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Abstract— Investigating the structure of base hy-
pergraphs of CNF classes we specifically prove the ex-
istence of connected strictly diagonal and simple base
hypergraphs with loops. Further a hierarchy of di-
agonal base hypergraphs of non-decreasing complex-
ity regarding their fibre-transversal orbit spaces w.r.t.
the flipping action is identified. Several existence re-
sults are provided, some remain open.
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1 Introduction

A fundamental open question in mathematics is the
NP versus P problem which is attacked within the the-
ory of NP-completeness. The genuine and one of the
most important NP-complete problems is the proposi-
tional satisfiability problem (SAT) for conjunctive nor-
mal form (CNF) formulas [6] lying at the heart of com-
putational complexity theory. Specifically one is in-
terested in subclasses for which SAT can be solved in
polynomial time. There are known several such classes,
e.g., quadratic formulas, (extended and q-)Horn formu-
las, matching formulas, nested and co-nested formulas
etc. [2, 4, 5, 7, 8, 9, 10, 16, 18]. Moreover, it turns out
that a useful tool in revealing the structure of CNF-SAT
is provided by linear CNF formulas [15] and linear hyper-
graphs. Introducing a bifurcation concept, in this paper
we further investigate the structure of base hypergraphs
of CNF formula classes and the orbit spaces of their fibre-
transversals with respect to the flipping action. Specifi-
cally we prove the existence of strictly diagonal base hy-
pergraphs [13] admitting loops. On that basis we propose
a hierarchy of base hypergraphs with non-decreasing com-
plexity within the orbit space of the corresponding sets of
diagonal fibre-transversals. Also the class of simple diag-
onal base hypergraphs [13] is investigated further. So we
prove the existence of simple and loopless diagonal base
hypergraphs. Here also certain connections to the strict
diagonal case and also to minimal unsatisfiable formulas
appear.

2 Preliminaries

A Boolean or propositional variable x taking values from
{0, 1} can appear as a positive literal which is x or as
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a negative literal which is the negated variable x also
called the flipped or complemented variable. For a vari-
able x, let l(x) ∈ {x, x̄} denote a literal over x which
is not specified. Setting a literal to 1 means to set the
corresponding variable accordingly. A clause c is a fi-
nite non-empty disjunction of different literals and it is
represented as a set c = {l1, . . . , lk}. A unit clause con-
tains exactly one literal. A conjunctive normal form for-
mula C, for short formula, is a finite conjunction of dif-
ferent clauses and is considered as a set of these clauses
C = {c1, . . . , cm}. A formula can also be empty which is
denoted as ∅. Let CNF be the collection of all formu-
las. For a formula C (clause c), by V (C) (V (c)) denote
the set of variables occurring in C (c). Let CNF+ denote
that part of CNF without occurrences of negated vari-
ables. A formula C ∈ CNF is called linear if each pair
ci, cj ∈ C, i 6= j, satisfies |V (ci) ∩ V (cj)| ≤ 1. By LCNF
the class of linear formulas is denoted. For a finite set M ,
let 2M denote its powerset. For a positive integer n, let
[n] := {1, . . . , n}. As usual iff means if and only if. Given
C ∈ CNF, SAT asks whether there is a truth assignment
t : V (C) → {0, 1} such that there is no c ∈ C all liter-
als of which are set to 0. Such an assignment is called a
model of C. Let SAT ⊆ CNF denote the collection of all
formulas admitting a model, and UNSAT := CNF\SAT.
Clauses containing a complemented pair of literals are
always satisfied. Hence, it is assumed throughout that
clauses only contain literals over different variables. By
I ⊂ UNSAT we denote the class of minimal unsatisfiable
formulas [1]. For a set V of propositional variables V , let
cX be the clause obtained from c by complementing all
variables in X ∩ V (c), where X is an arbitrary subset of
V , for short we set cγ := cV (c), and further c∅ := c. This
flipping operation induces an action on CNF by observ-
ing that {c} ∈ CNF: For C = {c1, . . . , cm} ∈ CNF and
X ∈ 2V let CX := {cX

