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Abstract—A thin film flow problem on a moving
belt has been useful in scientific, engineering, biolog-
ical and biomedical problems. A thin film flow ve-
locity on a moving belt can be modeled by a nonlin-
ear differential equation. The model is provides the
film flow velocity in each thickness layers. In this
research, a finite difference method and a Newton it-
erative method are used to approximate the solutions
of the nonlinear thin fluid film flow velocity model.
Their numerical simulations of a thin film flow ve-
locity of a third grade fluid in on a moving belt with
varied physical parameters are investigated. The pro-
posed numerical techniques give good agreement ap-
proximated solutions in several moving belts speed
levels.
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1 Introduction

Nowadays, the Non-Newtonian fluid has a key role in the
physical system. Physicist use of non-Newtonian fluid to
adapt in the several ways such as mechanical engineering
and manufacturing process which mean non-Newtonian
fluid can lead many benefits in the future and so on. The
Non-Newtonian fluid is referring a fluid whose viscosity
is variable based on the applied stress or force. People
familiar with a non-Newtonian fluid in every day. Be-
havior of Newtonian fluids like water can be described
exclusively by temperature and pressure. The research
of Non-Newtonian fluid is bring up some interesting re-
sult when combined theory with mechanical engineering.
Most of the scientific problems in fluid mechanics are
modeled by nonlinear differential equations. It is well
known that exact solutions of these nonlinear boundary
value problems are difficult to obtain. Therefore, numer-
ical solutions methods and analytical solutions methods
are used to handle such type of problems. In [1], the re-
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searchers studied thin film flow of a third grade fluid on a
moving belt by He’s homotopy perturbation method. In
[3], the researchers develop a generalized approximation
method (GAM) to obtain a solution of a thin film flow of
a third grade fluid on a moving belt. The GAM generates
a monotone sequence of solutions of linear problems. The
sequence of solutions of linear problems converges mono-
tonically and rapidly to a solution of the original nonlin-
ear problem. We present some numerical simulations to
illustrate and confirm our results. In [5], the researchers
studied a thin film flow of a third grade fluid on a mov-
ing belt using a powerful and relatively new approximate
analytical technique known as optimal homotopy asymp-
totic method (OHAM).
In this research, a couple of a finite difference method an
Newton iterative method is used to approximate the so-
lutions of a nonlinear governing equation. The proposed
numerical techniques give good agreement approximated
solutions in several moving belts speed levels.

2 The thin fluid film flow velocity model
of a third grade fluid on a moving belt.

The thin fluid film flow velocity of a third grade fluid
on parallel moving belts is governed by the following
nonlinear boundary value problem. [1, 2, 4, 5].

d2v

dx2
+

6(β2 + β3)

μ

(dv
dx

)2 d2v

dx2
− ρg

μ
= 0, for all 0 ≤ x ≤ δ,

(1)
subject to the boundary conditions

v(0) = ul, (2)

v
′
(δ) = ur, (3)

where v is the fluid velocity (m/s), ρ is the density
(Kg/m3), μ is the dynamic viscosity (Pa·s), β2, β3 are the
material constants of the third grade fluid (non-units), g
is the gravity acceleration (m/s2), δ is the uniform thick-
ness of the fluid film (m), and ul, ur are the belt speed and
the rate of change of fluid flow velocity on ended layer.
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We introduce the following dimensionless variables,

x∗ =
x

δ
, (4)

v∗ =
v

ul
, (5)

β =
(β2 + β3)�

μδ2
, (6)

m =
ρg

μ�
δ2, (7)

where � = max{ul, ur}. From Eqs.(4)-(7), we obtain the
dimensionless form as (for simplicity we removed *),

d2v

dx2
+ 6β

(dv
dx

)2 d2v

dx2
−m = 0, for all 0 ≤ x ≤ 1, (8)

subject to the boundary conditions

v(0) = vl, (9)

v
′
(1) = vr, (10)

where vl is the nondimensional moving belts speed and
vr is the rate of change of the fluid velocity on the ended
layer.

