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Abstract—We introduce a stochastic programming model
for scheduling a single operating room using the conditional
value-at-risk (CVaR) as a criterion. This criterion expresses
the risk-averse attitude of the scheduler to the risk event
that the expected end time of a surgery presumed by a
surgeon can be considerably delayed. One of the important
advantages of the CVaR is that the stochastic programming
problem can be treated as a linear programming problem.
Owing to this characteristic, the CVaR is more practical than
traditional expectation based approaches. In this paper, we
evaluate the effectiveness of the proposed model using numerical
experiments.

Index Terms—Operations research in health services, Oper-
ating room scheduling, Conditional value-at-risk.

I. INTRODUCTION

OPERATING room management is important for im-
proving patient treatment quality and reducing hospital

costs. Fujiwara [5] suggested that efficient operating room
management is an emerging solution for improving medical
services in Japanese hospitals, where many patients experi-
ence long waiting times before undergoing operations owing
to an insufficient number of surgeons, anesthesiologists, and
operating rooms. Such problems are also persistent in Europe
owing to aging populations; therefore, providing efficient
medical services has increasingly become important [2].
Many hospitals operate at a low level of efficiency; however,
few analytical studies have reported on efficient medical
services.

Similar to the case in most of the other countries, surgeries
are the most important source of hospital revenue in Japan
and are estimated to generate approximately two-thirds of
the total revenues [6]. Thus, improving operating room
management and effectiveness makes operating rooms an
increasingly important hospital resource. However, Macario
et al. [9] showed that operating rooms account for 40 %
of the overall hospital costs, thus making them the most
significant single cost source. Moreover, delayed operation
starting times increase the probability of overtime, which
further increases the costs [4].

The quality of operating room schedules is one of the most
important factors in operating room management; improved
operating room scheduling not only decreases patient waiting
times but also reduces both the workload of surgeons and
anesthesiologists and the required overtime. In addition, it
increases the effectiveness of operating room utilization,
which may partially resolve the problem of operating room
shortages. Actually, the created schedules are not always
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suitable for operating room management and are often not
closely followed. One reason for this is that required opera-
tion times are self-reported by the surgeons; however, these
time requirements are sometimes underestimated. This delays
surgeries and makes the operating room unavailable for the
subsequent scheduled surgeries.

The operating room scheduling problem has been studied
by multiple researchers. For example, Lamiri et al. [8]
formulated an operating room scheduling method to reduce
overtime costs using a stochastic model by proposing a
Monte Carlo optimization method comprising Monte Carlo
simulations and mixed integer programming. Denton et
al. [3] proposed a two-stage stochastic programming model
for operating room scheduling. There are also multiple
case studies that consider individual hospital characteristics.
Blake and Donald [1] solved the operating room scheduling
problem at Mount Sinai Hospital using an integer program-
ming model. This approach greatly influenced the scheduling
process at the hospital; it fairly allocates operation times
to surgeons, reduces operating room manager workloads,
and avoids conflicts between surgeons and operating room
managers. Ito et al. [7] proposed an estimation method to
calculate operation durations using regression analysis and a
mixed integer programming model for the operating room
scheduling problem. Moreover, they developed an operat-
ing room scheduling system to use their proposed method
automatically and applied it to operating room scheduling
at the Aichi Medical University Hospital in Japan. It is
important to prepare a detailed schedule of the operating
room and to operate the operating room efficiently. In par-
ticular, stochastic approaches capture uncertainties that are
frequently encountered.

The stochastic programming problem for operating room
scheduling is generally formulated to minimize the expected
value of the total delay of surgery from the expected end
time. However, this approach cannot adequately address the
risk facing a surgery with a very large delay from the
expected end time. In other words, minimizing the expected
value does not adequately express the risk-averse attitude of
the scheduler to the risk that the expected end time of a
surgery presumed by a surgeon can be considerably delayed.
In this study, we incorporate the CVaR as a criterion in the
operating room scheduling problem. To date, there have been
no examples of applying the CVaR in the operating room
scheduling problem.