1 , . . . , cX
m} =: CX ∈ CNF. Again

set Cγ := CV (C) in case that all variables in C are flipped,
and C∅ := C. Thus formally we obtain the GV -action of
the abelian group GV := (2V ,⊕) with neutral element
∅ on CNF [13]. By O(C) := {CX : X ∈ GV } denote
the (GV -)orbit of C in CNF. The hyperedge set B(C) of
the base hypergraph H(C) = (V (C), B(C)) assigned to a
formula C ∈ CNF is defined as B(C) := {V (c) : c ∈ C} ∈
CNF+. As introduced in [11] the collection of all clauses
c such that V (c) = b, for a fixed b ∈ B(C), is the fibre Cb

of C over b yielding the fibre-decomposition
⋃

b∈B(C) Cb

of C. Conversely, a hypergraph H = (V,B) appears as
a base hypergraph if its vertices x ∈ V are regarded as
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Boolean variables such that for every x ∈ V there is a (hy-
per)edge b ∈ B containing x. By Wb := {c : V (c) = b}
denote the collection of all possible clauses over a fixed
b ∈ B. By definition, a hypergraph H = (V,B) is linear
if |b ∩ b′| ≤ 1, for all distinct b, b′ ∈ B, and H is ex-
act linear if ≤ above is replaced with =. A hypergraph
H = (V,B) is called loopless if |b| ≥ 2, for all b ∈ B [3].
Given a hypergraph H, denote its vertex set by V (H)
and its edge set by B(H), if b ∈ B(H) then H \ {b}
means the hypergraph obtained from H by deleting edge
b from B(H). Observe that the base hypergraph H(C) is
linear if the formula C is linear. Moreover H(C) is loop-
less if C is free of unit clauses. The intersection graph
of H = (V,B) gets a vertex for each b ∈ B and there
is exactly one edge joining a pair of vertices b 6= b′ iff
b ∩ b′ 6= ∅. A hypergraph H is called connected if its
intersection graph is connected in the usual sense. A hy-
pergraph is called Sperner if no hyperedge is contained
in any other hyperedge of H [3]. Note that every loopless
linear hypergraph is Sperner. The set of all clauses over
H is KH :=

⋃
b∈B Wb. A H-based formula is a subset

C ⊆ KH such that Cb := C ∩Wb 6= ∅, for every b ∈ B.
For a H-based C ⊆ KH, let C̄ := KH \ C be its com-
plement formula. A fibre-transversal of KH is a H-based
formula F ⊂ KH such that |F ∩Wb| = 1, for every b ∈ B,
this clause is denoted as F (b). By F(KH) denote the
set of all fibre-transversals of KH. Observe that, given
a linear base hypergraph H then every fibre-transversal
F ∈ F(KH) is linear. However, a linear formula with
complementary unit clauses is no fibre-transversal over
its base hypergraph. A compatible fibre-transversal is de-
fined by the property that

⋃
b∈B F (b) ∈ WV . Fcomp(KH)

is the set of all compatible fibre-transversals of KH. A
fibre-transversal F is diagonal if F ∩ F ′ 6= ∅, for all
F ′ ∈ Fcomp(KH). Let Fdiag(KH) be the set of all di-
agonal fibre-transversals of KH. A fibre-transversal F
of C ⊆ KH contains exactly one clause of each fibre
Cb of C. The collection of all fibre-transversals of C is
denoted as F(C), and Fdiag(C) := F(C) ∩ Fdiag(KH).
A base hypergraph H = (V,B) is called diagonal iff
Fdiag(KH) 6= ∅, and it is called strictly diagonal if for
every C ⊂ KH with B(C) = B = B(C̄) one has the
equivalence C ∈ UNSAT ⇔ Fdiag(C) 6= ∅ [12].

3 A Bifurcation Concept

For a base hypergraph H = (V,B), let the integer
δ(H) ≥ 0 denote the cardinality of the orbit space
Fdiag(KH)/GV . Denoting the number of orbits in F(KH)
by ω(H), and β(H) :=

∑
b∈B |b| − |V | ≥ 0 one has

ω(H) = 2β(H) ≥ 1, |F(KH)| = ω(H)2|V |, |Fdiag(KH)| =
δ(H)2|V |, and that GV acts transitively on Fcomp(KH)
which all is shown in [13]. Further, let ρ(H) denote the
number of orbits of all fibre-transversals in F(KH) which
are neither compatible nor diagonal.

