


Abstract— Workforce scheduling studies have mainly

focused on staff rostering, i.e. assigning employees to shifts and
determining working days and rest days. In the recent years,
the generation of shifts has gained increasing interest in
academic community. Shift generation is the process of
determining the shift structure, along with the tasks to be
carried out in particular shifts and the competences required
for different shifts. Application areas of staff rostering and
shift generation include hospitals, retail stores, call centers,
cleaning, home care, guarding, manufacturing and delivery of
goods. This paper presents the General Task-based Shift
Generation Problem (GTSGP). To the best of our knowledge,
the problem has not been studied in the literature. The GTSGP
is to create anonymous shifts and assign tasks to these shifts so
that employees can be assigned to the shifts. The targeted tasks
must be completed within a given time window. Tasks may
have precedence constraints and transition times between tasks
are considered. The goal is to maximize the number of shifts
employees are able to execute. We present the first
computational results of solving GTSGP instances. We briefly
describe the PEAST algorithm, which is used to solve the test
instances.

Index Terms— PEAST algorithm, shift generation,
workforce optimization, workforce scheduling.

I. WORKFORCE SCHEDULING AND WORKFORCE

OPTIMIZATION

orkforce scheduling, also called staff scheduling and
labor scheduling, is a difficult and time consuming

problem that every company or institution that has
employees working on shifts or on irregular working days
must solve. Workforce scheduling studies have mainly
focused on staff rostering, i.e. assigning employees to shifts
and determining working days and rest days. In the recent
years, the generation of shifts has gained increasing interest
in academic community. Shift generation is the process of
determining the shift structure, along with the tasks to be
carried out in particular shifts and the competences required
for different shifts. Application areas of staff rostering and
shift generation include hospitals, retail stores, call centers,
cleaning, home care, guarding, manufacturing and delivery
of goods.

Shift generation is essential in cases where the workload
is not static. On the contrary, in airlines, railways and bus
companies and mostly in hospitals the demand for
employees is quite straightforward because the timetables
are known beforehand and the shifts are already fixed. The
most important optimization target is to match the shifts to

Manuscript received December 20, 2018.
Kimmo Nurmi, Nico Kyngäs and Jari Kyngäs are with the Satakunta

University of Applied Sciences, Pori, Finland (phone: +358 44 710 3371, e-
mail: cimmo.nurmi@samk.fi).

the workload as accurately as possible. The generation of
shifts is based on either the number of employees working
at the certain timeslots or the number of tasks that the shifts
have to cover.

The generated shifts form an input for the staff rostering,
where employees are assigned to the shifts. The length of
the planning horizon is usually between two and six weeks.
The most important constraints are employees’ competences
and preferences as well as the working and resting times,
since these are laid down by the collective labor agreements
and government regulations. Note that staff rostering also
includes the scheduling of days-off and vacations.

In theory, the best results can be achieved when shift
generation and staff rostering are processed and solved at
the same time. However, different variations of both
problems and even their sub-problems are known to be NP-
hard and NP-complete [1]-[5]. Nonetheless, some
interesting implementations exist. Jackson et al. [6]
presented a very simple randomized greedy algorithm that
uses very little computational resources. Lapegue et al. [7]
introduced the Shift Design and Personnel Task Scheduling
Problem with Equity objective (SDPTSP-E) and built
employee timetables by fixing days-off, designing shifts and
assigning fixed tasks within these shifts. They minimized
the number of tasks left unassigned.

Dowling et al. [8] first created a master roster, a
collection of working shifts and off shifts, and then
allocated the tasks in their Task Optimiser module. Prot et
al. [9] proposed a two-phase approach consisting in first
computing a set of interesting shifts, then, each shift is used
to build a schedule by assigning tasks to workers, and then
iterating between these two phases to improve solutions.
They relaxed the constraint that each task has to be
assigned. Smet et al. [10] presented the Integrated Task
Scheduling and Personnel Rostering Problem, in which the
task demands and the shifts are fixed in time. Due to the
complexity issues in large-scale practical applications, shift
generation and staff rostering are mainly solved separately.
Our approach is to first generate the shifts and then roster
the staff as described in Section III.

