

Abstract—A new Modified Longest Processing Time

algorithm and an Iterated Local Search algorithm are

developed for the scheduling problem in which independent

jobs are nonpreemptively scheduled on uniform parallel

machines with the objective of minimizing the makespan, i.e.,

the completion time of the last job. Our computational results

show that the Modified Longest Processing Time algorithm is

able to reduce the average error, to increase the number of

optimal solutions, and to determine a greater number of best

solutions with respect to the Longest Processing Time

algorithm. Furthermore, the Iterated Local Search algorithm

is shown to be effective in reducing the average error

significantly and yielding optimal solutions in over 80% of the

tested instances.

Index Terms—scheduling, uniform parallel machines,

longest processing time algorithm, iterated local search

algorithm

I. INTRODUCTION

This paper considers the uniform machine scheduling

problem, denoted by Q||Cmax [1]. Given n independent jobs

J = {1, ..., j, ..., n} with processing times such that ≥ ...

≥ ≥ ... ≥ and m uniform machines M = {1, ..., i, ..., m}

with processing speed such that ≥ ... ≥ ≥ ... ≥ = 1,

the objective of Q||Cmax is to assign the n jobs to the m

machines in such a way to minimize the makespan. Without

loss of generality, we assume that the processing times are

integers. Also, all jobs and machines are available at time

zero, and no job preemption is allowed. A schedule is

represented by an m-partition S = { , ..., , ..., } of the

set J, where is the subset of jobs assigned to machine i, i

= 1, ..., m. Thus, the total processing time of job subset ,

T(), is
 and the completion time for is C() =

 . The makespan for schedule S, Cmax(S), is equal

to {C()}. An optimal schedule is defined as one

where its makespan is at the minimum. Q||Cmax is known

to be strongly NP-Hard for m ≥ 2, see [2].

The classical Longest Processing Time (LPT) heuristic

was developed by Graham [3] initially for solving the

scheduling problem of independent jobs on equivalent

Manuscript received September 29, 2017; revised December 10, 2017.
Domenico De Giovanni is with Dipartimento di Economia e Statistica,

Università della Calabria, 87036 Arcavacata di Rende (CS), Italy (e-mail:

domenico.degiovanni@unical.it).
Johnny C. Ho is with Department of Management and Marketing,

Turner College of Business, Columbus State University, Columbus, GA,

31907, USA (e-mail: ho_johnny@columbusstate.edu).
Giuseppe Paletta is with Dipartimento di Economia e Statistica,

Università della Calabria, 87036 Arcavacata di Rende (CS), Italy (e-mail:

giuseppe.paletta@unical.it).
Alex J. Ruiz-Torres is with Departamento de Gerencia, Facultad de

Administración de Empresas, Universidad de Puerto Rico–Rio Piedras, San

Juan, PR, 00931-3332, USA (e-mail: alex.ruiztorres@uprrp.edu).

machines, denoted by P||Cmax, see [1]. Gonzalez, Ibarra,

and Sahni [4] adapted the LPT heuristic for solving

Q||Cmax; their LPT heuristic considers the jobs sorted in

non-increasing order with respect to the processing times,

and iteratively assigns each job to the machine on which it

will complete first. Gonzalez, Ibarra, and Sahni [4], Dobson

[5], and Friesen [6] discussed the worst-case bounds of the

LPT heuristic on multiple uniform machines. Mireault,

Orlin, and Vohra [7] found the worst-case bound of LPT as

an explicit function of the ratio of machine speeds for two

uniform machines. Massabó, Paletta, and Ruiz-Torres [8]

developed a posterior worst-case bound of the LPT

algorithm for two uniform machines. Friesen and Langston

[9] and Chen [10] analyzed the worst-case bounds of

MULTIFIT scheduling on uniform processors. Koulamas

and Kyparisis [11] studied the LPT algorithm for Q2||Cmax

when the k longest jobs are first scheduled optimally, and

then the remaining jobs are scheduled according to the LPT

algorithm.

Horowitz and Sahni [12] developed a dynamic

programming algorithm to derive the optimal solution;

however, it has an exponential time complexity in the worst

case. Hochbaum and Shmoys [13] presented a polynomial

approximation scheme for the problem. The papers by Lin

and Liao [14] and Liao and Lin [15] proposed optimal

solution algorithms, based on lexicographic search, to solve

the two-machine and the multiple machines cases,

respectively.