Lemma 1 For integer r ≥ 2, let Hi = (Vi, Bi), i ∈ [r],

be base hypergraphs with Vi ∩ Vj = ∅, i, j ∈ [r], i 6= j. Let
H =

⋃r
i=1Hi then:

(i) ω(H) =
∏r

i=1 ω(Hi),
(ii) δ(H) =

∏r
i=1 ω(Hi)−

∏r
i=1(ω(Hi)− δ(Hi)),

(iii) ρ(H) = −1 +
∏r

i=1(1 + ρ(Hi)).

Proof. Clearly V (H) =
⋃r

i=1 Vi as disjoint union and
by assumption one has Bi∩Bj = ∅, i, j ∈ [r], i 6= j. Thus
also B(H) =

⋃r
i=1 Bi as disjoint union implying β(H) =∑

b∈B(H) |b| − |V (H)| =
∑r

i=1[
∑

b∈Bi
|b|] −

∑r
i=1 |Vi| =∑r

i=1 β(Hi) yielding (i) because of ω(H) = 2β(H). As GV

acts transitively on Fcomp(KH0) it follows that ω(H0) =
1 + δ(H0) + ρ(H0), for every base hypergraph H0. Let
us verify the remaining assertions by induction on r. Us-
ing (i) for r = 2 and setting ω(Hi) =: ωi, δ(Hi) =: δi,
ρ(Hi) =: ρi, i ∈ [r], we obtain

ω(H) = 1 + δ(H) + ρ(H)
= (1 + δ1 + ρ1)(1 + δ2 + ρ2)
= 1 + [δ1ω2 + δ2ω1 − δ1δ2] + [ρ1 + ρ2 + ρ1ρ2]

As H1 is disconnected from H2, every satisfiable fibre-
transversal over B1 that is continuated over B2 by
any satisfiable fibre-transversal yields a satisfiable fibre-
transversal over B := B1 ∪ B2, and vice versa. Only, if
taking an unsatisfiable fibre-transversal over B1, respec-
tively B2, it yields an unsatisfiable fibre-transversal over
B if it is continuated over B2, respectively B1. Accord-
ing to a result in [14] a fibre-transversal is unsatisfiable
iff it is diagonal. Hence, for r = 2, from the first term in
brackets in the third equation above it follows (ii), and
from the second term in rectangular brackets it follows
(iii) each by comparison with the corresponding terms in
the first equation above. Now assume that (ii), (iii) are
true for any fixed r ≥ 2, and assume that H′ = H∪Hr+1,
where H =

⋃r
i=1Hi of pairwise disjoint components Hi,

i ∈ [r], and H ∪ Hr+1 = ∅. Let ω(Hr+1) =: ωr+1,
δ(Hr+1) =: δr+1, ρ(Hr+1) =: ρr+1, then by the induc-
tion base δ(H′) = δ(H)(ωr+1 − δr+1) + δr+1ω(H), and
ρ(H′) = ρ(H)(1+ρr+1)+ρr+1. From these equations (ii)
and (iii) can be derived straightforwardly, for r + 1, by
the corresponding induction hypotheses. 2

For fixed b ∈ B and c, c′ ∈ Wb let Y (c, c′) ∈ Gb be the
unique transition member satisfying cY (c,c′) = c′. There
is a local criterion for disjoint orbits of fibre-transversals:

Lemma 2 Let H = (V,B), F, F ′ ∈ F(KH). Then
O(F ) 6= O(F ′) iff there are b, b̃ ∈ B with x ∈ b ∩ b̃ such
that x ∈ Y (F (b), F ′(b))⊕ Y (F (b̃), F ′(b̃)).

Proof. For the if-part w.l.o.g. we may assume that
x ∈ F (b), x̄ ∈ F ′(b), x ∈ F (b̃), and x ∈ F ′(b̃),
which directly implies O(F ) 6= O(F ′). Regarding the
only-if-part we assume that for all b1, b2 ∈ B and all
x ∈ b1 ∩ b2 holds x 6∈ Yb1 ⊕ Yb2 , where for any fixed

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



b ∈ B we set Yb := Y (F (b), F ′(b)). We claim that then
for X :=

⋃
b∈B Yb the relation FX = F ′ is valid yielding

the assertion by contraposition. To verify the claim ob-
serve that obviously one has Yb ⊆ X ∩ b, for all b ∈ B.
Assume there is an x ∈ X ∩ b with x 6∈ Yb then there
must exist a b′ ∈ B such that x ∈ b′ and x ∈ Yb′ imply-
ing x ∈ b ∩ b′ and x ∈ Yb ⊕ Yb′ yielding a contradiction
to the assumption. Thus for every b ∈ B it holds that
Yb = X ∩ b. Therefore using the fibre-decomposition one
obtains

FX =
⋃
b∈B

{F (b)X∩b} =
⋃
b∈B

{F (b)Yb} =
⋃
b∈B

{F ′(b)} = F ′

finishing the proof. 2

On that basis the following notion turns out to be useful.

