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Abstract—The main theorems of this paper, which extend the
previous generalizations of α-matrices, provide some criteria for
nonsingular H-matrices by the theories of non-strict α-matrices
with nonzero elements chain. Meanwhile, the effectiveness of the
result is illustrated by one numerical example.

Index Terms—nonzero elements chain, H-matrices, α-
matrices, non-strict α-matrices.

I. INTRODUCTION

NONSINGULAR H-matrices arise in many practical
applications, such as the Linear Complementarity Prob-

lem (LCP, see [1]), the numerical solution of Euler equations
in fluid dynamics and many other problems. Thus, how to
investigate criteria for H-matrices is of great significance.
However, in most of the cases, it is not practical to answer
this question by using the classical definitions. In this paper,
we extend the previous generalizations of α-matrices and
give some criteria for nonsingular H-matrices based on the
theories of non-strictly α-matrices with nonzero elements
chain, which are easier to check than the original definitions.

First, we will recall some notations and definitions. Con-
sider the set of the first n positive integers denoted by N ={
1, 2, . . . , n

}
and the pair set M =

{
(i, j) : i ̸= j; i, j ∈ N

}
.

Let Cm×n (Rn×n) denote the set of all n × n, complex
(real) matrices. For A = [aij ] ∈ Cn×n (n ≥ 2), we write

Ri = Ri(A) =
n∑

j ̸=i

| aij | (i ∈ N) the ith deleted absolute

row sums and Ci = Ci(A) =
n∑

j ̸=i

| |aji | (i ∈ N) the

ith deleted absolute column sums of A, for the sake of
simplicity. A = [aij ] ∈ Cn×n is a (row) diagonally dominant
matrix (D) if | aii |≥ Ri, ∀i ∈ N, and A is further said
to be a strictly (row) diagonally dominant matrix (SD) if
| aii |> Ri, ∀i ∈ N.

The comparison matrix of a given matrix A = [aij ] ∈
Cn×n, denoted by µ(A) = (µij), is defined by

µij =

{
|aij |, i = j;
−|aij |, i ̸= j.

If A = µ(A), and can be written in the form A = βI −P
where P is a nonnegative matrix and β > ρ(A), the spectral
radius of A, we call A a (nonsingular) M -matrix. We say A
is a (nonsingular) H-matrix if µ(A) is an M -matrix. Since
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well-known characterization of H-matrices is given by the
fact that a matrix A is an H-matrix if and only if there exists
a positive diagonal matrix X = diag (x1, x2, . . . , xn), such

that AX ∈ SD (i.e., xi | aii |> xj

n∑
j ̸=i

|aij |, i ∈ N ). So, we

assume that aii ̸= 0 for all i ∈ N during this paper.
Next, we will present some already known subclasses of

H-matrix.
The first result is the well-known Lévy-Desplanques The-

orem (see[2], [3]).
Lemma 1.1. Let A = [aij ] ∈ Cn×n, n ≥ 2. If A ∈ SD,

then A is nonsingular, more over A is an H-matrix.
Many generalizations of Lévy-Desplanques Theorem have

occurred in the literature. Ostrowski (see [4]) extended the
Lemma 1.1 by using generalized geometric means of row
and column sums as are given below.

Lemma 1.2. Let A = [aij ] ∈ Cn×n, n ≥ 2, and let

| aii | > Rα
i C

1−α
i , (i ∈ N),

hold for some α ∈ [0, 1], then A is nonsingular, more over
A is an H-matrix.

From the generalized arithmetic-geometric mean inequal-
ity (see [5])

ατ + (1− α)σ ≥ τασ1−α, (1)

where σ, τ ≥ 0, α ∈ [0, 1], with equality holding for τ = σ
or α = 0, else or α = 1, the following results were given in
[5] .

Lemma 1.3. Let A = [aij ] ∈ Cn×n, n ≥ 2, and let

| aii | > αRi + (1− α)Ci, (i ∈ N),

hold for some α ∈ [0, 1], then A is nonsingular, more over
A is an H-matrix.

