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Abstract— Workforce scheduling studies have mainly 

focused on staff rostering, i.e. assigning employees to shifts and 
determining working days and rest days. In the recent years, 
the generation of shifts has gained increasing interest in 
academic community. Shift generation is the process of 
determining the shift structure, along with the tasks to be 
carried out in particular shifts and the competences required 
for different shifts. Application areas of staff rostering and 
shift generation include hospitals, retail stores, call centers, 
cleaning, home care, guarding, manufacturing and delivery of 
goods. This paper presents the General Task-based Shift 
Generation Problem (GTSGP). To the best of our knowledge, 
the problem has not been studied in the literature. The GTSGP 
is to create anonymous shifts and assign tasks to these shifts so 
that employees can be assigned to the shifts. The targeted tasks 
must be completed within a given time window. Tasks may 
have precedence constraints and transition times between tasks 
are considered. The goal is to maximize the number of shifts 
employees are able to execute. We present the first 
computational results of solving GTSGP instances. We briefly 
describe the PEAST algorithm, which is used to solve the test 
instances. 
 

Index Terms— PEAST algorithm, shift generation, 
workforce optimization, workforce scheduling. 
 

I. WORKFORCE SCHEDULING AND WORKFORCE 

OPTIMIZATION 

orkforce scheduling, also called staff scheduling and 
labor scheduling, is a difficult and time consuming 

problem that every company or institution that has 
employees working on shifts or on irregular working days 
must solve. Workforce scheduling studies have mainly 
focused on staff rostering, i.e. assigning employees to shifts 
and determining working days and rest days. In the recent 
years, the generation of shifts has gained increasing interest 
in academic community. Shift generation is the process of 
determining the shift structure, along with the tasks to be 
carried out in particular shifts and the competences required 
for different shifts. Application areas of staff rostering and 
shift generation include hospitals, retail stores, call centers, 
cleaning, home care, guarding, manufacturing and delivery 
of goods. 

Shift generation is essential in cases where the workload 
is not static. On the contrary, in airlines, railways and bus 
companies and mostly in hospitals the demand for 
employees is quite straightforward because the timetables 
are known beforehand and the shifts are already fixed. The 
most important optimization target is to match the shifts to 
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the workload as accurately as possible. The generation of 
shifts is based on either the number of employees working 
at the certain timeslots or the number of tasks that the shifts 
have to cover. 

The generated shifts form an input for the staff rostering, 
where employees are assigned to the shifts. The length of 
the planning horizon is usually between two and six weeks. 
The most important constraints are employees’ competences 
and preferences as well as the working and resting times, 
since these are laid down by the collective labor agreements 
and government regulations. Note that staff rostering also 
includes the scheduling of days-off and vacations. 

In theory, the best results can be achieved when shift 
generation and staff rostering are processed and solved at 
the same time. However, different variations of both 
problems and even their sub-problems are known to be NP-
hard and NP-complete [1]-[5]. Nonetheless, some 
interesting implementations exist. Jackson et al. [6] 
presented a very simple randomized greedy algorithm that 
uses very little computational resources. Lapegue et al. [7] 
introduced the Shift Design and Personnel Task Scheduling 
Problem with Equity objective (SDPTSP-E) and built 
employee timetables by fixing days-off, designing shifts and 
assigning fixed tasks within these shifts. They minimized 
the number of tasks left unassigned.  

Dowling et al. [8] first created a master roster, a 
collection of working shifts and off shifts, and then 
allocated the tasks in their Task Optimiser module. Prot et 
al. [9] proposed a two-phase approach consisting in first 
computing a set of interesting shifts, then, each shift is used 
to build a schedule by assigning tasks to workers, and then 
iterating between these two phases to improve solutions. 
They relaxed the constraint that each task has to be 
assigned. Smet et al. [10] presented the Integrated Task 
Scheduling and Personnel Rostering Problem, in which the 
task demands and the shifts are fixed in time. Due to the 
complexity issues in large-scale practical applications, shift 
generation and staff rostering are mainly solved separately. 
Our approach is to first generate the shifts and then roster 
the staff as described in Section III. 