Definition 1 Given not necessarily connected base hy-
pergraphs H0 = (V0, B0),H = (V,B) then a triple
(b1, x, b2), where x ∈ V0, b1 ∈ B0, b2 6∈ B0, V = V0 ∪ b2,
B = B0 ∪ {b2}, and such that x ∈ b1 ∩ b2, is called a
bifurcation. Moreover H then is called a bifurcation aug-
mentation of H0 at (b1, x, b2).

A base hypergraph admitting compatible fibre-
transversals only, hence consisting of pairwise disjoint
edges, cannot be a bifurcation augmentation of any
subhypergraph, more generally, one has:

Lemma 3 Given a base hypergraph H = (V,B) then
there exist F1, F2 ∈ F(KH) at least one non-compatible
such that O(F1) 6= O(F2) iff there is H0 ( H such that
H is a bifurcation augmentation of H0.

Proof. Let H be a bifurcation augmentation of some
proper subhypergraph H0 = (V0, B0) at (b1, x, b2). Let
F0 ∈ F(KH0) 6= ∅ be chosen arbitrarily and define
distinct fibre-transversals F1, F2 ∈ F(KH) by F1 :=
F0∪{b2} and F2 := F0∪{b{x}

2 }. Observe that at least one
of F1, F2 is non-compatible by construction. As x ∈ b1∩b2

and b1 ∈ B0 we have l(x) ∈ F1(b1) ∩ F2(b1) hence x 6∈
Y (F1(b1), F2(b1)) but by definition x ∈ Y (F1(b2), F2(b2)).
Thus x ∈ Y (F1(b1), F2(b1)) ⊕ Y (F1(b2), F2(b2)) imply-
ing the assertion due to Lemma 2. Conversely, as-
sume by contraposition that there is no proper subhy-
pergraph H0 of which H is a bifurcation augmentation.
Then every distinct b, b′ ∈ B must be disjoint. Hence
β(H) = 0 implying ω(H) = |F(KH)/GV | = 1 and
F(KH) = Fcomp(KH) yielding the assertion. 2

As a direct consequence from the previous proof one has:

Corollary 1 If a base hypergraph H = (V,B) is no bifur-
cation augmentation of a subhypergraph then δ(H) = 0.

Lemma 4 Given a base hypergraph H = (V,B) that is
a bifurcation augmentation of a diagonal base hypergraph
H0 then δ(H) ≥ 2δ(H0).

Proof. Let F0 ∈ Fdiag(KH0) and assume H is a bi-
furcation augmentation of H0 = (V0, B0) at (b1, x, b2)
where b1 ∈ B0, b2 ∈ B \ B0. Then F ′

0 := F0 ∪ {b2}
and F ′′

0 := F0 ∪ {b{x}
2 } are distinct diagonal fibre-

transversals in Fdiag(KH) such that O(F ′
0) 6= O(F ′′

0 )
according to the proof of Lemma 3. Hence every or-
bit O(F0) in Fdiag(KH0)/GV0 yields the distinct orbits
O(F ′

0),O(F ′′
0 ) ∈ Fdiag(KH)/GV from which the assertion

follows. 2

For positive integer n, let Hn denote a base hypergraph
such that |V (Hn)| = n. Regarding the existence of base
hypergraphs with small non-trivial fibre-transversal orbit
spaces one has:

Theorem 1 There is no H1 such that ω(H1) = 2. There
is a connected and linear H2 such that ω(H2) = 2, but
there neither is a loopless nor a Spernerian instance. For
each positive integer n ≥ 3 there is a connected, loopless,
and linear (hence Spernerian) Hn with ω(Hn) = 2.