Good overviews of workforce scheduling are published
by Ernst et al. [11], Musliu et al. [12], Di Gaspero et al. [13]
and Vanden Berghe et al [14]. Kletzander and Musliu [15]
propose a very interesting framework for the general
employee scheduling problem.

The article is organized as follows. In the next section we
introduce different shift generation scenarios and the
problems triggered from these scenarios. Section III
describes the general task-based shift generation problem.
Section IV briefly describes the PEAST algorithm, which is
used to solve wide variety of scheduling problems. In
Section V we present our first computational results.

General Task-based Shift Generation Problem

Kimmo Nurmi, Nico Kyngäs and Jari Kyngäs

W

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

II. INTRODUCTION TO SHIFT GENERATION PROBLEMS

The generation of shifts is based on either the number of
employees working at the certain timeslots or the number of
tasks that the shifts have to cover. We call these problems
employee-based and task-based shift generation problems.

Numerous models and algorithms for shift generation
problems have been developed. The first major contribution
was published by Musliu et al. [12]. They introduced an
employee-based problem, in which the workforce
requirements for a certain period of time were given, along
with constraints about the possible start times and the length
of shifts, and an upper limit for the average number of
duties per week per employee. They generated solutions that
contained shifts (and the number of employees per shift)
that minimize the number of shifts, overstaffing,
understaffing, and differences in the average number of
duties per week.

Di Gaspero et al. [16] proposed an employee-based
problem in which the most important issue was to minimize
the number of shifts. They dealed with cyclic schedules, i.e.
the last planning day of the planning horizon (e.g. one
week) coincides with the first planning day of the next
cycle, and the requirements are repeated in each cycle. The
problem statement also includes a collection of acceptable
shift types each of them characterized by the earliest and the
latest start times, and a minimum and maximum length of its
shifts.

Bhulai et al. [17] presented a generalized model for multi-
skill shift design in call centers. Their method generated a
rough match between the predicted workload and labor
capacity, taking the stochastic nature of the call arrival
process into account. Kyngäs et al. [18] introduced the
unlimited shift generation problem in which the most
important goal is to minimize understaffing and
overstaffing. They define the strict version of the problem
such as each timeslot should be exactly covered by the
correct number of employees. In [15]-[17], the shifts are
limited to a number of types, for which the length and the
start time of the shifts have to be within certain ranges. In
[18], the lengths and the start times of the shifts are not
strictly limited.

In the person-based multitask shift generation problem
with breaks presented in [19], employees can have their
personal shift length constraints and competences. Even if
the goal is to construct a set of shifts and not to assign them
to employees, they ensure that the employees’ have the
ability to execute the shifts. They do this by choosing a
suitable subset of the employees as a preprocessing phase
for the shift generation process and creating each shift
according to a single employee’s personal (shift length and
competence) constraints. The exact procedure can be done
separately, but in a real-world case with a realistic planning
horizon (usually at least a week) it is often best to schedule
days-off first and then use the result as a basis for the staff
rostering.

Compared to the employee-based shift generation
problem, far fewer models and algorithms have been
developed for the task-based shift generation problem in
which a number of different tasks must to be carried out.
The problem is to create shifts and assign tasks to these

shifts so that employees can be assigned to the shifts.
The first major contribution of task-based problem was

published by Dowling et al. [8]. They created a master
roster, a collection of working shifts and off shifts, and then
allocated the tasks in their Task Optimiser module, which is
invoked one day before the day-of-operation. They allocated
a set of tasks (with required attributes and with known start
and end times) to personnel with the requisite skills who are
available for work on that day (with known shift start and
end times).