Good overviews of workforce scheduling are published 
by Ernst et al. [11], Musliu et al. [12], Di Gaspero et al. [13] 
and Vanden Berghe et al [14]. Kletzander and Musliu [15] 
propose a very interesting framework for the general 
employee scheduling problem. 

The article is organized as follows. In the next section we 
introduce different shift generation scenarios and the 
problems triggered from these scenarios. Section III 
describes the general task-based shift generation problem. 
Section IV briefly describes the PEAST algorithm, which is 
used to solve wide variety of scheduling problems. In 
Section V we present our first computational results. 
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II. INTRODUCTION TO SHIFT GENERATION PROBLEMS 

The generation of shifts is based on either the number of 
employees working at the certain timeslots or the number of 
tasks that the shifts have to cover. We call these problems 
employee-based and task-based shift generation problems. 

Numerous models and algorithms for shift generation 
problems have been developed. The first major contribution 
was published by Musliu et al. [12]. They introduced an 
employee-based problem, in which the workforce 
requirements for a certain period of time were given, along 
with constraints about the possible start times and the length 
of shifts, and an upper limit for the average number of 
duties per week per employee. They generated solutions that 
contained shifts (and the number of employees per shift) 
that minimize the number of shifts, overstaffing, 
understaffing, and differences in the average number of 
duties per week. 

Di Gaspero et al. [16] proposed an employee-based 
problem in which the most important issue was to minimize 
the number of shifts. They dealed with cyclic schedules, i.e. 
the last planning day of the planning horizon (e.g. one 
week) coincides with the first planning day of the next 
cycle, and the requirements are repeated in each cycle. The 
problem statement also includes a collection of acceptable 
shift types each of them characterized by the earliest and the 
latest start times, and a minimum and maximum length of its 
shifts. 

Bhulai et al. [17] presented a generalized model for multi-
skill shift design in call centers. Their method generated a 
rough match between the predicted workload and labor 
capacity, taking the stochastic nature of the call arrival 
process into account. Kyngäs et al. [18] introduced the 
unlimited shift generation problem in which the most 
important goal is to minimize understaffing and 
overstaffing. They define the strict version of the problem 
such as each timeslot should be exactly covered by the 
correct number of employees. In [15]-[17], the shifts are 
limited to a number of types, for which the length and the 
start time of the shifts have to be within certain ranges. In 
[18], the lengths and the start times of the shifts are not 
strictly limited. 

In the person-based multitask shift generation problem 
with breaks presented in [19], employees can have their 
personal shift length constraints and competences. Even if 
the goal is to construct a set of shifts and not to assign them 
to employees, they ensure that the employees’ have the 
ability to execute the shifts. They do this by choosing a 
suitable subset of the employees as a preprocessing phase 
for the shift generation process and creating each shift 
according to a single employee’s personal (shift length and 
competence) constraints. The exact procedure can be done 
separately, but in a real-world case with a realistic planning 
horizon (usually at least a week) it is often best to schedule 
days-off first and then use the result as a basis for the staff 
rostering. 

Compared to the employee-based shift generation 
problem, far fewer models and algorithms have been 
developed for the task-based shift generation problem in 
which a number of different tasks must to be carried out. 
The problem is to create shifts and assign tasks to these 

shifts so that employees can be assigned to the shifts. 
The first major contribution of task-based problem was 

published by Dowling et al. [8]. They created a master 
roster, a collection of working shifts and off shifts, and then 
allocated the tasks in their Task Optimiser module, which is 
invoked one day before the day-of-operation. They allocated 
a set of tasks (with required attributes and with known start 
and end times) to personnel with the requisite skills who are 
available for work on that day (with known shift start and 
end times). 

Krishnamoorthy and Ernst introduced a group of 
problems called Personnel Task Scheduling Problems 
(PTSP) in [20]. Given the staff that are rostered on a 
particular day, the PTSP is to allocate each individual task, 
with specified start and end times, to available staff who 
have skills to perform the task.  Later, Krishnamoorthy et al. 
[21] introduced a special case referred as Shift Minimisation 
Personnel Task Scheduling Problem (SMPTSP) in which 
the only cost incurred is due to the number of personnel 
(shifts) that are used. A similar model was earlier presented 
in [22] where they minimized the number of workers 
required to perform a machine load plan. The SMPTSP is 
also similar to the basic interval scheduling problem 
presented in [23] where the goal is to decide which jobs to 
process on which machines. Unlike in the interval 
scheduling problem, in the SMPTSP all tasks need to be 
assigned and not all employees can process each task. 