Proof. Obviously there is no H1 admitting a bifurca-
tion augmentation hence ω(H1) = 1 by Lemma 3. Any
H2 obviously satisfies |B(H2)| ≤ 3. By Lemma 3 it
admits a bifurcation augmentation only if |B(H2)| ≥ 2
and there is a b with |b| = 2 and a loop b′ ⊂ b. In
case |B| = 3 one obtains β(H2) = 2 thus ω(H2) > 2.
Hence setting V = {x1, x2} and B = {b1, b2} with
b1 = {x1},b2 = {x1, x2} yields a connected linear in-
stance H = (V,B) with ω(H) = 2. Now let n ≥ 3,
set V = {x1, . . . , xn}, B = {b1, b2}, and let n be even.
Setting b1 = {x1, . . . , xn/2},b2 = {xn/2, xn/2+1, . . . , xn},
one has |b1| + |b2| = n/2 + (n/2 + 1) yielding the as-
sertion. For n odd, we set b1 = {x1, . . . , xn+1

2
}, b2 =

{xn+1
2

, xn+1
2 +1, . . . , xn}, and obtain uniform |b1| = |b2| =

(n + 1)/2 again yielding the assertion in this case. 2

Observe that the hypergraphs constructed in the previous
proof are smallest possible instances regarding the size of
B(Hn) with the required properties.

4 A Hierarchy of Diagonal Hypergraphs

As shown in [13] there exist connected, loopless and lin-
ear diagonal base hypergraphs H = (V,B) such that
δ(H) > 1. And due to Lemma 4 it inductively follows
that there are also base hypergraphs with arbitrary large
orbit spaces regarding their diagonal fibre-transversal
sets. Therefore, one obtains a hierarchy in the class H
of connected base hypergraphs, namely for non-negative
integer d, let Hd := {H = (V,B) ∈ H : δ(H) ≤ d}, then

H0 ⊆ H1 ⊆ H2 ⊆ H3 ⊆ . . .
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and H =
⋃

d≥0 Ĥd as a disjoint union where Ĥd :=
Hd+1 \Hd, for every integer d ≥ 0. A loopless exact linear
hypergraph H does not admit diagonal fibre-transversals
at all [15], hence it belongs to the class H0 verifying that
Hd 6= ∅, for every integer d ≥ 0. The existence of strictly
diagonal base hypergraphs needs to be proven. Slightly
adapting the proof of Theorem 7 in [13] regarding the
connectedness one has:

Theorem 2 Hsdiag 6= Hdiag.

Proof. One takes a loopless exact linear, hence obvi-
ously connected base hypergraph H1 = (V1, B1) such
that there is a H1-based unsatisfiable formula C1 ⊂ KH1

such that C̄1 also is H1-based. Such an instance exists
on behalf of a result in [14]. Next note that a formula
F ′ ∈ LCNF ∩ UNSAT free of unit clauses and such that
H(F ′) is connected exists due to a result in [15]. Fur-
ther one can assume that V (F ′) ∩ V1 = ∅. Take any
fixed x ∈ V1 and exchange all occurrences of a fixed
y ∈ V (F ′) in F ′ by x so obtaining F2 from F ′, and
H2 := H(F2) =: (V2, B2) from H(F ′). Then specifically
F2 ∈ Fdiag(KH2) is ensured. Moreover B2 ∩ B1 = ∅,
but H := (V1 ∪ V2, B1 ∪ B2) is connected. The rest of
the proof proceeds as outlined in [13] establishing that
H ∈ Hdiag \ Hsdiag. 2

Note that from the previous proof one can derive that
the assertion of the theorem also is true for the loopless
and linear subclasses. In [13] a connected diagonal base
hypergraph is defined as simple if it belongs to Ĥ1. The
next result already is stated in [13]; here it comes with
the proof:

Lemma 5 H = (V,B) is simple iff there is a GV -
equivariant bijection between Fcomp(KH) and Fdiag(KH).

Proof. Assume that there is an equivariant bijec-
tion [17] with respect to the flipping operation be-
tween Fcomp(KH) and Fdiag(KH). Then there is a bi-
jection at all which is equivalent with |Fdiag(KH)| =
|Fcomp(KH)| = 2|V |, equivalent with δ(H) = 1, and
equivalent withH ∈ Ĥ1. Conversely, letH be simple then
as above one has |Fdiag(KH)| = |Fcomp(KH)| correspond-
ing to a bijection f : Fcomp(KH) → Fdiag(KH). Now f
can be ensured to be GV -equivariant as follows. Fix an
arbitrary pair Fc ∈ Fcomp(KH), and Fd ∈ Fdiag(KH)
setting Fd =: f(Fc). As shown in [12], Fcomp(KH) =
O(F ), for any fixed F ∈ Fcomp(KH). So we can as-
sume Fcomp(KH) = {FX