In this paper, our purpose is to determine the optimal
sequences of surgeries in a single operating room by consid-
ering the risk event that the end time of a surgery presumed
by a surgeon can be considerably delayed. We show the
effectiveness of our model using numerical experiments. The
remainder of this paper is organized as follows. Section
2 presents a detailed explanation of the CVaR. Section 3
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provides the motivation and describes the proposed model of
single operating room scheduling. Section 4 shows the results
obtained by numerical experiments. Section 5 summarizes
the paper and identifies the areas for future work.

II. CONDITIONAL VALUE-AT-RISK

Variance is a well-utilized risk measure. Using variance
in a risk measure has several disadvantages. First, the case
in which a loss is lower than its expected value is also
evaluated as a risk. Second, a stochastic programming model
that incorporates variance into its mathematical programming
model becomes nonlinear. The value at risk (VaR) is another
well-utilized risk measure. The VaR is defined using an α-
quantile, which is a value that divides the discrete probability
distribution into a certain percentage, α and 1−α. Figure 1
shows an image of the VaR. The vertical axis indicates the
probability density function, and the horizontal axis indicates
the loss. This criterion can adequately address the risk facing
a very large loss. However, a stochastic programming model
that incorporates the VaR into its mathematical programming
model becomes nonlinear because there is no convexity. The
CVaR is a coherent risk measure and is also considered as a
measure to improve the disadvantages of the VaR. The CVaR
is suitable for incorporation into mathematical programming
problems because the coherent risk measure is convex. Fη̃(z)
defines the cumulative distribution function of a random
variable η̃ for the loss. When the cumulative distribution
function Fη̃(z) is continuous, we can represent the following:

CVaRα(η̃) = Eη̃[η̃|η̃ ≥ VaRα(η̃)], (1)

=
1

1− α

∫ ∞

VaRα(η̃)

zdFη̃(z), (2)

where α ∈ {0, 1}.
The CVaR is defined as the form of the expected loss for

the range exceeding the VaR. Figure 1 shows an image of the
VaR and CVaR. Particularly, the CVaR can be formulated as
an optimum value for the following minimization problem.
The optimal solution of the minimization problem is the VaR.

CVaRα(η̃) = minvv +
1

1− α
Eη̃[(η̃ − v)+]. (3)

When the CVaR is adopted as a risk measure, it can be
formulated as follows using the weighting factor β ∈ {0, 1}:

minx(1− β)Eξ̃[V (x, ξ̃)] + βCVaRα(V (x, ξ̃)), (4)

subject to

Ax = b, (5)

x ≥ 0, (6)

where V (x, ξ̃) is the cost function with a variable x of an
n1 dimensional vector and a random variable ξ̃, Eξ̃[V (x, ξ̃)]
is the expected value of the cost, A is an m1 × n1 matrix,
and b is an m1 dimensional vector.

Assume that the distribution of ξ̃ has a finite support
Θ = {ξ1, ..., ξK} and the probability pk is given to ξk

(k is the scenario) when the random variable follows the
discrete probability distribution. To simplify the expressions,
we introduce a new variable u(ξk) > 0, k = 1, ...,K. This

problem can be expressed as follows using definition (2) of
the CVaR:

minx,y(ξ1),...,y(ξK),v,u(ξ1),...,u(ξK) (7)

(1− β)

(
cTx+

K∑
k=1

pkq(ξk)Ty(ξk)

)

+β

(
v +

1

1− α

K∑
k=1

pku(ξk)

)
,

subject to

cTx+ q(ξk)Ty(ξk)− v ≤ u(ξk), k = 1, ...,K, (8)

u(ξk) ≥ 0, k = 1, ...,K, (9)

Ax = b, (10)

T (ξk)x+Wy(ξk) = h(ξk), k = 1, ...,K, (11)

x ≥ 0, (12)

y(ξk) ≥ 0, k = 1, ...,K, (13)

where c is a parameter of an n1 dimensional vector, q(ξk) is
a parameter of an n2 dimensional vector, y(ξk) is a variable
of an n2 dimensional vector, T (ξk) is an m2 ×m1 matrix,
and W is an m2 × n2 matrix.