Lin and Ying [24] developed a three-phase heuristic for 
the SMPTSP. They obtain an initial solution using a simple 
but very effective construction heuristic, which is then 
improved using an iterated greedy heuristic, which in turn is 
used as an initial upper bound while solving the MIP model 
of the problem. Lapegue et al. introduced an equity 
objective to the SMPTSP [25]. The idea is to find a solution 
where employees have approximately the same amount of 
work, thus generating more fair schedules. However, they 
relax the constraint that all tasks need to be assigned. The 
SMPTSP problem with Equity objective minimizes the 
number of unassigned tasks and the inequity among 
workers.  

The next section describes more general shift generation 
problem in which the tasks are not fixed in time. 
Furthermore, the tasks are not explicitly assigned to 
employees. 

III. THE GENERAL TASK-BASED SHIFT GENERATION 

PROBLEM 

In this section, we present the General Task-based Shift 
Generation Problem (GTSGP). To the best of our 
knowledge, the problem has not been studied in the 
literature. However, numerous models, algorithms and 
implementations for specific shift generation problems have 
been developed as presented in Section II. Due to the 
complexity issues in large-scale practical applications, shift 
generation and staff rostering are mainly solved separately. 
In most cases, the first problem consists of choosing a small 
subset of shifts from a pre-defined set of shift types that is 
common to all days of the planning horizon and then for 
each day of the planning horizon, deciding which 
employees execute which tasks in which shifts. For 
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example, Dowling et al. [8] and Prot et al. [9] first create a 
set of shifts and then assign the tasks to the shifts. Our 
approach is the opposite. We first generate the shifts and 
then roster the staff. This approach is due to customer needs 
in retail stores, cleaning, home care and guarding. 

Given the tasks that should be rostered on a particular 
day, the GTSGP is to create anonymous shifts and assign 
tasks to these shifts so that employees can be assigned to the 
shifts. The targeted tasks must be completed within a given 
time window. For example, shelving in retail stores is often 
carried out in the forenoon. It is obvious that we will need 
far more employees if we fix the starting times of the tasks 
compared to the dynamic starting times. Some tasks are so-
called back-office tasks. In a contact center, for example, 
answering emails might require a given number of working 
hours per day dedicated to the activity even though the 
distribution of those hours within the day does not matter. 
The back-office work could be preempted as stated in [9]. 
However, in real-world applications, we should have a 
freedom in determining the starting times of back-office 
tasks. 

The GTSGP differs from the SMPTSP in several ways: 
 

1) tasks are not explicitly assigned to employees 
2) tasks are not fixed in time 
3) tasks may have precedence constraints 
4) transition times between tasks are considered 
5) the number of shifts employees are able to execute is 

maximized.  

We consider the shift structure separately for each day, so 
there is no connection between the shifts of different days. 
Recall, that we roster the staff after the shifts have been 
generated for each day. This is why we must create as 
versatile shifts as possible to insure that the rostering of the 
staff can be completed. For each day, the goal is to 
maximize the number of shifts employees are able to 
execute. We have to ensure that  
 

‐ no such combination of tasks in a shift exist that no 
employee has ability to execute 

‐ combination of tasks in shifts are such that each 
employee can execute at least one shift 

‐ at least one shift is assigned to each employee and at 
least one employee to each shift. 

