
 

 

ABSTRACT - This study considers single supplier supplying 

single buyer with finished products packed in returnable 

transport items (RTIs) to facilitate safe transport to the 

customer. Empty RTIs are collected at the buyer and returned 

to the supplier. The return time of RTIs is considered to be 

stochastic in this study because of unforeseen events, such as 

damages of RTIs or labor shortage to empty RTIs. We 

formulate the problem of integrating the flow of both the 

finished product and RTIs and minimizing the supply chain 

expected total costs as a non-linear program. Secondly, it 

presents the results of this study in which the behavior of the 

model is analyzed. In addition, we add fuzzy to this study in 

order to acquire a more realistic result because of the uncertain 

environments. 

 

Index Terms—returnable transport item, stochastic return 

time, expected total costs, fuzzy, supplier 

I. INTRODUCTION 

n recent years, an increasing environmental 

awareness and social responsibility of industrial 

companies have motivated many companies to address 

sustainable resources. Including reverse operations in the 

management of supply chains enables companies to use 

reusable packaging material, which then back into the 

forward supply chain and lower material usage if the 

packaging material is managed appropriately. So-called 

reusable packaging materials, referred to as returnable 

transport items (RTIs), such as containers, boxes or pallets 

are widely used in industry today. Management activities 

related to the use of RTIs include the initial procurement, the 

replacement of damaged or the collection and return of used 

RTIs. Integrating the use of RTIs and finished goods is 

getting more critical in supply chain and helps to lower the 

cost of the cost of procuring new RTIs. 
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In many practical cases, damages of RTIs that need to be 

repaired exist or the fact that the customer does not have 

enough labor resources for handling both RTIs and products 

at the same time, which may cause delays in returning empty 

RTIs at the buyer's end and thus we assume that the return 

time of RTIs is stochastic. However, delays in the return of 

empty RTIs at the supplier's side may lead to stock out, which 

make it difficult to achieve the next shipment of finished 

products on time. Consequently, this paper develops an 

integrated supply chain inventory model by assuming that the 

products produced at the supplier are stored in RTIs during 

transportation, and that if a stock out of RTIs occurs at the 

supplier, deterioration of products would not happen. Also, 

we consider the uncertainty of buyer’s demand and therefore 

fuzzy is added to this study. The intention of this paper 

studies how delays in the return of RTIs impact the 

performance of expected total cost considered fuzzy demand. 

  We must determine the optimal RTI lot size (n) to find the 

minimum expected total cost, so taking first and second-order 

partial derivative of the expected total cost function with 

respect to n and showing the function is consequently convex. 

In this case, an optimal solution for n can be found by 

increasing n stepwise from 1 until ETC increases for the first 

time, and then calculating the minimum total costs. 

II. LITERATURE REVIEW 

      

The use of RTIs has increasingly been the object of 

research in recent years. A related research is the one of Kim, 

Glock, and Kwon (2014), who studied the case of a single 

supplier transporting a deteriorating product to a single buyer. 

RTI return lead times were considered to be stochastic in this 

study and that delay in return RTIs may lead to shortages at 

the supplier’s side. In case the forward shipment is delayed, 

the finished products stored in the container would start to 

deteriorate. Glock and Kim (2015) researched a 

single-supplier single-retailer integrated supply chain system 

where RTIs are used to deliver the finished product. The 

authors considered that a reliable fraction of RTIs needs to be 

substituted from cycle to cycle and researched the impact of 

the downstream companies and upstream industry 

transportation frequencies on the operation of the supply 

chain.  Buchanan and Abad (1989) researched the  problem of 

inventory control system about containers and assumed the 

returns in a given time to be a stochastic programming model 

of the quantity of container in the field. The authors obtained 

the optimum inventory control policy of the system by using 

dynamic programming. One of Chew et al. (2002) in this line 

of study programmed performance evaluation to monitor and 

supervise the disposal of containers.  Toktay et al. (2000) 
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studied the problem of purchasing new products in supply 

chains where reusable products are reverted to the supplier 

for reusing, and programmed an optimum ordering policy for 

the system. 

Under stochastic lead times, return in RTIs may arrive 

early, on time or late at the supply chain system.  

Consequently, unessential inventory carrying charge may 

occur in this case. Works that researched inventory 

supplement strategies with stochastic lead times comprise the 

ones of Liberatore (1979), Sphicas (1982), and Friedman 

(1984).  Sajadieh and Jokar (2009) researched the problem of 

a supply chain comprising a single vendor and a single 

retailer and that the lead time of the vendor is considered to 

be stochastic. The authors discriminated between two 

different situations, one where the reorder point surpasses the 

maximum lead time demand and one where the contrary 

situation occurs, also programmed and computed total cost 

functions for two different scenarios. Sajadieh and Jokar 

(2009) programmed a JELS model consisting of a single 

supplier and a single buyer and that the supplier’s 

transportation lead time is considered to be stochastic and 

constantly distributed.  Sajadieh, Jokar, and Modarres (2009) 

published a closely associated model compared with the one 

of Sajadieh and Jokar (2009) primarily assuming that lead 

times are considered to be distributed exponentially.  