Krishnamoorthy and Ernst introduced a group of
problems called Personnel Task Scheduling Problems
(PTSP) in [20]. Given the staff that are rostered on a
particular day, the PTSP is to allocate each individual task,
with specified start and end times, to available staff who
have skills to perform the task. Later, Krishnamoorthy et al.
[21] introduced a special case referred as Shift Minimisation
Personnel Task Scheduling Problem (SMPTSP) in which
the only cost incurred is due to the number of personnel
(shifts) that are used. A similar model was earlier presented
in [22] where they minimized the number of workers
required to perform a machine load plan. The SMPTSP is
also similar to the basic interval scheduling problem
presented in [23] where the goal is to decide which jobs to
process on which machines. Unlike in the interval
scheduling problem, in the SMPTSP all tasks need to be
assigned and not all employees can process each task.

Lin and Ying [24] developed a three-phase heuristic for
the SMPTSP. They obtain an initial solution using a simple
but very effective construction heuristic, which is then
improved using an iterated greedy heuristic, which in turn is
used as an initial upper bound while solving the MIP model
of the problem. Lapegue et al. introduced an equity
objective to the SMPTSP [25]. The idea is to find a solution
where employees have approximately the same amount of
work, thus generating more fair schedules. However, they
relax the constraint that all tasks need to be assigned. The
SMPTSP problem with Equity objective minimizes the
number of unassigned tasks and the inequity among
workers.

The next section describes more general shift generation
problem in which the tasks are not fixed in time.
Furthermore, the tasks are not explicitly assigned to
employees.

III. THE GENERAL TASK-BASED SHIFT GENERATION

PROBLEM

In this section, we present the General Task-based Shift
Generation Problem (GTSGP). To the best of our
knowledge, the problem has not been studied in the
literature. However, numerous models, algorithms and
implementations for specific shift generation problems have
been developed as presented in Section II. Due to the
complexity issues in large-scale practical applications, shift
generation and staff rostering are mainly solved separately.
In most cases, the first problem consists of choosing a small
subset of shifts from a pre-defined set of shift types that is
common to all days of the planning horizon and then for
each day of the planning horizon, deciding which
employees execute which tasks in which shifts. For

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

example, Dowling et al. [8] and Prot et al. [9] first create a
set of shifts and then assign the tasks to the shifts. Our
approach is the opposite. We first generate the shifts and
then roster the staff. This approach is due to customer needs
in retail stores, cleaning, home care and guarding.

Given the tasks that should be rostered on a particular
day, the GTSGP is to create anonymous shifts and assign
tasks to these shifts so that employees can be assigned to the
shifts. The targeted tasks must be completed within a given
time window. For example, shelving in retail stores is often
carried out in the forenoon. It is obvious that we will need
far more employees if we fix the starting times of the tasks
compared to the dynamic starting times. Some tasks are so-
called back-office tasks. In a contact center, for example,
answering emails might require a given number of working
hours per day dedicated to the activity even though the
distribution of those hours within the day does not matter.
The back-office work could be preempted as stated in [9].
However, in real-world applications, we should have a
freedom in determining the starting times of back-office
tasks.

The GTSGP differs from the SMPTSP in several ways:

1) tasks are not explicitly assigned to employees
2) tasks are not fixed in time
3) tasks may have precedence constraints
4) transition times between tasks are considered
5) the number of shifts employees are able to execute is

maximized.

We consider the shift structure separately for each day, so
there is no connection between the shifts of different days.
Recall, that we roster the staff after the shifts have been
generated for each day. This is why we must create as
versatile shifts as possible to insure that the rostering of the
staff can be completed. For each day, the goal is to
maximize the number of shifts employees are able to
execute. We have to ensure that

‐ no such combination of tasks in a shift exist that no
employee has ability to execute

‐ combination of tasks in shifts are such that each
employee can execute at least one shift

‐ at least one shift is assigned to each employee and at
least one employee to each shift.