The GTSGP covers a one-day planning period of t 
timeslots. The set of shifts S is to be generated. The number 
of shifts is usually the same as the number of available 
employees. In case of understaffing, additional pseudo 
employees can be used. A set of tasks T is to be assigned to 
the shifts. Each task ti has a duration di (in timeslots), a time 
window [tsi, tei], a task type yi and a location li. A task ti 
must not start before tsi and must not end after tei. A task 
type yi is related to the collection Ci of skills, which is a 
subset of the skill set C. It is easier to manage the required 
skills for the tasks by first classifying them to task types. 
Respectively, each employee ei from the set of employees E 
is related to the collection Di of skills. In addition, each 
employee ei has a time constraint [wsi, wei] for the total 

working time and an availability set Ai of timeslots. An 
employee ei must not work less than wsi or more than wei 
timeslots in the targeted day. An employee ei cannot execute 
tasks that are assigned to the timeslots not in Ai. 
Furthermore, each employee ei has a unique transition 
matrix Mi, where Mijk indicates the number of timeslots 
needed for the employee i to transit from location j to 
location k. For example, one employee can use a car or a 
bus while the other can use a bicycle. In summary, an 
employee ei can be assigned to the shift s only if the 
following criteria hold: 

 
(C1) He/she possesses all the skills indicated by the task 

types of the tasks assigned to the shift (skill). 
(C2)  The total working time of the tasks in the shift is 

within [wsi, wei] (working time). 
(C3)  All the timeslots of the tasks in the shift are 

included in Ai (availability). 
(C4)  He/she has enough transition time to move between 

the tasks in the shifts (transition time). 
 
The GTSGP has four basic assumptions: 
 

(B1) Each task will be assigned to a shift. 
(B2) Preemption of tasks is not allowed. 
(B3) Each task is processed only once without 

interruption. 
(B4) Each employee can execute only one task at a time.  
 

A solution to the GTSGP is feasible, if the following five 
hard constraints have no violations: 
 

(H1) The tasks in the shift do not overlap in time. 
(H2) Some tasks may have precedence constraints, that 

is, a task may not be executed after some other 
tasks in the same shift. 

(H3) Each employee can execute at least one shift, i.e. 
C1-C4 hold. 

(H4) Each shift can be executed (C1-C4 hold) by one or 
more employees. 

(H5) One or more shifts is assigned to each employee 
AND one or more employees to each shift. 

 
Lunch and other breaks can also be created using the idea 

given in [19]. To evaluate the hard constraint H5, we have 
to solve the corresponding assignment problem. Note, that 
the criterion H5 actually includes the criteria H3 and H4. 
Figure 1 shows a solution to an assignment problem with six 
shifts and six employees. The corresponding assignment 
problem would have no solution, if employee A could not 
execute shift 5, even though criteria H3 and H4 would still 
hold. 
 

 

Fig. 1. An assignment problem with six shifts and six employees. The cells 
indicate the values for criteria C1-C4 (1 = criterion holds). An employee 
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can execute the shift if all the cell values are one. A solution to the 
assignment problem is denoted with x. 

 
 
The GTSGP can now be stated as follows: 

 
1) Maximize the sum of number of shifts that could be 

assigned to each employee, over all employees 
2) Satisfy the hard constraints H1-H5. 

The number of shifts employees are able to execute in the 
example given in Figure 1 is 13. Note, that in the GTSGP, 
the shift structure is implicitly generated from the skills, 
working times, availabilities and transition times of the 
employees (criteria C1-C4). 
 

The GTSGP can also include the same soft constraints as 
for the employee-based shift generation problem (see [19]), 
for example the following: 

 
(S1)  Shifts of less than k1 and over k2 timeslots in length 

must be minimized. 
(S2) The average shift length should be as close to k3 

timeslots as possible.  
(S3) Shifts that start between timeslots k4 and k5 must be 

minimized. 
(S4) Shifts that end between timeslots k6 and k7 must be 

minimized. 
(S5) Each shift should contain at most k8 switches from 

one task to another. 

IV. SOLUTION METHOD 

The search space of the GTSGP is enormously larger than 
that of the SMPTSP. For example, consider an instance with 
ten shifts and with one hundred tasks each having a duration 
of ten timeslots and a time window of nineteen timeslots. In 
the SMPTSP, we have ten possible assignments for each 
task totaling 10100 solution candidates. In the GTSGP, 
however, we have 10 x 20 possible assignments for each 
task totaling 200100 solution candidates, i.e. 20100 times more 
candidates. 

