
 


 

Abstract— Earthquake, as a natural calamity, is devastating 

as it already killed eight hundred one thousand six hundred 

twenty-nine (801,629) people from years 2000 to 2017 all over 

the world. This study incorporated data mining techniques to 

find patterns about the occurrence of earthquake. The number 

of future occurrence of each magnitudes for the years 2018 to 

2022 was forecasted using ARIMA(1,0,6) model. The 

simulation result shows that the highest count of earthquake 

occurrences is forecasted in year 2022 with estimated number 

of 1,580 times in magnitude level of 5.0-5.9. It only proved that 

the ARIMA(1,0,6) model is effective in predicting occurrences 

of earthquake. Future researchers may utilize other data 

mining techniques and conduct a comparative study on the 

different results. 

 
Index Terms— arima, forecasting, prediction, earthquake, 

data analytics 

 

I. INTRODUCTION 

ATURAL risks [1] such as earthquakes, floods, 

hurricanes, tornadoes, tsunamis, volcanic eruptions and 

others are some of the threats in modern society. Among 

natural disasters, earthquake stands out due to their 

disturbing effects [2] as it also produces tsunamis [3], 

landslides [4] and soil liquefaction [5]. 

Analysis and processing of huge data has become a 

stronghold technique that is being applied in extracting 

useful information and discover patterns out of huge datasets 

[6]. In analyzing huge datasets, machine learning algorithms 

is required coined with new parallelized implementations to 

produce much better results [7].  

With the abovementioned, global researches about 

earthquakes were conducted to intensify our understanding 

and have a grasp on the techniques to foresee them [8]. 

Various studies about earthquake predictability were 

conducted. Methods in data analytics such as random forest 

(RF) [9], artificial neural network (ANN), recurrent neural 

network, LPBoost [10] and other boosting methods, Naïve 

Bayesian, regression models, C4.5, KNN, linear regression 

[11], and SVM [12] has been utilized. In this paper, number 
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of earthquake occurrences for the next five years is 

predicted.   

II. MACHINE LEARNING TECHNIQUES FOR EARTHQUAKE 

PREDICTION 

It is believed that there is no such existing model capable 

of predicting earthquakes’ exact time, location and 

magnitude since its occurrence is random and due to high 

nonlinear phenomenon. Although, various studies over 

earthquake occurrences and predictions with the 

implementation of different algorithms has been already 

conducted which lead to various conclusions regarding the 

aspects under consideration [10].  

A. Artificial Neural Network 

The concept that lies behind the Artificial Neural 

Network are modeled based on the interconnected neurons 

in the human brain structure. A network is created with the 

combination of neurons that is made with individual nodes 

having represented by its own variables. The network 

consists of three layers vis., input, output, and hidden layers. 

This layer serves as a medium in providing connection 

between the input and output nodes. The result of the first 

initialization can be used as input to prior nodes to be 

processed. [13].  

In training a network, back propagation algorithm is one 

supervised learning technique often used.  Back propagation 

[14] method for forecasting are described in the following 

steps: 

1) Assign a small pseudorandom value for a network 

weight W.  

2)  Using a sigmoid function F,  
 

F(v) = tanh(v),         (1) 
 

compute the activation level Oj of the hidden and output 

units. 

3) Compute the error needs using the delta rule,  
 

E = (  –           (2) 
 

as  represents the forecasted value while the actual 

value is being represented by  within the output layer.  

4) Compute the weights  to update the network 

weights for all the weights from output layer to hidden layer, 
 

Δ  = η         (3) 
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5) Redo steps 2 to 4 until the stopping criterion is has 

met. 

B. Recurrent Neural Network 

Fully recurrent networks [15], introduced by Elman, feed 

the outputs of the hidden layer back to itself. Partially 

recurrent networks start with a fully recurrent net and add a 

feedforward connection that bypasses the recurrence, 

effectively treating the recurrent part as a state memory. Fig. 

1 depicts a typical recurrent network. It is being said that this 

method is a state of the art in nonlinear time series 

prediction, system identification, and temporal pattern 

classification [16]. 

 
 

Fig. 1. Typical recurrent neural network 

 

C. Random Forest 

The random forest (RF) is a technique of combining the 

prediction of many decision trees [17]. It refers to the large 

number of decision trees, merged through bootstrap 

aggregating or bagging. Bagging is the main principle where 

a sample of size n is randomly chosen from the training set 

 and fitted to a regression tree. The said sample is known 

as bootstrap which is chosen with replacement.  