The GTSGP covers a one-day planning period of t
timeslots. The set of shifts S is to be generated. The number
of shifts is usually the same as the number of available
employees. In case of understaffing, additional pseudo
employees can be used. A set of tasks T is to be assigned to
the shifts. Each task ti has a duration di (in timeslots), a time
window [tsi, tei], a task type yi and a location li. A task ti
must not start before tsi and must not end after tei. A task
type yi is related to the collection Ci of skills, which is a
subset of the skill set C. It is easier to manage the required
skills for the tasks by first classifying them to task types.
Respectively, each employee ei from the set of employees E
is related to the collection Di of skills. In addition, each
employee ei has a time constraint [wsi, wei] for the total

working time and an availability set Ai of timeslots. An
employee ei must not work less than wsi or more than wei
timeslots in the targeted day. An employee ei cannot execute
tasks that are assigned to the timeslots not in Ai.
Furthermore, each employee ei has a unique transition
matrix Mi, where Mijk indicates the number of timeslots
needed for the employee i to transit from location j to
location k. For example, one employee can use a car or a
bus while the other can use a bicycle. In summary, an
employee ei can be assigned to the shift s only if the
following criteria hold:

(C1) He/she possesses all the skills indicated by the task

types of the tasks assigned to the shift (skill).
(C2) The total working time of the tasks in the shift is

within [wsi, wei] (working time).
(C3) All the timeslots of the tasks in the shift are

included in Ai (availability).
(C4) He/she has enough transition time to move between

the tasks in the shifts (transition time).

The GTSGP has four basic assumptions:

(B1) Each task will be assigned to a shift.
(B2) Preemption of tasks is not allowed.
(B3) Each task is processed only once without

interruption.
(B4) Each employee can execute only one task at a time.

A solution to the GTSGP is feasible, if the following five
hard constraints have no violations:

(H1) The tasks in the shift do not overlap in time.
(H2) Some tasks may have precedence constraints, that

is, a task may not be executed after some other
tasks in the same shift.

(H3) Each employee can execute at least one shift, i.e.
C1-C4 hold.

(H4) Each shift can be executed (C1-C4 hold) by one or
more employees.

(H5) One or more shifts is assigned to each employee
AND one or more employees to each shift.

Lunch and other breaks can also be created using the idea

given in [19]. To evaluate the hard constraint H5, we have
to solve the corresponding assignment problem. Note, that
the criterion H5 actually includes the criteria H3 and H4.
Figure 1 shows a solution to an assignment problem with six
shifts and six employees. The corresponding assignment
problem would have no solution, if employee A could not
execute shift 5, even though criteria H3 and H4 would still
hold.

Fig. 1. An assignment problem with six shifts and six employees. The cells
indicate the values for criteria C1-C4 (1 = criterion holds). An employee

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

can execute the shift if all the cell values are one. A solution to the
assignment problem is denoted with x.

The GTSGP can now be stated as follows:

1) Maximize the sum of number of shifts that could be

assigned to each employee, over all employees
2) Satisfy the hard constraints H1-H5.

The number of shifts employees are able to execute in the
example given in Figure 1 is 13. Note, that in the GTSGP,
the shift structure is implicitly generated from the skills,
working times, availabilities and transition times of the
employees (criteria C1-C4).

The GTSGP can also include the same soft constraints as
for the employee-based shift generation problem (see [19]),
for example the following:

(S1) Shifts of less than k1 and over k2 timeslots in length

must be minimized.
(S2) The average shift length should be as close to k3

timeslots as possible.
(S3) Shifts that start between timeslots k4 and k5 must be

minimized.
(S4) Shifts that end between timeslots k6 and k7 must be

minimized.
(S5) Each shift should contain at most k8 switches from

one task to another.

IV. SOLUTION METHOD

The search space of the GTSGP is enormously larger than
that of the SMPTSP. For example, consider an instance with
ten shifts and with one hundred tasks each having a duration
of ten timeslots and a time window of nineteen timeslots. In
the SMPTSP, we have ten possible assignments for each
task totaling 10100 solution candidates. In the GTSGP,
however, we have 10 x 20 possible assignments for each
task totaling 200100 solution candidates, i.e. 20100 times more
candidates.