We solve the GTSGP using the PEAST algorithm 
described in [26]. The algorithm is a population-based 
metaheuristic. The acronym PEAST stems from the methods 
used: Population, Ejection, Annealing, Shuffling and Tabu. 
It has been used in staff rostering [27], employee-based shift 
generation [19], professional sports league scheduling [28] 
and school timetabling problems [29]. Furthermore, the 
algorithm has been used to solve somewhat more academic 
problems, such as balanced incomplete block design [30], 
single round robin tournaments with balanced home-away 
assignments and pre-assignments [30] and constraint 
minimum break problems [31]. 

The heart of the PEAST is the local search called GHCM, 
which is used to explore promising areas in the search 
space. Another important feature of the algorithm is the use 
of shuffling operators, which assist in escaping from local 
optima. Furthermore, simulated annealing and tabu search 
are used to avoid staying stuck in promising search areas too 
long. The algorithm uses ADAGEN, the adaptive genetic 
penalty method, which assigns dynamic weights to the hard 

constraints based on the constant weights assigned to the 
soft constraints. For the detailed discussion of the algorithm, 
we refer to [26] and [32]. The pseudo-code of the algorithm 
is given in Figure 2.  

 

Fig. 2. The pseudo-code of the PEAST algorithm. 
 
In the GHCM search the basic hill-climbing step is 

extended to generate a sequence of moves in one step, 
leading from one solution candidate to another. In the 
GTSGP, the GHCM search moves a task t1, from its 
currents shift s1, to a new shift s2, and then moves another 
task t2, from shift s2 to a new shift s3, and so on, ending up 
with a sequence of moves. The first task is selected by 
tournament selection. The shift and the starting timeslot that 
receives the task is selected by considering all the possible 
shifts and in those shifts all the starting timeslots that are not 
booked, and selecting the one that causes the least increase 
in the cost function. Then, a task from that shift is selected 
by considering all the tasks in that shift and picking the one 
for which the removal causes the most decrease in the cost 
function. Next, a new shift for that task is selected, and so 
on. The sequence of moves stops if the last move causes an 
increase in the cost function value and if the value is larger 
than that of the previous non-improving move, or if the 
maximum number of moves is reached. Then, a new 
sequence of moves is started. 

Due to the complexity issues and the very large search 
space of the GTSGP, we have to consider five calculation 
key points when solving real-world instances. First, 
whenever possible, we should reduce the number of tasks 
by grouping or sequencing smaller tasks into bigger single 
tasks. Second, we should similarly group skills to larger 
skill groups. This is not as vital as with the number of tasks. 
Third, without losing too much important information, the 
slot size should as long as possible, i.e. the number of 
timeslots should be as small as possible. 

Fourth, when generating a sequence of moves, we have to 
calculate the cost function many times during one GHCM 
operation. Furthermore, we have to calculate the cost 
function while rollbacking the moves, often down to the 
starting point. The computational resources are too high to 
calculate the solution value. Therefore, we should 
recalculate only those parts of the solution, which are 
changed due to the single moves of the move sequence. This 
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is very tough to implement, but it is vital for real-world use 
of the PEAST algorithm. 

Finally, to check out the hard constraint H5, we have to 
solve the assignment problem as described in Section III. 
The problem was originally solved in O(n4) time, but it can 
be solved in O(n3) time using appropriate data structures 
[33]. Unfortunately, this is still far too slow since we have 
to solve the problem in each single move in the move 
sequence. One possibility would be to use a greedy 
heuristic, but it does not guarantee that we can generate 
such shifts that the staff rostering can be completed. 
Fortunately, implementing the move sequence in such a way 
that we can apply the ideas presented in [34], we are able to 
calculate only the changes incurred to the initial assignment 
problem. In our implementation the calculation of changes 
requires O(n2). 

V. FIRST COMPUTATIONAL RESULTS 

In this section we present our first computational results. 
We first try to solve some of the SMPTSP benchmark 
instances and then we present one GTSGP benchmark 
instance. Real-world benchmark instances for SMPTSP do 
not exist at the moment, but three artificial benchmark 
instances have been published.  

Krishnamoorthy et al. [21] presented a data set of 137 
instances for the SMPTSP. The data set is referred to as 
KEB instances. Smet et al. [35] generated ten more difficult 
instances than KEB instances, referred to as SWMB 
instances. Furthermore, Fages and Lapegue [36] generated a 
new data set of 100 instances, because the KEB and SWMB 
instances are trivial with regard to finding good quality 
lower bounds. This data set is referred to as FL instances. A 
good summary of the instances and an excellent greedy 
algorithm for the SMPTSP can be found in [37].  