The matrices that fulfill conditions of the Lemma 1.2 are
known as (strict) α2-matrices , while (strict) α1-matrices
are the matrices that fulfill conditions of the Lemma 1.3,
respectively.

Authors extended the Lemmas 1.1, 1.2 and 1.3 by letting
all but at least one of the considered inequalities not to be
strict with irreducible matrices (see [6], [7] and [8]).

In what follows, we are interested in the fact: the matrices
remain to be H-matrices if we change the irreducibility with
the existence of nonzero element chains. P. N. Shivakumar
and K. H. Chew [9] introduced the most basic concept of
diagonally dominant matrix associated with nonzero element
chains as follows.

Lemma 1.4. A = [aij ] ∈ Cn×n, n ≥ 2, is called a
diagonally dominant matrix with nonzero elements chain
if | aii |≥ Ri, ∀i ∈ N, at least one strict inequality
holds, and for every vertex i with | aii |= Ri there exists
a nonzero elements chain aij1 , aj1j2 , . . . , ajk−1jk such that
| ajkk

|> Rjk .
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It is well known that a diagonally dominant matrix with
nonzero elements chain is an H-matrix ([1], [9]).

II. NON-STRICT α-MATRICES WITH NONZERO ELEMENTS
CHAIN

We call α1-matrices and α2-matrices as α(alpha)-matrices.
It is well known that the class of α-matrices play a central
role in identifying H-matrices, and characterizations of α-
matrices were given in [5] and [10]. Non-strict α-matrices
with nonzero elements chain are extension of α-matrices. So,
we will start this section with its definitions.

Definition 2.1. A matrix A = [aij ] ∈ Cn×n, n ≥ 2, is said
to be a non-strict α2-matrix with nonzero elements chain if
there exists α ∈ [0, 1], such that

| aii | ≥ Rα
i C

1−α
i , (∀ i ∈ N),

and for each vertex i of A with | aii | = Rα
i C

1−α
i , there

exists a nonzero elements chain aii1 , ai1i2 , . . . , aigj such that

j ∈ J = {i ∈ N| :| aii | > Rα
i C

1−α
i } ̸= ∅.

Definition 2.2. A matrix A = [aij ] ∈ Cn×n, n ≥ 2, is said
to be a non-strict α1-matrix with nonzero elements chain if
there exists α ∈ [0, 1], such that

| aii | ≥ αRi + (1− α)Ci, (∀ i ∈ N),

and for each vertex i of A with | aii | = αRi + (1− α)Ci,
there exists a nonzero elements chain aii1 , ai1i2 , . . . , aikj
such that

j ∈ J0 = {i ∈ N| :| aii | > αRi + (1− α)Ci} ̸= ∅.

As shown in [11], non-strict α2-matrices with nonzero
elements chain are nonsingular, moreover are subclass of H-
matrices. And by the generalized arithmetic-geometric mean
inequality (1), we easily get that non-strict α1-matrices with
nonzero elements chain are nonsingular, and are subclass of
H-matrices, too.

The following notations are useful in the sequel.

ℜ0 = {i| : Ri > Ci, i ∈ N};

C0 = {i| : Ci > Ri, i ∈ N};

ε0 = {i| : Ci = Ri, i ∈ N}.

Then, the following theorems hold.
Theorem 2.1. A matrix A = [aij ] ∈ Cn×n, n ≥ 2,

satisfies the following three conditions:
(i) | aii | ≥ min{Ri, Ci} for all i ∈ N;

(ii)

logRi
Ci

| aii |
Ci

≥ logCj
Rj

Cj

| ajj |
, (2)

for all i ∈ ℜ0 \ {l : Cl = 0}, and for all j ∈ C0 \ {l :
Rl = 0};