In a taking bootstrap sample, each observation has the 

probability   to be chosen at random. The random 

selection is represented by the random variables , 

independent and identically distributed. Using the bagging 

algorithm, several bootstrap samples ( ,…, )  were 

selected and applying the CART algorithm to them in order 

to obtain a collection of r predicting trees (f(X, ),…,f(X, 

)). The output of all these predictors are then aggregated. 

 

D. LPBoost 

Boosting is another method used to enhance the 

performance of weak learners such as in trees. Different 

boosting types varies based upon the weighting 

methodologies and LPBoost is one of these types. It is a 

linear combination of many tree classifiers. The idea is that 

each classifier is iteratively added to the set of selected 

classifiers until no other tree needs to be added [18]. 

 

E. Naïve Bayesian Classification 

Naïve bayesian classifier is anchored on bayes theorem 

with a codition of independence between predictors.  Bayes 

theorem gives a way on the calculation of the posterior 

probability, , from ,   and .Naive 

Bayes classifier has the assumption that the effect of a 

predictor (x) on a given class (a) is independent of other 

predictors. This assumption is called class conditional 

independence. 

 .  . 

 

where . . … . . .        

(4) 

 

 is the posterior probability of class (target) given the 

predictor (attribute),  is the prior probability of class, 

 is the likelihood which is the probability of predictor 

[13]. 

 

F. KNN 

The k-nearest neighbor algorithm is a powerful 

nonparametric classifier which assigns an unclassified 

pattern to the class represented by a majority of its k nearest 

neighbors. The KNN works as follows: 

Find k nearest neighbors from the set T for the unknown 

query point x, and let ={(  indicate the set of 

k nearest neighbors for x. The distance between x and the 

neighbor  is measured by the Euclidean distance metric 
 

       (5) 
 

The class label of the query point x is predicted by the 

majority voting of its neighbors 
 

        (6) 

 

where c is a class label and  denotes the class label for 

the i-th nearest neighbor among its k nearest neighbors. The 

indicator function  takes the value of one if the 

class  of the neighbor  is the same as the class c and 

zero otherwise [19]. 

 

G. Auto Regressive Integrated Moving Average 

ARIMA model is considered one of the most widely used 

methodology in time series forecasting that aims to describe 

the autocorrelations in the data and use the ARIMA(p,d,q) 

notation. p denotes the order of auto regression process 

(AR), d refers to the degree of differentiation involved (I) 

and q refers to the (MA) which is the order of the Moving 

Average. The mathematical expression of the model is:  
 

= + +…+ + - - -…-

                         (7) 
 

where  is the variable value at time t, while  and  are the 

model parameters of (AR) and (MA) and  is the residual 

term representing random disturbances that cannot be 

predicted [20]. Fig. 2 shows the algorithm flowchart of 

ARIMA. 
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Fig. 2. Algorithms flowchart of ARIMA 

III. EXPERIMENTS AND RESULTS 

The data that were used in this study are the indexed 

datasets of earthquake counts around the world from years 

2000-2017. This paper used ARIMA(1,0,6) model in 

determining the occurrence of earthquake for the next five 

years. The simulation was done using GRETL software 

application. 

 

 
 

Fig. 3. Magnitude 5-5.9 

 

Fig. 3 shows that there is a connivance with the actual 

and forecasted data. The forecasted data of magnitude 5-5.9 

earthquake showed an increasing forecast from 2018 to 2022 

with highest number of occurrence in year 2020 with 1,580 

earthquakes all over the world. It is evident in the graph that 

the forecasted trend follows the pattern of the actual data and 

depicts a very close prediction like in the years 2014, 2006, 

and 2013 as compared in the simulation shown in Table I. 

The MAPE result shows that the forecasted data is 12% off 

from the actual data. Therefore, the forecast is reliable.  

 
Table I. Comprehensive simulation result for magnitude 5-5.9 

 

Year 
Actual 

Data 

Forecasted 

Data 

Forecast evaluation 

statistics 
Values 

2000 1344 1585.51 Mean Error 5.033 

2001 1224 1437.29 Mean Squared Error 62000 

2002 1201 1365.92 RMSE 249 

2003 1203 1363.23 MAE 205.1 

2004 1515 1365.1 MPE -1.9535 

2005 1693 1579.26 MAPE 12.795 

2006 1712 1660.61 Theil's U 0.94047 

2007 2074 1658.09 Bias proportion, UM 0.00040856 

2008 1768 1907.47 
Regression proportion, UR 

0.0003116

6 

2009 1896 1649.29 Disturbance proportion, UD 0.99928 

2010 2209 1786.77   

2011 2276 1975.64   

2012 1401 1985.51   

2013 1453 1382   

2014 1574 1533.4   

2015 1419 1587.58   

2016 1550 1470.63   

2017 1455 1583.11   

2018 
 

1496.24   

2019 
 

1541.23   

2020 
 

1563.55   

2021 
 

1574.62   

2022 
 

1580.11   

 

 

 
 

Fig. 4. Magnitude 6-6.9 

 

The forecasted data for magnitude 6-6.9 earthquake 

showed an increasing forecast from year 2017 to 2019 and 

an alternate decrease and increase on the succeeding years 

that is evident in Fig. 4. The MAPE result as shown in Table 

II depicts that the forecasted data is 10% off from the actual 

data. Therefore, the forecast is reliable. 