We propose a Modified Longest Processing Time

(MLPT) algorithm and an Iterated Local Search (ILS)

algorithm for solving uniform parallel machine scheduling

problem with minimum makespan objective. MLPT

modifies the Longest Processing Time (LPT) algorithm of

Gonzalez, Ibarra, and Sahni [4]. The main difference is in

the rule used to assign the job subsets , i = 1, ..., m, to the

machines. In our algorithm the assignment of job subsets ,

i = 1, ..., m, can change if it involves an improvement of the

makespan; where s in Gonz lez, Ib rr , nd S hni’s LPT

algorithm each is always assigned to the machine . ILS

is an improvement procedure, using MLPT as the seed

solution. We evaluate the effectiveness of the proposed

procedures through a large-scale computational study. The

computational results show that the MLPT algorithm is able

to reduce the average error, to increase the number of

optimal solutions, and to find a larger number of best

solutions with respect to the LPT algorithm. Moreover, the

ILS algorithm significantly reduces the average error and

provides optimal solutions in over 80% of the tested

instances.

The rest of this paper is organized as follows. A new

Modified Longest Processing Time (MLPT) algorithm is

proposed in Section 2 and an Iterated Local Search (ILS)

Heuristics for Scheduling Uniform Machines

Domenico De Giovanni, Johnny C. Ho, Giuseppe Paletta, and Alex J. Ruiz-Torres

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

algorithm is proposed in Section 3. The results of a

computational experimentation are reported in Section 4.

II. A MODIFIED LPT ALGORITHM

The basic idea of this procedure is that when a job is

assigned to the machine on which it will complete first, an

improvement can be obtained by exchanging the job sets

between two machines. MLPT(S) considers the jobs sorted

in non-increasing order with respect to the processing times,

and iteratively it:

 assigns each job to one of the m job subsets, and

 reassigns the job subsets to the machines if necessary

with the objective of minimizing the makespan.

This procedure is a modified version of the Gonzalez,

Ibarra, and Sahni’s LPT algorithm. The main difference is in

the rule used to assign the job subsets Si, i = 1, ..., m, to the

machines. In our algorithm the assignment of job subsets Si,

i = 1, ..., m, can change if it involves an improvement of the

makespan; whereas in Gonzalez, Ibarra, and Sahni’s LPT

algorithm each Si is always assigned to the machine Mi.

Formally, the procedure can be described as follows.

MLPT(S) Procedure

 Sort the jobs in non-increasing order with respect to pj,

j = 1, ..., n. Set Si = for each i = 1, ..., m. Initialize

Cmax(S) = 0.

 For j = 1 to n:

- Find i∗ = arg mini=1,...,m

 . If assigning job j

to machine i∗ does not change the current

makespan, Cmax(S), then set Si* = Si* {j};

otherwise,

- Compute (i∗, l∗) = arg mini=1,...,m{maxl=1,...,m

 } and assign the job j to the machine

i∗ by setting Si* = Si* {j}. If i∗ ≠ l∗, then exchange

Si* with Sl*. Update Cmax(S).

End for.

 Return S.

III. ITERATED LOCAL SEARCH ALGORITHM

An Iterated Local Search algorithm, see Lourenço,

Martin, and Stützle [16, 17], is based on building a sequence

of locally optimal solutions by using the following

framework:

a. Generate an initial solution.

b. Use a local search procedure to improve the initial

solution.

c. Repeat

- Perturb the local optimum solution to obtain a new

starting solution;

- Use a local search procedure to improve the

starting solution;

- Use an acceptance criterion to determine from

which solution the search of new starting point

should continue;

Until termination condition is met.

Following these ideas, our algorithm constructs the initial

solution by the MLPT(S) procedure and improves by

applying the local search procedure LS(S). Then, it

iteratively perturbs the current local optimum solution S in

order to obtain a new starting solution , and generates a

new local optimum solution by using LS(S). The best of S

and is chosen as the current local optimum solution S.

Thus, the perturbation is always performed on the best

current solution S of a given iteration (acceptance criterion).

Two perturbation procedures are considered with the aim of

leading to the exploration of regions of the solution space

not previously visited. These procedures, referred to as

First Diversification Procedure (FDP(S, ,h)) and Second

Diversification Procedure (SDP(S, ,h)), perturb the current

local optimum solution S by obtaining a new starting

solution in function of the parameter h, 1 ≤ h ≤ m. The

algorithm terminates when no improvement is realized after

m iterations, or when a lower bound is achieved. The lower

bound LB[P −W] determined by Lin and Liao [14] is used in

the termination test of the algorithm. For the sake of

completeness the lower bound LB[P−W] is described as

follows. Let’s consider P = , S = , =

 , W = , and K = (P − W). Compute LB[0] =

P/S, and LBi,k = (wi + k)/si for i = 1, ..., m and k = 1, ..., K.