We solve the GTSGP using the PEAST algorithm
described in [26]. The algorithm is a population-based
metaheuristic. The acronym PEAST stems from the methods
used: Population, Ejection, Annealing, Shuffling and Tabu.
It has been used in staff rostering [27], employee-based shift
generation [19], professional sports league scheduling [28]
and school timetabling problems [29]. Furthermore, the
algorithm has been used to solve somewhat more academic
problems, such as balanced incomplete block design [30],
single round robin tournaments with balanced home-away
assignments and pre-assignments [30] and constraint
minimum break problems [31].

The heart of the PEAST is the local search called GHCM,
which is used to explore promising areas in the search
space. Another important feature of the algorithm is the use
of shuffling operators, which assist in escaping from local
optima. Furthermore, simulated annealing and tabu search
are used to avoid staying stuck in promising search areas too
long. The algorithm uses ADAGEN, the adaptive genetic
penalty method, which assigns dynamic weights to the hard

constraints based on the constant weights assigned to the
soft constraints. For the detailed discussion of the algorithm,
we refer to [26] and [32]. The pseudo-code of the algorithm
is given in Figure 2.

Fig. 2. The pseudo-code of the PEAST algorithm.

In the GHCM search the basic hill-climbing step is

extended to generate a sequence of moves in one step,
leading from one solution candidate to another. In the
GTSGP, the GHCM search moves a task t1, from its
currents shift s1, to a new shift s2, and then moves another
task t2, from shift s2 to a new shift s3, and so on, ending up
with a sequence of moves. The first task is selected by
tournament selection. The shift and the starting timeslot that
receives the task is selected by considering all the possible
shifts and in those shifts all the starting timeslots that are not
booked, and selecting the one that causes the least increase
in the cost function. Then, a task from that shift is selected
by considering all the tasks in that shift and picking the one
for which the removal causes the most decrease in the cost
function. Next, a new shift for that task is selected, and so
on. The sequence of moves stops if the last move causes an
increase in the cost function value and if the value is larger
than that of the previous non-improving move, or if the
maximum number of moves is reached. Then, a new
sequence of moves is started.

Due to the complexity issues and the very large search
space of the GTSGP, we have to consider five calculation
key points when solving real-world instances. First,
whenever possible, we should reduce the number of tasks
by grouping or sequencing smaller tasks into bigger single
tasks. Second, we should similarly group skills to larger
skill groups. This is not as vital as with the number of tasks.
Third, without losing too much important information, the
slot size should as long as possible, i.e. the number of
timeslots should be as small as possible.

Fourth, when generating a sequence of moves, we have to
calculate the cost function many times during one GHCM
operation. Furthermore, we have to calculate the cost
function while rollbacking the moves, often down to the
starting point. The computational resources are too high to
calculate the solution value. Therefore, we should
recalculate only those parts of the solution, which are
changed due to the single moves of the move sequence. This

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

is very tough to implement, but it is vital for real-world use
of the PEAST algorithm.

Finally, to check out the hard constraint H5, we have to
solve the assignment problem as described in Section III.
The problem was originally solved in O(n4) time, but it can
be solved in O(n3) time using appropriate data structures
[33]. Unfortunately, this is still far too slow since we have
to solve the problem in each single move in the move
sequence. One possibility would be to use a greedy
heuristic, but it does not guarantee that we can generate
such shifts that the staff rostering can be completed.
Fortunately, implementing the move sequence in such a way
that we can apply the ideas presented in [34], we are able to
calculate only the changes incurred to the initial assignment
problem. In our implementation the calculation of changes
requires O(n2).

V. FIRST COMPUTATIONAL RESULTS

In this section we present our first computational results.
We first try to solve some of the SMPTSP benchmark
instances and then we present one GTSGP benchmark
instance. Real-world benchmark instances for SMPTSP do
not exist at the moment, but three artificial benchmark
instances have been published.