c : X ∈ GV }. Hence defining
f(FX

c ) := FX
d = f(Fc)X , for every X ∈ GV means equiv-

ariance of f . 2

In view of Corollary 1 and Lemma 4 a simple base hyper-
graph might be the bifurcation augmentation of a non-
diagonal connected base hypergraph. Such an instance,

connected and loopless, indeed is constructed below as
stated in Theorem 8. However it appears not to be
strictly diagonal. As a next result the existence of simple
and also those of connected strictly diagonal base hyper-
graphs can be established at least in the case that loops
are allowed.

Theorem 3 For every integer n ≥ 2, there is a con-
nected H = (V,B) ∈ Ĥ1∩Hsdiag 6= ∅ such that |B| = n+1,
and ω(H) = 2n.

Proof. Given n ≥ 2 define the connected base hyper-
graph H = (V,B) through V = {x1, x2, . . . , xn} and
B = {b1, b2, . . . , bn+1} where bi = {xi}, i ∈ [n], and
bn+1 := V . Then one has β(H) = n thus ω(H) = 2n.
Next we claim that H is simple. Indeed, one can set
Fcomp(KH) = {FX

c : X ∈ GV } where Fc(bi) := bi,
i ∈ [n + 1] using the clause-wise notation for a fibre-
transversal. We define Fd := f(Fc) := {{x̄i} : i ∈ [n]} ∪
{{x1, x2, . . . , xn}} ∈ Fdiag(KH), and claim that setting
Fdiag(KH) = {FX

d : X ∈ GV } one directly obtains an
equivariant bijection f : Fcomp(KH) → Fdiag(KH) where
FX

d =: f(FX
c ) = [f(Fc)]X , for every X ∈ GV . From

this claim the assertion can be concluded using Lemma
5. To prove the claim, observe that there are exactly 2n

unsatisfiable fibre-transversals in F(KH), namely by se-
lecting all variables in X as negative literals in the unit
clauses over bi, i ∈ [n], and simultaneously negating ex-
actly those variables in V \ X in the clause over bn+1,
for every X ∈ GV . Indeed, for any different negation
structure in the clauses of a fibre-transversal F there is a
j ∈ [n] such that the literal l(xj) is contained in the clause
over bj as well as in the clause over bn+1. Hence F ∈ SAT
and therefore F 6∈ Fdiag(KH). Next observe that ev-
ery H-based formula C ⊆ KH must contain exactly one
clause from Wbi

, for every i ∈ [n], otherwise C̄ cannot
be H-based. So, as outlined previously, if C ∈ UNSAT
it also must contain a clause of Wbn+1 completing these
unit clauses to a member of Fdiag(KH) being a subset of
C implying H ∈ Hsdiag and finishing the proof. 2

However the next result tells us that the properties simple
and strictly diagonal are not always valid together, at
least in the case of disconnected base hypergraphs.

Theorem 4 There are, not necessarily connected, base
hypergraphs which are strictly diagonal and non-simple.

Proof. Let n ≥ 2 and Hi = (Vi, Bi) ∈ Ĥ1 ∩ Hsdiag,
|Vi| = n, i ∈ [2], according to Theorem 3 and such that
V1 ∩ V2 = ∅. For H = H1 ∪ H2 =: (V,B) by Lemma
1 one has δ(H) = 2n+1 − 1 > 1 hence H is not simple.
Suppose H was not strictly diagonal, then there is an un-
satisfiable C ⊂ KH with B(C) = B = B(C̄) and such
that Fdiag(C) = ∅. Clearly then there are Ci ⊆ KHi

,
with B(Ci) = Bi = B(C̄i), for i ∈ [2], and such that
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C = C1 ∪ C2 holds as disjoint union. Hence at least one
of them, say C1, must be unsatisfiable. And Fdiag(C) = ∅
implies Fdiag(C1) = ∅ because any continuation of a diag-
onal fibre-transversal over B1 to the whole of B remained
diagonal. Therefore H1 cannot be strictly diagonal yield-
ing a contradiction. 2

Theorem 5 For every positive integer d which is a
power of 2, there is a not necessarily connected base hy-
pergraph H such that δ(H) = d. Moreover, there is a not
necessarily connected H such that for every fixed positive
integer d there is an odd δ(H) ≥ d.