(iii) for each vertex s ∈ N with | ass | = Rs = Cs, and
each vertex i ∈ ℜ0, j ∈ C0 with

logRi
Ci

| aii |
Ci

= logCj
Rj

Cj

| ajj |
, (3)

if they exist, there are three nonzero elements
chains ass1 , as1s2 , . . . , askp; aii1 , ai1i2 , . . . ailq and
ajj1 , aj1j2 , . . . , ajmt such that

p, q, t ∈ J ′ = {i ∈ ℜ0| : logRi
Ci

|aii|
Ci

> logCj
Rj

Cj

|ajj | ,

j ∈ C0} ̸= ∅.
(4)

Then A is nonsingular, more over A is an H-matrix.
Proof: For each i ∈ ε0, condition (i) directly implies

the inequality | aii | ≥ Rα
i C

1−α
i for any α ∈ [0, 1], with

equality holding only for | aii |= Ri = Ci. Recalling the
assumption that aii ̸= 0 for all i ∈ N during this paper, then
for i ∈ ℜ0 such that Ci = 0, or i ∈ C0 such that Ri = 0,
inequality | aii | > Rα

i C
1−α
i for any α ∈ (0, 1), follows

immediately. Thus, it remains to show that | aii | ≥ Rα
i C

1−α
i

holds for vertexes from the set ℜ0 \ {l : Cl = 0} and the set
C0 \ {l : Rl = 0}.

Next, we consider the following two cases.
Case 1. If for all i ∈ ℜ0\{l : Cl = 0}, and all j ∈ C0\{l :

Rl = 0},

logRi
Ci

| aii |
Ci

> logCj
Rj

Cj

| ajj |
. (5)

Noting that for each i ∈ ℜ0 \ {l : Cl = 0}, we have
Ri > Ci, i.e., Ri

Ci
> 1, and, thus by condition (i), leads to

| aii |≥ Ci, i.e., |aii|
Ci

≥ 1. Now, using the properties of the
log function for the base greater than one, we obtain

logRi
Ci

| aii |
Ci

≥ 0. (6)

With similar arguments, for each j ∈ C0 \ {l : Rl = 0},
we deduce

logCj
Rj

Cj

| ajj |
≤ 1. (7)

Together the inequalities (6), (6) and (7) imply that there
is some α ∈ [0, 1], such that

logCj
Rj

Cj

| ajj |
< α < logRi

Ci

| aii |
Ci

(8)

for each i ∈ ℜ0 \ {l : Cl = 0}, j ∈ C0 \ {l : Rl = 0}.
From the left inequality and right inequality of inequality

(8), we have, respectively, that j ∈ C0 \{l : Rl = 0}, |ajj |
Cj

>

(
Rj

Cj
)α, that is,

| ajj | > Rα
j C

1−α
j

and for each i ∈ ℜ0 \ {l : Cl = 0}, |aii|
Ci

> (Ri

Ci
)α, that is,

| aii | > Rα
i C

1−α
i .

Case 2. Without loss of generality, we assume that there
exist some i0 ∈ ℜ0 \ {l : Cl = 0}, j0 ∈ C0 \ {l : Rl = 0},
such that

logRi0
Ci0

| ai0i0 |
Ci0

= logCj0
Rj0

Cj0

| aj0j0 |
,

and for any i ∈ ℜ0 \ ({l : Cl = 0} ∪ {i0}), j ∈ C0 \ ({l :
Rl = 0} ∪ {j0}),

logRi
Ci

| aii |
Ci

> logCj
Rj

Cj

| ajj |
.
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Let

α0 = logRi0
Ci0

| ai0i0 |
Ci0

= logCj0
Rj0

Cj0

| aj0j0 |
,

and hence,

| ai0i0 | = Rα0
i0
C1−α0

i0
;

| aj0j0 | = Rα0
j0
C1−α0

j0
,

From condition (ii), it is obvious to get for all i ∈ ℜ0\({l :
Cl = 0} ∪ {i0}), j ∈ C0 \ ({l : Rl = 0} ∪ {j0}),

logCj
Rj

Cj

| ajj |
< α0 < logRi

Ci

| aii |
Ci

,

implying in Case 1 that

| aii | > Rα0
i C1−α0

i ;

| ajj | > Rα0
j C1−α0

j .