Sort the LBi,k , i = 1, ..., m and k = 1, ..., K and denote the

sorted sequence by LB[0] ≤ LB[1] ≤ LB[2] ≤ ... ≤ LB[K] ≤ ... ≤

LB[mK]. LB[P −W] is a lower bound on makespan for Q||Cmax.

The following is a general schema of the proposed ILS(S)

algorithm.

ILS(S) Algorithm

Step 0. Perform MLPT(S) to obtain a feasible solutions S =

{S1, ...,Si, ..., Sm}. If Cmax(S) = LB[P −W], then go to

Step 6.

Step 1. Perform LS(S). If Cmax(S) = LB[P −W], then go to Step

6.

Step 2. Set h = 1.

Step 3. Repeat

a. Perform FDP(S, ,h);

b. Perform LS():
If Cmax(S) > Cmax() then set S = and if Cmax(S)

= LB[P −W] then go to Step 6; otherwise, return to

Step 2;

If Cmax(S) ≤ Cmax() then set h = h + 1;

Until h ≤ m.

Step 4. Set h = 1.

Step 5. Repeat

a. Perform (SDP(S, ,h));

b. Perform LS():
If Cmax(S) > Cmax() then set S = and if Cmax(S)

= LB[P −W] then go to Step 6; otherwise, return

Step 4;

If Cmax(S) ≤ Cmax() then set h = h + 1;

Until h ≤ m.

Step 6. Return S = {S1, ..., Sm} and Cmax(S).

Details of the LS(S), FDP(S, ,h), and SDP(S, ,h) procedures

are available from the authors upon request.

IV. COMPUTATIONAL RESULTS

The proposed algorithms were implemented in Fortran

and all experiments conducted on a personal computer with

an Intel Core i5 processor. A large number of experiments

are conducted to test the effectiveness of the proposed

heuristics. Four experimental parameters, consistent with

previous experiments by Lin and Liao [14], are considered:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

(i) the ratio of the number of jobs to the number of

machines, n/m;

(ii) number of machines m;

(iii) job processing requirements pj; and

(iv) machine speeds si.

Four levels are analyzed for the number of machines

factor: 3, 4, 5, and 10. Ten levels are analyzed for the n/m

ratio factor: 2, 3, 4, 5, 10, 20, 30, 40, 50, and 100. The

integer processing requirements of the jobs were randomly

generated from a discrete uniform distribution U(1, pmax)

and we consider four levels for the pmax factor: 25, 50, 100,

and 200. Finally, machine speeds were randomly generated

from a uniform distribution U(1, smax) and we consider three

values for the smax factor: 3, 5, and 7. It is noted that for each

problem instance the generated speed values were rounded

off to three decimal places. There are a total of 480

experimental combinations, and for each combination 100

replications were made. Hence, we reported the results of

the total 48,000 instances. Specifically, there are 4,800

instances for each value of n/m, 12,000 instances for each

value of m and for each value of pmax, and 16,000 instances

for each value of smax.

The performances of the heuristics have been evaluated

with respect to Lin nd Li o’s lower bound LB[P −W]. We

define the following measures:

e%: the average percentage relative error with respect to

the lower bound and averaged on the number of

instances for the corresponding parameter.

o%: the percentage of the number of instances (out of all

the instances of the corresponding parameter) that

have been solved to optimality.

b%: the percentage of the number of times (out of the

number of instances of the corresponding parameter)

that the heuristic gives a solution better than the other.

Our computational results show that heuristics LPT and

MLPT determine about the same percentage of optimal

solutions for the complete problem set: MLPT finds the

optimal solution in at least the 36.302% of the instances

(corresponding to 17,425 of the 48,000 instances); whereas

LPT finds the optimum in at least the 35.521% of the

instances (corresponding to 17,050 of the 48,000 instances).

The overall average relative error of MLPT is 1.162%, while

for LPT is 1.540%. The percentage of time that MLPT gives

a solution better than the LPT heuristic is the 35.250% of the

instances (corresponding to 16,920 of the 48,000 instances);

whereas the number of times that LPT gives a better solution

than MLPT is 23.058% of the instances (corresponding to

11,068 of the 48,000 instances). In the remaining instances,

MLPT and LPT give the same solution. These results

demonstrate that the MLPT heuristic in general outperforms

the LPT approach. As can be noted, computational times are

insignificant as solving all 48,000 instances only required

15.7 seconds for MLPT (and less for LPT).