Proof. Let d = 2k then we prove the assertion by in-
duction on k. For k = 0 take any member of Ĥ1 provid-
ing the induction base. Now let H2 = (V,B) such that
δ(H2) = 2k, for any fixed k ≥ 0. On behalf of Theorem 1
there is H1 = (V1, B1) such that ω(H1) = 2, and |V1| ≥ 3.
Moreover observe that H1 by construction is exact linear
and loopless, hence δ(H1) = 0. Assuming that V ∩V1 = ∅
it is implied that H1 ∪H2 cannot be the bifurcation aug-
mentation of a diagonal subhypergraph. Thus accord-
ing to Lemma 1, (ii), for r = 2, it directly follows that
δ(H1 ∪ H2) = δ(H1)ω(H2) + δ(H2)ω(H1) − δ(H1)δ(H2)
= δ(H2)ω(H1) = 2k+1 yielding the first assertion. Let d
be arbitrarily fixed, choose an integer n ≥ log2(d+1)− 1
and let Hi = (Vi, Bi) ∈ Ĥ1∩Hsdiag, |Vi| = n, i ∈ [2], with
V1 ∩ V2 = ∅. Using Theorem 3 and Lemma 1 yields an
odd δ(H1 ∪H2) = 2n+1 − 1 ≥ d. 2

From Theorem 3 one can deduce directly:

Corollary 2 There is a connected diagonal base hyper-
graph which is the bifurcation augmentation of a non-
diagonal subhypergraph.

Observe that a minimal diagonal base hypergraph always
is connected. Moreover as proven in [13], for a strictly
diagonal base hypergraph H which is minimal diagonal
it holds that a H-based formula C ⊂ KH is minimal
unsatisfiable iff it is a diagonal fibre-transversal of KH.
Further one has:

Theorem 6 Let H be a diagonal base hypergraph. Then
H is minimal diagonal iff Fdiag(KH) ⊂ I.

Proof. For the only-if-part, using the assumption we
can suppose, by contraposition, that there is F ∈
Fdiag(KH) 6= ∅ which is not minimal unsatisfiable then
there is b ∈ B(H) such that F \ {F (b)} ∈ Fdiag(KH0).
Hence H0 := H \ {b} is a diagonal subhypergraph. Re-
garding the if-part observe that then H clearly is con-
nected. Suppose there is b ∈ B(H) such that H0 :=
H \ {b} is diagonal and let F0 ∈ Fdiag(KH0). Take any
c ∈ Wb then clearly F ′ := F0 ∪ {c} ∈ Fdiag(KH) \ I
providing a contradiction. 2

In the simple case at least one has:

Theorem 7 If H ∈ Ĥ1 then Fdiag(KH) ⊂ I.

Proof. Let H = (V,B) be simple and assume there is
F1 ∈ Fdiag(KH) that is non-minimal unsatisfiable then
there is b2 ∈ B such that F ′

1 := F1 \ {F1(b2)} ∈ UNSAT
and H0 := H(F ′

1) is diagonal. As H is connected there
is b1 ∈ B \ {b2} such that b1 ∩ b2 6= ∅. Let x ∈ b1 ∩ b2

then H is a bifurcation augmentation of H0 at (b1, x, b2)
establishing δ(H) > 1 according to Lemma 4 yielding a
contradiction. 2

As a direct consequence of Theorems 6, 7 it follows:

Corollary 3 Every H ∈ Ĥ1 is minimal diagonal.

Lemma 6 For H = (V,B) and arbitrary b ∈ B, let F ∈
F(KH) ∩ I then (F \ {F (b)}) ∪ {c} ∈ SAT for all c ∈
Wb \ {F (b)}.

Proof. Let t be a model of F \ {F (b)} which exists for
each fixed b ∈ B as F ∈ I. Then |Y (c, F (b))| ≥ 1 for
every c ∈ Wb \ {F (b)}. Therefore as t necessarily sets
all literals in F (b) to 0, one has that t satisfies c via any
literal in Y (c, F (b)) yielding (F \{F (b)})∪{c} ∈ SAT. 2

Lemma 7 Let H = (V,B) be a diagonal base hypergraph.
If there is a loopless exact linear subhypergraph H0 ⊆ H
such that every b ∈ B(H′) has a variable not in V (H0),
where H′ := H \H0 then H cannot be strictly diagonal.