Krishnamoorthy et al. [21] presented a data set of 137
instances for the SMPTSP. The data set is referred to as
KEB instances. Smet et al. [35] generated ten more difficult
instances than KEB instances, referred to as SWMB
instances. Furthermore, Fages and Lapegue [36] generated a
new data set of 100 instances, because the KEB and SWMB
instances are trivial with regard to finding good quality
lower bounds. This data set is referred to as FL instances. A
good summary of the instances and an excellent greedy
algorithm for the SMPTSP can be found in [37].

It is obvious, that the PEAST algorithm designed for the
GTSGP cannot compete with the specifically tailored
SMPTSP algorithms described in [9], [21], [24], [25], [35]
and [37]. However, as a first test, we decided to select seven
instances from the KEB data set. The instances were
selected to cover different task sizes and employee sizes and
their ratio. In addition, four of the instances are such that the
heuristic presented in [21] were not able to solve to
optimality. Table 1 shows the test instances and our first test
runs. We were able to solve six of the seven instances.

TABLE I

TEST RESULTS FOR THE SEVEN KEB INSTANCES

KEB #Tasks #Emps Optimum Heuristic PEAST
1 40 23 20 20 20
9 104 49 40 41 40

26 203 116 100 100 100
27 204 49 40 40 40
39 351 45 40 41 40
63 577 97 80 82 80
75 665 72 60 71 65

KEB = KEB instance id, #Tasks = number of tasks, #Emps = number of
employees, Optimum = optimum value, Heuristic = the value obtained

using the heuristic in [21], PEAST =the value obtained using the PEAST

Next, we present one GTSGP benchmark instance, which

introduces all the features and hard constraints of the
problem described in Section III. We have implemented a

GTSGP test generator, which we used to generate the test
instance. Test instances are generated in a way that at least
one solution with no hard constraint violations exists. The
instance was created using the following settings:

‐ Number of task type precedence constraints: 13
‐ Minimum (max) number of skills in task types: 5 (10)
‐ Average number of employees fit for a shift: 3
‐ Average gap of employees’ minimum and maximum

working time: 20%
‐ Average difference of shift durations: 20%
‐ Percentage of backup-office tasks: 0%
‐ Percentage of fixed tasks: 50%
‐ Average task window deviation: 50%
‐ Probability of a location change between the tasks in the

same shift: 50%
‐ Number of transition timeslots required between the

tasks in the same shift: 0, 1 or 2.

Table 2 shows the characteristics of the test instance. The

data for the instance is available online [38]. We were able
to find a solution with no hard constraint violations (see
Figure 3).

TABLE II

CHARACTERISTICS OF THE TEST INSTANCE

Timeslots 20 Min (Max) number skills of employees
(see C1)

20 (29)

Tasks 100 Min (Max) working
time limits of employees (see C2)

11-13 (18-20)

Shifts 20 Min (Max) employee available
timeslots (see C3)

13 (20)

Employees 20 Min (Max) number of employee
transition times of length 2 (see C4)

18 (44)

Task types 10 Min (Max) number of skills related to
task types

5 (10)

Precedences 13 Min (Max) time window length of
tasks

1 (17)

Skills 30 Min (Max) duration of tasks

1 (16)

Locations 11

Fig. 3. A solution with no hard constraint violations.
Numbers in parentheses denote the starting timeslot of task.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

VI. CONCLUSION

We presented the General Task-based Shift Generation
Problem (GTSGP). To the best of our knowledge, the
problem has not been studied in the literature. We briefly
described the PEAST algorithm, which was used to solve
the presented test instances. We first solved seven SMPTSP
instances, which are very special cases of GTSGP. Then we
solved one GTSGP instance, which introduced all the
features and hard constraints of the GTSGP. The
computational results were encouraging.

The PEAST algorithm for staff rostering has been
integrated into Visma Numeron WFM market-leading
workforce management software in Finland. This research
has contributed to better systems for our industry partners.
We are currently working on integrating the shift generation
and the GTSGP to the WFM software.

Our near future direction is to apply the PEAST
algorithm to all the KEB, SWMP and FL instances, and to
use the GTSGP test generator to create a large set of
benchmark instances for the GTSGP.

