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Abstract—In this paper, we proposed the notion of max
algebra of nonnegative interval matrices. Some properties of
nonnegative interval matrices in max algebra are derived. Nec-
essary and sufficient conditions for the powers of a nonnegative
interval matrices in max algebra to be nilpotent, asymptotically
p-periodic and convergent are proposed as well.

Index Terms—Interval matrix; Max algebra; Convergence,
Asymptotical p-period, Nilpotence.

I. INTRODUCTION

INTERVAL matrix have been extensive studied in the
literature (see, e.g. [1],[5-8], [10]). The max-algebra of

interval matrices are established in [11]. In this paper, we
shall follow this concept to study the limit behavior of max-
product powers of a nonnegative interval matrix. We refer
to Alefeld and Herzberger [1] for the background materials
of interval matrices. Real numbers are denoted by lowercase
letters a, b. The a and a denote the upper and lower bounds
of a real closed interval [a, a], respectively. The set of all
these closed intervals is denoted by I(R). We may denote an
interval [a, a] by [a] = [a, a]. Let ∗ ∈ {+,−,×,÷} be one
of the usual binary operations on the set of real numbers.
For [a] = [a, a] [b] = [b, b] ∈ I(R) the binary operation
[a]∗ [b] = {a∗ b : a ∈ [a], b ∈ [b]}, is assumed that 0 ̸= [b] in
the case of division. For a nonnegative interval [a] = [a, a],
the width d([a, a]) and the absolute value |[a, a]| are defined
by

d([a, a]) = a− a,

|[a, a]| = max{|a|, |a|}, respectively.

We called [a] = [a, a] a point interval if a = a. In this case,
we say [a] = [a, a] is degenerated to a point interval.

A matrix with entries belonging to I(R) is called an
interval matrix. The set of all real n × n interval matrices
is denoted by I(Rn×n). We denote an interval matrix A ∈
(Rn×n) by A = [A,A]. We may denote Aij = [Aij , Aij ] =
[aij , aij ]. Two interval matrices A and B are equal if and
only if Aij =Bij for all i, j = 1, 2, . . . , n. That is aij = bij
and aij = bij for all i, j = 1, 2, . . . , n. For interval matrices
A,B ∈ I(Rn×n) and an interval [x] = [x, x] ∈ I(R), the
matrix operations +,−,× are formally defined as
A ± B = ([a]ij ± [b]ij),
A × B = (Σn

k=1[a]ik × [b]kj),
[x]· A = ([x]× [a]ij).
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Let I be an n× n identity matrix. The powers of interval
matrix A are defined as
A0 = I,
Ak =Ak−1× A, k = 1, 2, . . . .
As noted by Mayer [6], the product of the interval matrices

is not associative in general. Therefore, (A×B)×C may not
be equal to A× (B × C). An interval [a] = [a, a] is said to
be nonnegative if a ≥ 0. The set of all nonnegative interval
is denoted by I(R+).

II. MAXIMUM CIRCUIT GEOMETRIC MEAN

Let A be an n × n nonnegative matrix. The weighted
directed graph D(A) associated with A has vertex set
{1, 2, . . . , n} and an edge (i, j) from vertex i to ver-
tex j with weight aij if and only if aij > 0. A path
L(i1, i2, . . . , ik, ik+1) of length k is a sequence of k
edges (i1, i2), (i2, i3), . . . , (ik, ik+1). The weight of a path
L(i1, i2, . . . , ik+1), as denoted by w(L(i1, i2, . . . , ik+1)) or
simply by w(L), is defined by

w(L(i1, i2, . . . , ik+1)) = ai1i2ai2i3 · · · aikik+1
.

A circuit C of length k ≥ 2 is a path L(i1, i2 . . . , ik+1)
with ik+1 = i1, and i1, i2, . . . , ik are distinct. The class of
circuits includes loops, ie., circuits of length 1. Associated
with this circuit C is the circuit geometric mean known
as ŵ(C) = (ai1i2ai2i3 · · · aiki1)1/k. The maximum circuit
geometric mean in D(A) is denoted by µ(A). Note that
we also consider empty circuits, namely, circuits that consist
of only one vertex and have length 0. For empty circuits,
the associated circuit geometric mean is zero. A circuit C
with ŵ(C) = µ(A) is called a critical circuit. Vertices
on critical circuits are called critical vertices and edges on
critical circuits are called critical edges.

Definition 1 [11]. Let A = [A,A] be an n×n nonnegative
interval matrix. The maximum circuit geometric mean of A
denoted by µ(A), is µ(A) = max{µ(A) : A ∈ A}.

As µ(A) ≥ µ(B) for all nonnegative matrices A ≥ B,
we see that µ(A) = µ(A). Let A = [A,A] = ([a]ij) =
([aij , a]ij) be given. Recall that r · A = (r · Aij) =
([raij , raij ]), for all real number r. Suppose that µ(A) ̸= 0.
Set k = 1

µ(A) . It is easy to see that µ(k · A) = 1.
Theorem 1 [11]. Let A = [A,A] be an n×n nonnegative

interval matrix with µ(A) ≤ 1. Then there exists a diagonal
real matrix D such that |D−1×A×D| ≤ [Jn], i.e., |D−1×
A×D|ij ≤ 1, for all 1 ≤ i, j ≤ n.