The above results in a linear programming problem when
the CVaR is incorporated as a risk measure in a two-
stage programming problem under a discrete probability
distribution. Sarin et al. [10] introduced the use of the
CVaR as a criterion for stochastic scheduling problems.
They demonstrated its application for the single or parallel
machine scheduling problem and exhibited the use of the
CVaR and the effectiveness of minimizing it in that context.
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Fig. 1. Image showing the VaR and CVaR.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



Duration of surgery

a: Time to prepare hospitals for the surgery
b: Time to prepare the surgery
c: Time to administer the anesthesia
d: Time to perform the surgery
e: Time to awake from anesthesia
f: Time to clean up the operating room

a b c fed

Fig. 2. Stages in a single surgery.

Expected end time

Surgery 1 Surgery 2
Delay

Finishing time 
Finishing time

(Expected end time)

Fig. 3. Example of a schedule in a single operating room.

III. SINGLE OPERATING ROOM SCHEDULING

A. Motivation

For most hospitals in Japan, departments have a limited
amount of available time in an operating room according to
the day of the week and the time of the day. The surgeon
and the patient decide on the desired surgery date and
starting time of the surgery within the time available for the
operating room. Surgeons propose the durations of their own
surgeries and the desired starting times to the scheduler of
the operating room. Then, the scheduler creates a schedule
using the proposed durations of the surgeries. These operat-
ing room schedules are often created manually. In general,
the scheduler assigns surgeries from the same department
sequentially when several departments use a single operating
room. This is because surgeries from the same department are
likely to use the same medical equipment. In addition, time
adjustments for surgeries within one department are easier to
complete than the adjustments between multiple departments.

Figure 2 shows the stages in a single surgery in detail. We
define the duration of a surgery as a total of the time required
for preparing the operating room for the surgery, the time
required for performing the surgery, and the time required
for cleaning the operating room (i.e., from time a to time f in
Fig. 2). The patient receives several treatments during times
b, c, d, and e. Figure 3 shows an example of a schedule for a
single operating room. We define the delay in a surgery as the
length of time between the expected end time presumed by a
surgeon to finishing time determined as requested. In Fig. 3,
surgery 1 has the same time as the expected end time and
the finishing time determined as requested. For Surgery 2,
the expected end time and the finishing time determined as
requested are different. Therefore, the surgery delay is the
difference between the expected end time and the finishing
time.

B. The model

We consider a model of a single operating room scheduling
problem that determines the sequences of surgeries in a
single operating room. We assume that the durations of the
surgeries are the only random variables in this problem.
Consider the following notation.

Notation
Index sets
J : Set of surgeries
S: Set of scenarios
D: Set of departments
Ed: Set of surgeries belonging to the same depart-

ment d, d ∈ D

Parameters
wj : Weight of surgery j, (∀j ∈ J)

pjs: Duration of surgery j under scenario s, (∀j ∈ J ,
∀s ∈ S)

dj : Expected end time of surgery j presumed by a sur-
geon, which is defined as dj = bj +Es[

∑
j∈J pjs],

where bj is defined as the starting time of surgery j
presumed by a surgeon, (∀j ∈ J)

πs: Probability of scenario s, (∀s ∈ S)

α: Probability level, α ∈ (0, 1)
β: Weighting factor, β ∈ (0, 1)

Variables
cjs: Finishing time of surgery j under scenario s, (∀j ∈

J , ∀s ∈ S)

tjs: Delay of surgery j from the expected end time
under scenario s, (∀j ∈ J , ∀s ∈ S)

η: A threshold value (equal to the VaR when an
optimal solution is obtained)

µs: Amount of delay of surgery tjs exceeding the
threshold value η under scenario s, (∀s ∈ S)

zij : Surgery precedence binary variable, where, zij = 1
if surgery i is processed before surgery j, zij = 0
otherwise, (∀i, j ∈ J, i ̸= j)

Formulation

minimize (1− β)Es[
∑
j∈J

wjtjs]

+β(η +
1

1− α

∑
s∈S

πsµs) (14)

subject to

η + µs ≥
∑
j∈J

wjtjs, ∀s ∈ S, (15)