REFERENCES
[1] M.R. Garey and D.S. Johnson, “Computers and Intractability: A

Guide to the Theory of NP-Completeness,” Freeman, 1979.
[2] J. Tien and A. Kamiyama, “On Manpower Scheduling Algorithms,” in

SIAM Rev. 24 (3), pp. 275–287, 1982.
[3] H.C. Lau, “On the Complexity of Manpower Shift Scheduling,”

Computers and Operations Research 23(1), pp. 93-102, 1996.
[4] D. Marx, “Graph coloring problems and their applications in

scheduling,” Periodica Polytechnica Ser. El. Eng. 48, pp. 5–10, 2004.
[5] P. Bruecker, R. Qu and E. Burke, “Personnel scheduling: Models and

complexity”, European Journal of Operational Research 210 (3), pp.
467-473, 2011.

[6] W.K. Jackson, W.S. Havens and H. Dollard, “Staff scheduling: A
simple approach that worked”, Technical Report CMPT97-23, School
of Computing Science, Simon Fraser University, Canada, 1997.

[7] T. Lapegue, O. Bellenguez-Morineau and D. Prot, “A constraint-
based approach for the Shift Design Personnel Task Scheduling
Problem with Equity”, Computers and Operations Research 40 (10),
pp. 2450-2465, 2013.

[8] D. Dowling, M. Krishnamoorthy, H. Mackenzie and H. Sier, “Staff
rostering at a large international airport”, Annals of Operations
Research 72, pp. 125-147, 1997.

[9] D. Prot, T. Lapgue and O. Bellenguez-Morineau, “A two-base method
for the shift design and personnel task scheduling problem with equity
objective”, International Journal of Production Research 53 (24), pp.
7286-7298, 2015.

[10] P. Smet, A.T. Ernst and G. Vanden Berghe, “Heuristic decomposition
approaches for an integrated task scheduling and personnel rostering
problem”, Computers & Operations Research 76, pp. 60-72, 2016.

[11] A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff
scheduling and rostering: A review of applications, methods and
models,” European Journal of Operational Research 153 (1), pp. 3-27,
2004.

[12] N. Musliu, A. Schaerf and W. Slany, “Local search for shift design,”
European Journal of Operational Research, 153(1), pp. 51–64, 2004.

[13] L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser and
W. Slany, “Automated Shift Design and Break Scheduling”, In: Uyar
A., Ozcan E., Urquhart N. (eds) Automated Scheduling and Planning.
Studies in Computational Intelligence, vol. 505, Springer, Berlin,
Heidelberg, 2013.

[14] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester and L.
De Boeck, “Personnel scheduling: A literature review”, European
Journal of Operational Research 226 (3), pp 367-385, 2013.

[15] L. Kletzander and N. Musliu, “Solving the General Employee
Scheduling Problem”, Preprint submitted to Computers and
Operations Research, Vienna, Austria, 2018.

[16] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf and W.
Slany, “The minimum shift design problem,” Annals of Operations
Research, 155(1), pp. 79–105, 2007.

[17] S. Bhulai, G. Koole and A. Pot, "Simple Methods for Shift Scheduling
in Multiskill Call Centers", Manu-facturing and Service Operations
Management 10 (3), pp. 411-420, 2008.

[18] N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, “Optimizing the
unlimited shift generation problem”, Applications of Evolutionary
Computation: EvoApplications, Springer, pp. 508-518, 2012.

[19] N. Kyngäs, K. Nurmi and J. Kyngäs, “Solving the person-based
multitask shift generation problem with breaks”, In Proc. of the 5th
International Conference On Modeling, Simulation And Applied
Optimization, Hammamet, Tunis, pp. 1-8, 2013.

[20] M. Krishnamoorthy, A.T. Ernst and D. Baatar, “The personnel task
scheduling problem”, Optimization Methods and Applications, pp.
343–367, 2001.

[21] M. Krishnamoorthy and A.T. Ernst, “Algorithms for large scale Shift
Minimisation Personnel Task Scheduling Problems”, European
Journal of Operational Research, 219 (1), pp. 34-48, 2012.