It is obvious, that the PEAST algorithm designed for the 
GTSGP cannot compete with the specifically tailored 
SMPTSP algorithms described in [9], [21], [24], [25], [35] 
and [37]. However, as a first test, we decided to select seven 
instances from the KEB data set. The instances were 
selected to cover different task sizes and employee sizes and 
their ratio. In addition, four of the instances are such that the 
heuristic presented in [21] were not able to solve to 
optimality. Table 1 shows the test instances and our first test 
runs. We were able to solve six of the seven instances.  

 
TABLE I 

TEST RESULTS FOR THE SEVEN KEB INSTANCES 

KEB #Tasks #Emps Optimum Heuristic PEAST 
1 40 23 20 20 20 
9 104 49 40 41 40 

26 203 116 100 100 100 
27 204 49 40 40 40 
39 351 45 40 41 40 
63 577 97 80 82 80 
75 665 72 60 71 65 

KEB = KEB instance id, #Tasks = number of tasks, #Emps = number of 
employees, Optimum = optimum value, Heuristic = the value obtained 

using the heuristic in [21], PEAST =the value obtained using the PEAST 

 
Next, we present one GTSGP benchmark instance, which 

introduces all the features and hard constraints of the 
problem described in Section III. We have implemented a 

GTSGP test generator, which we used to generate the test 
instance. Test instances are generated in a way that at least 
one solution with no hard constraint violations exists. The 
instance was created using the following settings:  

 
‐ Number of task type precedence constraints: 13 
‐ Minimum (max) number of skills in task types: 5 (10) 
‐ Average number of employees fit for a shift: 3 
‐ Average gap of employees’ minimum and maximum 

working time: 20% 
‐ Average difference of shift durations: 20% 
‐ Percentage of backup-office tasks: 0% 
‐ Percentage of fixed tasks: 50% 
‐ Average task window deviation: 50% 
‐ Probability of a location change between the tasks in the 

same shift: 50% 
‐ Number of transition timeslots required between the 

tasks in the same shift: 0, 1 or 2. 
 
Table 2 shows the characteristics of the test instance. The 

data for the instance is available online [38]. We were able 
to find a solution with no hard constraint violations (see 
Figure 3). 

 
TABLE II 

CHARACTERISTICS OF THE TEST INSTANCE 

Timeslots 20   Min (Max) number skills of employees 
(see C1) 

20 (29) 

Tasks 100   Min (Max) working  
time limits of employees (see C2) 

11-13 (18-20) 

Shifts 20   Min (Max) employee available 
timeslots (see C3) 

13 (20) 

Employees 20   Min (Max) number of employee  
transition times of length 2 (see C4) 

18 (44) 

Task types 10   Min (Max) number of skills related to  
task types 

5 (10) 

Precedences 13   Min (Max) time window length of 
tasks 

1 (17) 

Skills 30   Min (Max) duration of tasks 
 

1 (16) 

Locations 11     
 

 

 
 

 
Fig. 3. A solution with no hard constraint violations. 
Numbers in parentheses denote the starting timeslot of task. 
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VI. CONCLUSION 

We presented the General Task-based Shift Generation 
Problem (GTSGP). To the best of our knowledge, the 
problem has not been studied in the literature. We briefly 
described the PEAST algorithm, which was used to solve 
the presented test instances. We first solved seven SMPTSP 
instances, which are very special cases of GTSGP. Then we 
solved one GTSGP instance, which introduced all the 
features and hard constraints of the GTSGP. The 
computational results were encouraging.  

The PEAST algorithm for staff rostering has been 
integrated into Visma Numeron WFM market-leading 
workforce management software in Finland. This research 
has contributed to better systems for our industry partners. 
We are currently working on integrating the shift generation 
and the GTSGP to the WFM software.  

Our near future direction is to apply the PEAST 
algorithm to all the KEB, SWMP and FL instances, and to 
use the GTSGP test generator to create a large set of 
benchmark instances for the GTSGP. 
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