∑
j∈J\{j}

piszij + pjs ≤ cjs, ∀s ∈ S, j ∈ J, (16)

tjs + dj ≥ cjs, ∀s ∈ S, j ∈ J, (17)

zij + zji = 1, ∀i ̸= j ∈ J, (18)

zij + zjk + zki ≤ 2, ∀i ̸= j ̸= k ∈ J, (19)
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|
∑
j∈J

zij −
∑
j∈J

zi′j | = 1, ∀i ̸= i′ ∈ Ed, ∀d ∈ D, (20)

cjs ≥ 0, ∀s ∈ S, j ∈ J, (21)

tjs ≥ 0, ∀s ∈ S, j ∈ J, (22)

µs ≥ 0, ∀s ∈ S, j ∈ J, (23)

zij ∈ {0, 1}, ∀i ̸= j ∈ J. (24)

In the formulation above, objective function (14) com-
prises two terms, each having weights 1-β and β. The
first term of the objective function minimizes the expected
value of the total weighted delay. The second term of the
objective function minimizes the CVaR. For each scenario
s, constraint (15) determines µs to be the amount of to-
tal weighted delay that exceeds the threshold value of η
(if at all). Constraint (16) bounds the surgery finishing
times according to the surgery sequencing relationships.
Constraint (17) determines the delay of the surgeries. Con-
straints (18) and (19) ensure the feasibility of the surgery
sequence by eliminating cyclic sequences. Constraint (20)
sequentially allocates surgeries i and i′ because surgeries i
and i′ are in the same department. Constraints (21), (22), and
(23) are non-negative constraints. Constraint (24) is a binary
constraint.

These scenarios are derived either from discrete approx-
imations of the underlying distributions of the problem
parameters or from a scenario generation procedure, with
the probability value πs being associated with a scenario s,
∀s ∈ S.

IV. NUMERICAL EXPERIMENTS

A. Data

In this section, we present numerical experiments to evalu-
ate the performance of our proposed formulation. In general,
two to five surgeries are scheduled in a single operating
room [7]. As an example, we consider a five-surgery problem
with 100 scenarios, i.e., J = 5 and S = 100. The durations
of the surgery are assumed to follow left-truncated log-
normal distributions that are truncated at zero to ensure non-
negativity. Scenario-wise values of pj were generated via
Monte Carlo sampling. Figure 4 shows histograms of the
scenario-wise values of the duration of surgery j (pj). The
surgery parameter values are summarized in Table 1. These
parameters are generated by means of a simulation based
on the parameters of a previous study [7]. wj has a value
of 1. Surgeries 1 and 2 belong to the same department.
Surgeries 3, 4, and 5 belong to different departments, i.e.,
D = 4, E1 = 1, 2, E2 = 3, E3 = 4, and E4 = 5. We solve
the single operating room scheduling problem by minimizing
the CVaR with α = 0.8.

TABLE I
PARAMETERS OF AN EXAMPLE PROBLEM

Surgery j 1 2 3 4 5
E[pj ] (min.) 334 215 207 309 107
Var[pj ] (min.) 7046 4700 2586 4845 1850

bj (min.) 1 50 100 150 1
dj (min.) 335 265 307 459 108
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Fig. 4. Histograms of the scenario-wise values of the duration of surgery
j (pj ).
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TABLE II
RESULTS UNDER DIFFERENT β

β Optimal sequence Objective function Expected value of CVaR
δβ value (min.) total weighted delay (min.)

0 5, 3, 2, 1, 4 181119 1811.19 3018
0.1 5, 3, 2, 1, 4 163309 1811.19 3018
0.2 5, 3, 2, 1, 4 145498.8 1811.19 3018
0.3 5, 3, 2, 1, 4 127688.7 1811.19 3018
0.4 5, 3, 4, 2, 1 111924.8 1845.70 2957
0.5 5, 3, 4, 2, 1 93763.5 1845.70 2957
0.6 5, 3, 4, 2, 1 75597.8 1845.59 2957
0.7 5, 3, 4, 2, 1 57440.9 1845.70 2957
0.8 5, 3, 4, 2, 1 39279.6 1845.70 2957
0.9 5, 3, 4, 2, 1 21118.3 1845.70 2957
1 5, 3, 4, 2, 1 2957 2955.83 2957
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Fig. 5. Cumulative distribution function of the total weighted delay of
surgeries for β = 0, β = 0.5 and β = 1.