III. MAX PRODUCT OF POWERS OF A NONNEGATIVE
INTERVAL MATRIX

We refer to [2-4] and [9] for the study of nonnegative
interval matrices in max algebra. Let [a] = [a, a], [b] = [b, b]
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be two nonnegative intervals. Define the maximum of [a] and
[b] by

[a] ∨ [b] = {a ∨ b : a ∈ [a], b ∈ [b]},

here a∨ b = max{a, b}. It was shown in [11] that [a]∨ [b] =
[max{a, b},max{a, b}] is also an interval for all [a], [b] ∈
I(R).

Define max{[a], [b]} = [a]∨ [b]. The max algebra interval
system is defined as follow: Let I(R+

max,×) = (I(R+),⊕,⊗)
be consisted of the set of nonnegative interval numbers with
sum [a]⊕ [b] = [a]∨ [b] and the product of [a]⊗ [b] is defined
by [a]⊗ [b] = [a]× [b]. The following theorem shows that the
max algebra on interval is a semiring with identity element
[0] = [0, 0]. Moreover, ⊕ is idempotent, ie., [a] ⊕ [a] =
[a]. Let {[a1], [a2], . . . , [ak]} be a finite set of nonnegative
intervals. Define

∨k
j=1[aj ] = [a1] ∨ [a2] ∨ · · · ∨ [ak]. The

order ≤ is defined by [a] ≤ [b] if a ≤ b and a ≤ b.
Let A and B be two nonnegative interval matrices. The

max-product A⊗ B of A and B is defined by

(A⊗ B)ij =
n∨

k=1

Aij ⊗ Bij .

Let I be an n×n identity matrix. The powers of nonnegative
interval matrix A in the max algebra interval system are
defined as

A0
⊗ = I,

Ak
⊗ = Ak−1

⊗ ×A, k = 1, 2, . . . .

Note that A ⊗ B may not be equal to B ⊗ A. However,
(A⊗ B)⊗ C = A⊗ (B ⊗ C).

It is easy to see that if µ(A) > 1 then limk→∞ Ak

diverges. In this section, we shall study the convergence of
power of an interval matrix A with µ(A) ≤ 1.

Definition 2. Let A be an n × n nonnegative interval
matrix. A is said to be nilpotent if Ak

⊗ = 0, for some positive
integer k.

Theorem 2. Let A be an n×n nonnegative interval matrix.
Then
(1). A is nilpotent.
(2). An

⊗ = 0
(3). There is a real permutation matrix P such that P ⊗A⊗
PT is a strictly lower triangular interval matrix.

Proof. (1) ⇒ (2). Let k be a positive integer such that
Ak

⊗ = 0. Suppose, by contradiction, that An
⊗ ̸= 0. Then

there exist 1 ≤ i1, i2, . . . , in+1 ≤ n such that

Ai1i2 ⊗Ai2i3 ⊗ · · · ⊗ Ainin+1
̸= 0.

As {i1, i2, . . . , in+1} ⊂ {1, 2, . . . , n}, there are 1 ≤ r < s ≤
n such that ir = is. Therefore,

Airir+1 ⊗ · · · ⊗ Ais−1is ̸= 0.

Thus, (As−r
⊗ )irir ̸= 0, which implies that (A(s−r)k

⊗ )irir ̸= 0.
This contradicts to Ak

⊗ = 0.
(2) ⇒ (3). We prove the assertion by induction on dimen-

sion n. The case of n = 1 is trivial. Assume that n > 1 and
the assertion is true for all cases of m less than n.

Claim: There exists 1 ≤ i ≤ n such that Aij = 0 for all
j = 1, 2, . . . , n.

Suppose to the contrary that for each i there exists j such
that Aij ̸= 0. Let 1 ≤ i1 ≤ n be given. Then there exists i2

such that Ai1i2 > 0. Corresponding to this i2, there exists i3
such that Ai2i3 > 0. By continuing this process, we obtain
{i1, i2, . . . , in+1} ⊂ {1, 2, . . . , n} such that Aijij+1 > 0 for
all j = 1, 2, . . . , n. Thus there exist 1 ≤ r < s ≤ n+1 such
that ir = is. Then (As−r

⊗ )iris ≥ Airir+1 ⊗· · ·⊗Ais−1is > 0.
Hence , (A(s−r)n

⊗ )iris > 0 a contradiction. This proves the
claim. Let P1 be a permutation matrix such that

P1 ⊗A⊗ PT
1 =

 0 0

b∗ Ã

 ,

where Ã is an (n − 1) × (n − 1) nonnegative interval
matrix. Observe that Ãn

⊗ = 0, this implies Ã is nilpotent.
According to (1) ⇒ (2), we see that Ãn−1

⊗ = 0. By induction
assumption, there exists an (n−1)× (n−1) permutation P2

such that P2 ⊗ Ã⊗ PT
2 is a strictly lower triangular matrix.