 
Table II. Comprehensive simulation result for magnitude 6-6.9 

 

Year 
Actual 

Data 

Forecasted 

Data 

Forecast evaluation 

statistics 
Values 

2000 149 139.94 Mean Error 0.058721 

2001 121 141.06 Mean Squared Error 397.87 

2002 127 136.33 RMSE 19.947 

2003 140 141.27 MAE 14.479 

2004 141 138.74 MPE -1.9929 

2005 140 141.21 MAPE 10.507 

2006 142 138.77 Theil's U 0.81877 

2007 178 141.39 Bias proportion, UM 8.67E-06 

2008 168 145.51 Regression proportion, UR 0.0016506 

2009 144 139.94 Disturbance proportion, UD 0.99834 

2010 150 140.71   

2011 185 141.15   

2012 108 147.62   

2013 123 126.31   

2014 143 149.52   

2015 127 131.41   

2016 130 145.45   

2017 104 132.61   

2018 
 

138.35   

2019 
 

141.14   

2020 
 

139.04   

2021 
 

140.62   

2022 
 

139.43   

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



 

 
 

Fig. 5. Magnitude 7-7.9 

 

The forecasted data for magnitude 7-7.9 earthquake 

showed an increased pattern from year 2008 to 2010 and an 

alternate decrease and increase on the following years up to 

year 2015. A successive decrease on the occurrence of 

earthquake having magnitude 7-7.9 is present in the year 

2016 up to 2020 as evident in Fig. 5. The MAPE result as 

shown in Table III depicts that the forecasted data is 30% off 

from the actual data. Therefore, the forecast is reliable. 

 
Table III. Comprehensive simulation for Magnitude 7-7.9 

 

Year 
Actual 

Data 

Forecasted 

Data 

Forecast evaluation 

statistics 
Values 

2000 14 
 

Mean Error 0.024002 

2001 15 13.64 Mean Squared Error 21.266 

2002 13 14.23 RMSE 4.6115 

2003 14 13.14 MAE 3.5383 

2004 14 13.23 MPE -9.8676 

2005 10 13.53 MAPE 30.365 

2006 9 10.74 Theil's U 0.94587 

2007 14 8.83 Bias proportion, UM 2.71E-05 

2008 12 12.03 Regression proportion, UR 0.27831 

2009 16 12.14 Disturbance proportion, UD 0.72166 

2010 23 14.33   

2011 19 20.43   

2012 12 19.74   

2013 17 13.64   

2014 11 15.03   

2015 18 12.34   

2016 16 15.43   

2017 6 16.14   

2018 
 

8.54   

2019 
 

7.31   

2020 
 

7.21   

2021 
 

6.78   

2022 
 

6.44   

 

 
 

Fig. 6. Magnitude 8 and up 

A steady pattern on the forecasted occurrence of 

earthquake having magnitude 8 and up in the year 2018 up 

to 2022 is evident in Fig. 6. The MAPE result as shown in 

Table IV depicts that the forecasted data is 30% off from the 

actual data. Therefore, the forecast is reliable. 

 
Table IV. Comprehensive simulation result for magnitude 8 and up 

 

Year 
Actual 

Data 

Forecasted 

Data 

Forecast evaluation 

statistics 
Values 

2000 1 
 

Mean Error 0.00045242 

2001 1 0.98 Mean Squared Error 1.4223 

2002 0 0.97 RMSE 1.1926 

2003 1 0.4 MAE 0.90243 

2004 2 0.55 Bias proportion, UM 1.44E-07 

2005 1 1.55 Regression proportion, UR 0.38166 

2006 2 1.4 Disturbance proportion, UD 0.61834 

2007 4 1.55   

2008 0 3.13   

2009 1 1.67   

2010 1 0.55   

2011 1 0.97   

2012 2 0.97   

2013 2 1.55   

2014 1 1.97   

2015 1 1.4   

2016 0 0.97   

2017 1 0.4   

2018 
 

0.55   

2019 
 

0.72   

2020 
 

0.62   

2021 
 

0.63   

2022 
 

0.6   
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