[22] V. Valls, A. Perez and S. Quintanilla, ”A graph colouring model for
assigning a heterogenous workforce to a given schedule”, European
Journal of Operations Research 90, pp. 285-302, 1996.

[23] A.W.J. Kolen, J.K. Lenstra, C.H. Papadimitriou and F.C.R. Spieksma,
“Interval Scheduling: A Survey”, Naval Research Logistics 54 (5), pp.
530-543, 2007.

[24] S.-W. Lin and K.-C. Ying, “Minimizing Shifts for Personnel task
Scheduling Problems: A three-Phase Algorithm”, European Journal of
Operational Research, 237, pp 323-334, 2014.

[25] Lapègue, T., Prot, D., Bellenguez-Morineau, O.: A constraint-based
approach for the Shift Design Personnel Task Scheduling Problem
with Equity. Computers and Operations Research 10(40), 2450–2465
(2013)

[26] N. Kyngäs, K. Nurmi and J. Kyngäs, “Crucial Components of the
PEAST Algorithm in Solving Real-World Scheduling Problems”,
Journal of Lecture Notes on Software Engineering 1(3), pp. 230-236,
2013.

[27] N. Kyngäs, K. Nurmi and J. Kyngäs, “Workforce Scheduling Using
the PEAST algorithm”, in Ao, Sio-Iong (ed.): IAENG Transactions on
Engineering Technologies, Lecture Notes in Electrical Engineering
Volume 275, Springer, USA, 2014, pp 359-372,

[28] K. Nurmi, J. Kyngäs and A.I. Järvelä, “Ten-year Evolution and the
Experiments in Scheduling a Major Ice Hockey League”, in Daniel
Hak (ed.): An in Depth Guide to Sports, pp 169-207, Nova Science
Publishers, USA, 2018.

[29] K. Nurmi and J. Kyngäs, ”A Conversion Scheme for Turning a
Curriculum-based Timetabling Problem into a School Timetabling
Problem” in Proc of the 7th Conference on the Practice and Theory of
Automated Timetabling (PATAT), Montreal, Canada, 2008.

[30] K. Nurmi, D. Goossens and J. Kyngäs, “Scheduling a Triple Round
Robin Tournament with Minitournaments for the Finnish National
Youth Ice Hockey League”, Journal of the Operational Research
Society, Vol. 65(11), 2014, pp. 1770-1779,

[31] K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G.
Duran, J. Kyngäs, J. Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia
and R. Wolf-Yadlin, “A Framework for Scheduling Professional
Sports Leagues”, in Ao, Sio-Iong (Eds.). IAENG Transactions on
Engineering Technologies 5, Springer, USA, 2010, pp. 14-28.

[32] K. Nurmi, “Genetic Algorithms for Timetabling and Traveling
Salesman Problems”, Ph.D. dissertation, Dept. of Applied Math.,
University of Turku, Finland, 1998.

[33] C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization:
Algorithms and Complexity”, Dover Publications, 1998.

[34] I.H. Toroslu and G. Ucoluk, “Incremental assignment problem”,
Information Sciences 177(6), pp. 1523-1529, 2007.

[35] P. Smet, T. Wauters, M. Mihaylov and G. Vanden Berghe, “The shift
minimization personnel task scheduling problem: A new hybrid
approach and computational insights”, Omega 46, pp. 64-73, 2014.

[36] J.G. Fages and T. Lapegue, “Filtering Atmostnvalue with Difference
Constraints: Application to the Shift Minimisation Personnel Task
Scheduling Problem”, Lecture Notes in Computer Science, 8124, pp.
63-79, 2013.

[37] M. Hojati, “A greedy heuristic for shift minimization personnel task
scheduling problem”, Computers and Operations Research 100, pp.
66-76, 2018.

[38] K. Nurmi: “The General Task-based Shift Generation Problem –
Benchmark Instances” [Online]. Available:
http://web.samk.fi/public/tkiy/GTSGP/, (Last access December 2018).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