B. Results

The computer used to generate the schedule was equipped
with an Intel Core 2.30GHz processor (i5-6200U) and 8
GB RAM. The CPU time required to solve the formulated
stochastic programming problem was 3 s using the IBM
ILOG CPLEX 12.6.3 solver. In the generated test instances,
there were 2729 constraints and 1130 variables. We provide
some numerical examples for various weighting factors of β
that range from 0 to 1 to assess the effects of the weighting
factor β on the optimal solution (Table 2). The case of
β = 0 minimizes the expected value of the total weighted
delay without considering the risk measure, i.e., risk neutral
behavior. Conversely, the case of β = 1 minimizes the risk
measure, i.e., risk-averse decision making. Minimizing the
expected value of the total weighted delay (β = 0) results in
the optimal sequence δ0 = 5, 3, 2, 1, and 4. The expected
value of the total weighted delay becomes a small value of
1811.19; however, the value of the CVaR is a large value of
3018. In this case, there is a risk that a large delay might
occur. The criterion of minimizing the CVaR, i.e., β = 1,
resulted in the optimal sequence δ1 = 5, 3, 4, 2, and 1.
Even though the CVaR becomes a small value of 2957, the
expected value of the total weighted delay is a large value
of 2955.83. The objective function value of β = 1 is 61.25
times less than that of β = 0 and 31.70 times less than that
of β = 0.5. The expected value of the total weighted delay
of β = 0 is 1.63 times less than that of β = 1 and 1.02 times
less than that of β = 0.5. The CVaR of β = 1 is 1.02 times
less than that of β = 0.

The cumulative distribution functions of the total weighted
delay under both sequences are shown in Fig. 5. Therefore,
the cumulative distribution function of β = 1 and β = 0.5
reach a probability of 1 at a total weighted delay value of
3000, while β = 0 has a substantial associated probability
of exceeding this value. This example represents the risk-
averse nature of the CVaR and its effectiveness in reducing
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Fig. 6. Histograms of the total weighted delay of surgeries for β = 0,
β = 0.5, and β = 1.

the variability. Figure 6 shows the histograms of the total
weighted delays of surgeries for β = 0, β = 0.5, and β = 1.

The objective function value of β = 1 is smaller than
those of the other β values. The expected value of the total
weighted delay of β = 0 is the smallest of the β values. The
CVaR of β = 0.5 and β = 1 is smaller than that of β = 0.
The maximum values of the total weighted delays of β = 0.5
and β = 1 are smaller than that of β = 0. It is important to
consider both the expected value of the total weighted delay
and the CVaR to create a single operating room schedule.

Reducing the expected value as well as the CVaR can
avoid the collapse of the entire schedule. A small delay in a
surgery only results in a small delay for the other surgeries in
the same operating room; however, a large delay in a surgery
forces the entire schedule to change. If the surgery is a little
late at an operating room, the other scheduled surgeries will
need to wait until the surgery is completed with a small
delay. If the surgery is very late in an operating room, the
scheduler will make a new schedule to conduct the other
surgeries in other operating rooms. Moved surgeries also
change the expected start times of surgeries scheduled in
the other operating rooms.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



V. CONCLUDING REMARKS

We develop a stochastic programming model for schedul-
ing a single operating room. We derive an optimal sequence
for surgeries that minimizes the expected value of the total
weighted delay and the CVaR. We analyze the effects of the
weighting factor on the expected value of the total weighted
delay and the CVaR. Thus, we find that it is important to
consider the expected value of the total weighted delay and
the CVaR to create a single operating room schedule.

In the future, we will compare the results obtained by the
objective function including the CVaR to other approaches
with the VaR or variance as the risk measures. In addition,
the proposed model should be expanded to a multi-operating
room scheduling model.
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