Proof. Let H0 = (V0, B0) be a loopless, exact lin-
ear subhypergraph of H, then Fdiag(KH0) = ∅ accord-
ing to [15]. Let F0 ∈ F(KH0) be any non-compatible
fibre-transversal then due to [11] C0 := KH0 \ F0 ∈
UNSAT. Moreover C0 and C̄0 are H0-based, so taking
F ′ ∈ Fcomp(KH′) where H′ := H \ H0 yields an unsat-
isfiable H-based formula C := C0 ∪ F ′ ∈ KH such that
also C̄ is H-based. Suppose there is F ∈ F(C0) such
that F ∪F ′ ∈ Fdiag(C). By assumption every F (b) has a
literal over a variable not in V0 therefore F ′ can be sat-
isfied as a compatible fibre-transversal only by variables
not in F . Therefore F must be in Fdiag(KH0) which is
impossible. 2

The next result shows that there are loopless members
in Ĥ1, and that this class does not coincide with that of
connected strictly diagonal base hypergraphs.

Theorem 8 There are connected, loopless and linear
minimal diagonal base hypergraphs which are simple, but
not strictly diagonal.

Proof. Let H = (V,B) be such that B = {bi : i ∈ [6]},
V =

⋃
i∈[6] bi, and bi = {x, yi}, i ∈ [2], bi = {x, yi},
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i ∈ {3, 4}, and b5 = {y1, y2}, b6 = {y3, y4}. Clearly, H
is loopless and linear, and also connected. It suffices to
show that δ(H) = 1 meaning H ∈ Ĥ1 and implying H
is minimal diagonal according to Corollary 3. Observe
that δ(H) ≥ 1 because F = {ci : i ∈ [6]} ∈ Fdiag(KH)
with ci = {x, yi}, i ∈ [2], ci = {x̄, yi}, i ∈ {3, 4}, and
c5 = {ȳ1, ȳ2}, c6 = {ȳ3, ȳ4}. Obviously F ∈ I. On behalf
of Lemma 2 it is clear that an orbit distinct from O(F )
can be obtained only by a local transformation as stated
in that Lemma. As F is minimal unsatisfiable, Lemma 6
implies that at least two such local transformations must
be applied to F in order to obtain an unsatisfiable for-
mula. Relying on two bifurcations with respect to one of
the variables {yi : i ∈ [4]} only an unsatisfiable formula
in the orbit of F can be produced, as these variables oc-
cur only twice and as mutually complemented literals. If
one tries x only satisfiable formulas appear if they are
members of distinct orbits. Also combining bifurcations
using x and one of yi, i ∈ [4]. Thus δ(H) = 1. For
the second assertion observe that H0 = (V0, B0) with
V0 = {x, y1, y2}, B0 = {b1, b2, b5} is a loopless, exact lin-
ear subhypergraph of H. Further for H′ = H\H0 one has
B(H′) = {b3, b4, b6} and V (H′) = {x, y3, y4}. Thus each
b ∈ B(H′) contains a member not in V0, so by Lemma 7
it follows that H cannot be strictly diagonal. 2

5 Open Problems

There occurs an existence problem whether Ĥd 6= ∅, for
every d > 1. Specifically, in the case d ≥ 2 the exis-
tence of members that are loopless and linear or at least
Sperner needs to be clarified. In that context one has to
reveal the specific structure of simple hypergraphs. Fi-
nally, the existence problem for loopless strictly diagonal
hypergraphs is still open, specifically concerning those
that are Sperner or even linear. Moreover, so far we know
only to construct simple instances with loops meeting the
property in Corollary 2, and the conjecture here is that
there are no base hypergraphs in Ĥd, for any d > 1, which
appear as a bifurcation augmentation of a non-diagonal
subhypergraph. In view of Theorem 5 it would be de-
sirable to guarantee the existence also of connected base
hypergraphs admitting the specified properties. Further
it is open whether the classes of minimal diagonal and
that of connected simple base hypergraphs coincide. Also
it remains open whether a loopless and Sperner or even
linear base hypergraph H = (V,B) exists being simple
or connected strictly diagonal such that there are b ∈ B
with |b| ≥ 3.
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