To sum up, for any i ∈ ℜ0 ∪ C0 ∪ ε0 = N, there exists
some α ∈ [0, 1], such that

| aii | ≥ Rα
i C

1−α
i ,

with equality holding only for vertex s ∈ N satisfying |
ass | = Rs = Cs, and vertex i ∈ ℜ0, j ∈ C0 satisfying
logRi

Ci

|aii|
Ci

= logCj
Rj

Cj

|ajj | .

Further by condition (iii), for each vertex i of A with
| aii | = Rα

i C
1−α
i , there exists a nonzero elements chain

aii1 , ai1i2 , . . . , ailj , such that

j ∈ J ′ = {i ∈ N| :| aii | > Rα
i C

1−α
i } ̸= ∅.

Since A is a non-strict α2-matrices with nonzero elements
chain, then we can complete the proof.

Next, we will state and prove the similar result, precisely,
as follows.

Theorem 2.2. A matrix A = [aij ] ∈ Cn×n, n ≥ 2,
satisfies the following three conditions:

(i) | aii | ≥ min{Ri, Ci} for all i ∈ N;
(ii)

| aii | − Ci

Ri − Ci
≥ Cj− | ajj |

Cj −Rj
, (9)

for all i ∈ ℜ0, and for all j ∈ C0;
(iii) for each vertex s ∈ N with | ass | = Rs = Cs, and

each vertex i ∈ ℜ0, j ∈ C0 with

| aii | − Ci

Ri − Ci
=

Cj− | ajj |
Cj −Rj

, (10)

if they exist, there are three nonzero elements chain-
s ass1 , as1s2 , . . . , askp; aii1 , ai1i2 , . . . , ailq and ajj1 ,
aj1j2 , . . . , ajmt, such that

Then A is nonsingular, more over A is an H-matrix.
Proof: Similar discussion as in the proof of the Theorem

2.1, based we obtain A is a non-strictly α1-matrices with
nonzero elements chain. It follows that A is nonsingular,
more over A is an H-matrix.

III. EXAMPLE

Example Let

A =


1 −1 0 0
1 3 −0.5 0
0 −1 4 3.1
0 0 1.2 1.5

 .

We have

| a11 |= 1, | a22 |= 3, | a33 |= 4, | a44 |= 1.5;

R1 = 1, R2 = 1.5, R3 = 4.1, R4 = 1.2;

C1 = 1, C2 = 2, C3 = 1.7, C4 = 3.1.

These conditions do not satisfy the theorem 4 or theorem 5
in [5], and it is hard and complicated to determine the value
of α if we want to check if A is a non-strictly α-matrix with
nonzero elements chain or not.

Nevertheless, by this paper, we know | aii | ≥
min{Ri, Ci} for all i ∈ N with | a11 |= R1 = C1, and

ℜ0 = {3}, C0 = {2, 4}, ε0 = {1},

An easy calculating yields

0.9720 ≈ logR3
C3

| a33 |
C3

> logC2
R2

C2

| a22 |
≈ −1.4094;

0.9720 ≈ logR3
C3

| a33 |
C3

> logC4
R4

C4

| a44 |
≈ 0.7649,

that is, for all i ∈ ℜ0, j ∈ C0

logRi
Ci

| aii |
Ci

> logCj
Rj

Cj

| ajj |
,

and for the vertex 1 with | a11 |= R1 = C1, there exists a
nonzero elements chain a12, a23 such that

3 ∈ J ′
0 = {3 ∈ ℜ0| : logR3

C3

| a33 |
C3

> logCj
Rj

Cj

| ajj |
, j ∈ C0}

̸= ∅.

So, the matrix A satisfies conditions of the Theorem 2.1
in this section, and then A is an H-matrix.

IV. CONCLUSION

In conclusion, we extend previous generalizations of α-
matrices, provide some criteria for nonsingular H-matrices
by the theorems of non-strict α-matrices with nonzero el-
ements chain theorem and illustrate the effectiveness and
advantage of the new result by one numerical example.
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