show that heuristics LPT and 

MLPT determine about the same percentage of optimal 

solutions for the complete problem set: MLPT finds the 

optimal solution in at least the 36.302% of the instances 

(corresponding to 17,425 of the 48,000 instances); whereas 

LPT finds the optimum in at least the 35.521% of the 

instances (corresponding to 17,050 of the 48,000 instances). 

The overall average relative error of MLPT is 1.162%, while 

for LPT is 1.540%. The percentage of time that MLPT gives 

a solution better than the LPT heuristic is the 35.250% of the 

instances (corresponding to 16,920 of the 48,000 instances); 

whereas the number of times that LPT gives a better solution 

than MLPT is 23.058% of the instances (corresponding to 

11,068 of the 48,000 instances). In the remaining instances, 

MLPT and LPT give the same solution. These results 

demonstrate that the MLPT heuristic in general outperforms 

the LPT approach. As can be noted, computational times are 

insignificant as solving all 48,000 instances only required 

15.7 seconds for MLPT (and less for LPT). 

The results indicate that heuristic performance was 

sensitive to three of the experimental factors: pmax, n/m, and 

m. The experimental factor smax does not seem to have an 

effect on heuristic performance for any of the three relevant 

measures of performance (e%, o%, and b%). 

For both LPT and MLPT, as pmax increased the error e% 

increased, the percentage of optimal solutions o% decreased, 

and the percentage of times a heuristic dominated the other 

b% increased. These results seem to indicate that as pmax 

increased the problems became more difficult (higher error 

and less optimal solutions) and each approach generated 

different solutions (one heuristic dominated the other). As 

the n/m ratio increased, the error percentage e% for both 

heuristics decreased, with the relative difference being 

notable at low levels of the n/m ratio.  

Regarding the performance of the LS and ILS algorithms, 

the computational results demonstrate that LS finds the 

optimal solution in at least 75.82% of the instances with an 

overall average relative error of 0.44%, greatly improving 

the performance of the algorithm MLPT. Furthermore, ILS 

finds the optimal solution in at least 83.96% of the instances 

with an overall average relative error of 0.336%. The time 

required to solve all 48,000 instances is still relatively 

insignificant for both LS and ILS at less 69.9 and 132.3 

seconds, respectively. 
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