The results indicate that heuristic performance was

sensitive to three of the experimental factors: pmax, n/m, and

m. The experimental factor smax does not seem to have an

effect on heuristic performance for any of the three relevant

measures of performance (e%, o%, and b%).

For both LPT and MLPT, as pmax increased the error e%

increased, the percentage of optimal solutions o% decreased,

and the percentage of times a heuristic dominated the other

b% increased. These results seem to indicate that as pmax

increased the problems became more difficult (higher error

and less optimal solutions) and each approach generated

different solutions (one heuristic dominated the other). As

the n/m ratio increased, the error percentage e% for both

heuristics decreased, with the relative difference being

notable at low levels of the n/m ratio.

Regarding the performance of the LS and ILS algorithms,

the computational results demonstrate that LS finds the

optimal solution in at least 75.82% of the instances with an

overall average relative error of 0.44%, greatly improving

the performance of the algorithm MLPT. Furthermore, ILS

finds the optimal solution in at least 83.96% of the instances

with an overall average relative error of 0.336%. The time

required to solve all 48,000 instances is still relatively

insignificant for both LS and ILS at less 69.9 and 132.3

seconds, respectively.

REFERENCES

[1] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,

“Optimization and approximation in deterministic sequencing and

scheduling: A survey,” Annals of Discrete Mathematics, vol. 5, pp.
287–326, 1979.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W. H. Freeman,

1979.

[3] R. L. Gr h , “Bounds on multiprocessing ti ing no lies,” SIAM
Journal on Applied Mathematics, vol. 17, pp. 416–429, 1969.

[4] T. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for LPT schedules

on uniform processors,” SIAM Journal on Computing, vol. 6, pp.
155–166, 1977.

[5] G. Dobson, “Scheduling independent t sks on unifor processors,”

SIAM Journal on Computing, vol. 13, pp. 705–716, 1984.

[6] D. K. Friesen, “Tighter bounds for LPT scheduling on uniform

processors,” SIAM Journal on Computing, vol. 16, pp. 554–560,

1987.
[7] P. Mireault, J. B. Orlin, and R. V. Vohra, “A parametric worst case

analysis of the LPT heuristic for two unifor chines,” Operations

Research, vol. 45, pp. 116–125, 1997.
[8] I. Massabó, G, Paletta, and A. J. Ruiz-Torres, “A note on longest

processing time algorithms for the two uniform parallel machine

makespan mini iz tion proble ,” Journal of Scheduling, vol. 19, pp.
207–211, 2016.

[9] D. K. Friesen, and M. A. Langston, “Bounds for MULTIFIT

scheduling on unifor processors,” SIAM Journal on Computing,
vol.12, pp. 60–70, 1983.

[10] B. Chen, “Tighter bound for MULTIFIT scheduling on uniform

processors,” Discrete Applied Mathematics, vol. 31, pp. 227–260,
1991.

[11] C. Koulamas and G. J. Kyparisis, “A modified LPT algorithm for the

two uniform parallel machine kesp n ini iz tion proble ,”
European Journal Operational Research, vol. 196, pp. 61–68, 2009.

[12] E. Horowitz and S. Sahni, “Exact and approximate algorithms for

scheduling non-identical processors,” Journal of the ACM, vol. 23,
pp. 317–327, 1976.

[13] D. S. Hochbaum and D. B. Shmoys, “A polynomial approximation

scheme for scheduling on uniform processors: using the dual
approximation appro ch,” SIAM Journal on Computing, vol. 17, pp.

539–551, 1988.

[14] C. H. Lin and C. J. Liao, “Makespan minimization for multiple
unifor chines,” Computing and Industrial Engineering, vol. 54,

pp. 983–992, 2008.

[15] C. J. Liao and C. H. Lin, “Makespan minimization for two uniform
p r llel chines,” International Journal of Production Economics,

vol. 84, pp. 205–213, 2003.

[16] H. R. Lourenço, O. Martin, and T. Stützle, “Iterated Local Search:
Framework and Applic tions,” Handbook of Metaheuristics, 2nd.

Edition, International Series in Operations Research & Management

Science, Kluwer Academic Publishers, vol. 146, pp. 363–397, 2010.
[17] H. R. Lourenço, O. Martin, and T. Stützle, “Iterated Local Search.

Handbook of Metaheuristics,” Handbook of Metaheuristics,

International Series in Operations Research & Management Science,
Kluwer Academic Publishers, vol. 57, pp. 321–353, 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