Set

P =

 1 0

0 P2

⊗ P1.

Then

P ⊗A⊗ PT =

 0 0

0 P2 ⊗ Ã ⊗ PT
2


is strictly lower triangular. This completes the proof.

(3)⇒ (1). It is trivial.
Theorem 3. Let A be an n×n nonnegative interval matrix.

Then µ(A) = 0 if and only if A is nilpotent.
Proof. (⇒) Assume An

⊗ ̸= 0. Then there exists 1 ≤
i1, i2, . . . , in+1,≤ n such that Aitit+1 ̸= 0 for all 1 ≤ t ≤ n.
Since 1 ≤ i1, i2, . . . , in+1,≤ n, there exist 1 ≤ r < s ≤ n
such that ir = is. Thus Aitit+1 ̸= 0 for all r ≤ t ≤ s − 1.
Hence Aitit+1 ̸= 0 for all r ≤ t ≤ s − 1. Thus µ(A) ̸= 0.
This implies that µ(A) ̸= 0, a contradiction.

(⇐) Assume µ(A) ̸= 0. Then µ(A) ̸= 0. Then there exists
i1, i2, . . . , ik, ik+1 with i1 = ik+1 such that Aitit+1 > 0 for
all t = 1, 2, . . . , k. This implies that (A

k

⊗)i1i1 > 0. Hence,
(A

kn

⊗ )i1i1 > 0. Therefor, (Akn
⊗ )i1i1 > 0, a contradiction.

Definition 3. Let A be an n × n nonnegative interval
matrix. Then A is called to be asymptotically stable if
limk→∞ Ak

⊗ = 0.
Denition 4. Let A be an n × n nonnegative interval

matrix. Then A is called to be asymptotically p periodic if
limk→∞ Aj+kp

⊗ = Ãj exists for j = 1, 2, ..., p. The minimal
such p is called asymptotic period p. If p = 1, then A is
called to be convergent , ie., limk→∞ Ak

⊗ = Ã exists.
Let A = [A,A] be an n × n nonnegative interval matrix

with µ(A) ≤ 1. By Theorem 2, there exists a diagonal real
matrix D such that |D−1×A×D| ≤ [Jn], i.e., |D−1×A×
D|ij ≤ 1, for all 1 ≤ i, j ≤ n. Thus, we may assume that
|Aij | ≤ 1 for all 1 ≤ i, j ≤ n.

Theorem 4 [11]. Let A = [A,A] be an n×n nonnegative
interval matrix. Then Ak

⊗ = [Ak
⊗, A

k

⊗], for all k ≥ 1.
Theorem 5. Let A = [A,A] be an n × n nonnegative

interval matrix with Aij ≤ 1 for all 1 ≤ i, j ≤ n. Then A is
asymptotically stable if and only if limk→∞ A

k

⊗ = 0.
Proof. By Theorem 4, we have Ak

⊗ = [Ak
⊗, A

k

⊗]. Observe
that 0 ≤ (Ak

⊗)ij ≤ (A
k

⊗)ij for all i, j. If limk→∞ A
k

⊗ = 0

then we see that limk→∞ Ak
⊗ = 0. This implies that
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limk→∞ Ak
⊗ = 0. It is clear that if limk→∞ Ak

⊗ = 0 then
limk→∞ A

k

⊗ = 0.
Let A = [A,A] be an n × n nonnegative interval matrix

with Aij ≤ 1 for all 1 ≤ i, j ≤ n. Corresponding to A we
define an n× n Boolean matrix Â by

Âij :=

{
1 if |A|ij = 1,

0 otherwise.

Theorem 6. Let A = [A,A] be an n × n nonnegative
interval matrix with Aij ≤ 1 for all 1 ≤ i, j ≤ n. Then the
following statements are equivalent

(1) A is asymptotically stable.
(2) The directed graph D(Â) contains no cycles.
(3) µ(A) < 1.
Let A = [A,A] be an n × n nonnegative interval matrix

with Aij ≤ 1 for all 1 ≤ i, j ≤ n. Corresponding to A we
define two n× n Boolean matrix Â and Â by

Âij :=

{
1 if Aij = 1,

0 otherwise,

and

Âij :=

{
1 if Aij = 1,

0 otherwise.

For each k ≥ 1, we define an n × n Boolean matrix by

Γk(A) = [Â
k

⊗, Â
k

⊗].
Theorem 7. Let A = [A,A] be an n × n nonnegative

interval matrix. Then A is asymptotically p periodic if and
only if the sequence of {Γk(A)} is p periodic.

IV. CONCLUSION

In the literature, there are many authors studied the max
algebra system of nonnegative real numbers. In this paper,
we extend the notion of max algebra system of nonnegative
matrices to the notion of max algebra system of nonnegative
interval matrices. Properties of max-product powers of an
interval matrix are established.
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