3 Numerical Techniques

3.1 Finite difference method for a thin fluid
film flow velocity model of a third grade
fluid on moving belt ended layer

We will approximate the solution by using finite differ-
ence methods for nonlinear boundary value problem with
Dirichlet boundary conditions Eq.(8)-(10) that can be
written in a compact form as below,

v′′ =
m

1 + 6β(v′)2
, for all 0 ≤ x ≤ 1, (11)

We divide [0, 1] into N + 1 subintervals that endpoints
are at xi = a + ih, for all i = 0, 1, . . . , N + 1, where
h = 1/(N + 1). By using the centered finite difference
method [6], the finite difference equation can be written
as follows,

vi+1 − 2vi + vi−1

h2
=

m

1 + 6β
(vi+1 − vi−1

2h

)2 , (12)

for all i = 1, 2, . . . , N. It follows that

vi+1 +
3

2

β

h2
(v3i+1)−

3

2

β

h2
(v2i+1vi−1)− 3

2

β

h2
(vi+1v

2
i−1)

−2vi − 3
β

h2
(viv

2
i+1) + 6

β

h2
(vi−1vivi+1)− 3

β

h2
(v2i−1vi)

+vi−1 +
3

2

β

h2
(v3i−1) = mh2, (13)

for all i = 1, 2, . . . , N . For i = 1, plug the known value
of the left boundary v0 = vl to Eq.(13) on the left hand

side, we obtain

(−2− 3
β

h2
)v1 + (1− 3

2

β

h2
)v2 − 3

2

β

h2
v22 −

3

2

β

h2
v1v

2
2

+6
β

h2
v1v2 +

3

2

β

h2
v32 = mh2 − vl − 3

2

β

h2
. (14)

For i = 2, 3, . . . , N − 1, Eq.(13) becomes

vi−1 +
3

2

β

h2
v3i−1 −

3

2

β

h2
v2i−1vi+1 − 3

2

β

h2
vi−1v

2
i+1 − 2vi

−3

2

β

h2
viv

2
i+1 −

3

2

β

h2
v2i−1vi + 6

β

h2
vi−1vivi+1

+vi+1 +
3

2

β

h2
v3i+1 = mh2. (15)

To modify the finite difference method to a Neumann
boundary conditions, v

′
(1) = vr, Eq.(13). For i = N ,

2hk + vN−1 +
3

2

β

h2
(2hk + VN−1)

3

−3

2

β

h2
((2hk + vN−1)

2vN−1)− 3

2

β

h2
((2hk + VN−1)V

2
N−1)

−2vN − 3
β

h2
(vN (2hk + vN−1)

2)

+6
β

h2
(vNVN−1(2hk + VN−1))

−3
β

h2
+ VN−1 +

3

2

β

h2
(vN−1)

3 = mh2. (16)

3.2 Newton Iterative method for nonlinear
finite difference equations

Apply the Newton Iterative to the system of simutaneous
on nonlinear equation Eqs.(14-16) that can be written in
a vector form as
F (V ) = (f1(v1, . . . , vN ), f2(v1, . . . , vN ), . . . , fN (v1, . . . , vN ))t,
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where

f1(v1, . . . , vN ) := (−2− 3
β

h2
)v1 + (1− 3

2

β

h2
)v2

−3

2

β

h2
v22 −

3

2

β

h2
v1v

2
2 + 6

β

h2
v1v2

+
3

2

β

h2
v32 − (mh2 − vl − 3

2

β

h2
), (17)

fi(v1, . . . , vN ) := vi−1 +
3

2

β

h2
v3i−1 −

3

2

β

h2
v2i−1vi+1

−3

2

β

h2
vi−1v

2
i+1 − 2vi − 3

2

β

h2
viv

2
i+1

−3

2

β

h2
v2i−1vi + 6

β

h2
vi−1vivi+1 + vi+1

+
3

2

β

h2
v3i+1 −mh2,

for all i = 2, 3, . . . , N − 1, (18)

fN (v1, . . . , vN ) := 2hk + vN−1 +
3

2

β

h2
(2hk + VN−1)

3

−3

2

β

h2
((2hk + vN−1)

2vN−1)

−3

2

β

h2
((2hk + VN−1)V

2
N−1)− 2vN

−3
β

h2
(vN (2hk + vN−1)

2)

+6
β

h2
(vNVN−1(2hk + VN−1))

−3
β

h2
+ VN−1 +

3

2

β

h2
(vN−1)

3

−mh2. (19)

The Jacobian matrix J(V ) for the system of Eqs.(17-19)
is given by

J(V ) =

⎡
⎢⎢⎢⎢⎢⎣

∂f1/∂v1 ∂f1/∂v2 ∂f1/∂v3 ... ∂f1/∂vm
∂f2/∂v1 ∂f2/∂v2 ∂f2/∂v3 ... ∂f2/∂vm
∂f3/∂v1 ∂f3/∂v2 ∂f3/∂v3 ... ∂f3/∂vm

.

.

.
.
.
.

∂fm/∂v1 ∂fm/∂v2 ∂fm/∂v3 ... ∂fm/∂vm

⎤
⎥⎥⎥⎥⎥⎦

Choosing that V 0 = (v
(0)
1 , . . . , v

(0)
N )t, we can obtain

F (V (0)) and J(V (0)). Solving the linear system,

J(V (0))U (0) = −F (V (0)), (20)

we will obtain U (0). Then

V (1) = V (0) + U (0). (21)

Continuing for k = 2, 3, . . ., we have

V (k) = V (k−1) + U (k−1), (22)

where
U (k−1) = −(J(v

(k−1)
1 , . . . , v

(k−1)
N ))−1F (v

(k−1)
1 , . . . , v

(k−1)
N ).

4 Numerical Experiment

Assuming that there is a moving belt in a third grade
fluid basin. The basin is filled by the engine oil SAE

15W-40 with the viscosity, 31.350 mm2/s and the den-
sity, 0.8477 g/cm3 at 70◦C. The material constant of the
engine oil is 1.5675 × 10−5. The moving belt has speed
1 m/s and the uniform thickness of fluid film is 0.001 m.
We will consider physical parameters in 4 cases as show in
Table 1. By using the finite difference equations Eqs.(14-
16) with the Newton iterative techniques Eqs.(17-19), we
can obtain the thin fluid film flow velocity in each layers.
If the speed of moving belt is uniform and the rates of
change of fluid film flow velocity over the ended layer are
nonnegative due to external force, the approximated flow
velocity in each layers are show in Table 1 and Figure 1.
However, the cases of rates of change of fluid film flow
velocity over the ended layer are negative due to grav-
ity force and some external force are also investigated as
show in Table 2. The comparison of thin film flow veloc-
ity when left belt speed are difference is shown in Table
3.

Table 1: Comparison of nondimensional thin film flow
velocity in each nonnegative rates of change with m =
0.265 and β = 0.5.

x � vr 0.0000 0.00025 0.0005 0.0010
0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.9762 0.9762 0.9762 0.9763
0.2 0.9546 0.9547 0.9547 0.9548
0.3 0.9355 0.9355 0.9356 0.9357
0.4 0.9187 0.9188 0.9189 0.9191
0.5 0.9044 0.9045 0.9047 0.9049
0.6 0.8927 0.8928 0.8929 0.8932
0.7 0.8835 0.8836 0.8838 0.8841
0.8 0.8769 0.8771 0.8772 0.8776
0.9 0.8729 0.8731 0.8733 0.8737
1.0 0.8716 0.8718 0.8720 0.8725

Table 2: Comparison of nondimensional thin film flow
velocity in each negative rates of change with m = 0.265
and β = 0.5.

x � vr -0.001 -0.0005 -0.00025
0.0 1.0000 1.0000 1.0000
0.1 0.9761 0.9761 0.9762
0.2 0.9545 0.9546 0.9546
0.3 0.9352 0.9353 0.9354
0.4 0.9184 0.9185 0.9186
0.5 0.9040 0.9042 0.9043
0.6 0.8921 0.8924 0.8925
0.7 0.8828 0.8831 0.8833
0.8 0.8761 0.8765 0.8767
0.9 0.8721 0.8725 0.8727
1.0 0.8706 0.8711 0.8713

5 Conclusion

The finite difference method for a nonlinear differential
equation with the Newton iterative technique is employed
to simulate the thin fluid film flow velocity of a third
grade fluid on a moving belt. The results are shown for
the thin fluid film flow velocity of motor oil when external
forces are positive or negative. If the external force is
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Table 3: Comparison of nondimensional thin film flow
velocity in each left speed belt with m = 0.265 and β =
0.5.

x � vl 1.0000 0.7500 0.5000 0.2500
0.0 1.0000 0.7500 0.5000 0.2500
0.1 0.9762 0.7262 0.4762 0.2262
0.2 0.9546 0.7046 0.4546 0.2046
0.3 0.9355 0.6855 0.4355 0.1855
0.4 0.9187 0.6687 0.4187 0.1687
0.5 0.9044 0.6544 0.4044 0.1544
0.6 0.8927 0.6427 0.3927 0.1427
0.7 0.8835 0.6335 0.3835 0.1335
0.8 0.8769 0.6269 0.3769 0.1269
0.9 0.8729 0.6229 0.3729 0.1229
1.0 0.8716 0.6216 0.3716 0.1216

increased, the fluid film flow velocities at all layers are
also increased.

Figure 1: Comparison of thin film flow velocity (β =
0.5,m = 2.65)
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