  In today’s changeable environment, traditional inventory 

model cannot meet our needs and thus many scholars decided 

to apply fuzzy theory in solving the problem of inventory and 

production, for example, Chen and Wang (1996) applied 

triangular fuzzy number to the EOQ model and used it to 

fuzzy demand, ordering cost, inventory carrying cost and 

backorder cost with allowance of back order. Pan and Yang 

(2006) used the conception of fuzzy to combine the mixture 

inventory model and programmed an optimal solution 

process to obtain the optimum order quantity and lead time. 

The authors evaluated the annual demand by using the signed 

distance. M.F. Yang and Y. Lin (2012) programmed an 

integrated inventory model consisting of single-supplier 

multiple-buyer to minimize the total related annual cost 

resulted by the supplier and the buyers while the lead time 

demand is normally distributed, and the selection of investing 

in procedure quality improvement is contained.  M. F. Yang 

and Y. Lin (2013) programmed an efficient two-phase 

method that can assist to solve the problems of fuzzy 

multi-objective decision in project management.   

III. MATERIALS AND METHODS 

To establish the proposed model, the following 

nomenclature will be used throughout this study. 

 

3.1 Notations 

 𝐴:  buyer’s ordering cost ( $/order) 

 𝑆:  supplier’s set-up cost ( $/setup) 

 D: demand rate for finished products at the buyer 

( kg/year) 

 P:  production rate for finished products at the 

supplier ( kg/year) 

 𝑔𝑏:  inventory carrying charge for RTIs at the 

buyer’s site ( $/unit/time) 

 𝑔𝑠:  inventory carrying charge for RTIs at the 

supplier’s site ($/unit/time) 

 ℎ𝑏:  inventory carrying charge for finished 

products at the buyer’s site ( $/unit/time) 

 ℎ𝑠: inventory carrying charge for finished products 

at the supplier’s site ( $/unit/time) 

 𝜋: shortage cost factor for finished products at the 

buyer’s site ( $/unit/time) 

 𝐿0:  expected RTI return time with 𝐿0 > 0 

 𝑄:  lot size of finished products (kg) 

 𝛼:  transport capacity of a single RTI (kg) 

 𝑛:  RTI lot size to ship Q units of the finished 

product (an integer variable) 

 σ:   standard deviation of RTI return time 

 𝑡:  real RTI return time with t > 0 

 �̃�: Triangular fuzzy number, �̃� = (𝐷 − Δ1, 𝐷, 𝐷 +
Δ2), 0 < Δ1 < 𝐷, 0 < Δ2  

 𝐹(. ):  cumulative distribution function of RTI 

return time 

 𝑓(. ):  probability density function of RTI return 

time, 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 with 𝜆 = 1/𝐿0 

 

The model is developed under the following assumptions: 

 

3.2 Assumption 

 This paper studies a supply chain consisting of a 

single supplier and a single buyer. 

 We used an exponential distribution with mean L0, 

which is a common assumption in models with 

stochastic return time. 

 The time for loading, transporting and unloading 

RTIs is negligible. 

 Shortages are allowed and assumed to result in 

shortage cost. 

 Deterioration of the finished products can be 

neglected during the production time and stock out 

at the supplier.  

 

3.3 Model development 

 

If the return lead time of RTIs is stochastic with mean L0 

and standard deviation σ, three different cases may occur 

depending on the real RTIs return time: 

 

Case 1: 0 < t ≤ L0 

RTIs are returned earlier before the lot size of finished 

products has been completed, which makes it necessary to 

store the return RTIs and causes inventory carrying cost for 

RTIs at the supplier. Given that the returned RTIs arrive at 

the supplier between times 0 and L0. The expected total cost 

per cycle of case1 is given by: 

𝑇𝐶𝑐𝑎𝑠𝑒1(𝑄) = ∫ (𝑆 + (𝐿0 − 𝑡)𝑛𝑔𝑠 +
ℎ𝑠𝑄

2

2𝑃
)

𝐿0

0

 𝑓(𝑡)𝑑𝑡 

+∫ (𝐴 +
ℎ𝑏𝑄

2

2�̃�
+ 𝑅1𝑔𝑏)

𝐿0

0

 𝑓(𝑡)𝑑𝑡 

where 

 𝑅1 = (1 ×
𝛼

�̃�
+ 2 ×

𝛼

�̃�
+⋯+ (𝑛 − 1) ×

𝛼

�̃�
)  =

𝛼𝑛(𝑛 − 1)

2�̃�
 

 

Case 2: L0< t ≤ L0+Q/D̃ 

    Late return shipments cause inventory carrying cost for 

finished products at the supplier but RTI inventory has not to 

be stored at the supplier as returning RTIs are instantly 

loaded and delivered to the buyer. Once a shipment of 

finished products arrives at the buyer, we‘ll meet first 

eventual backorders which are lower than the lot size Q. 

Given that the returned RTIs arrive at the supplier between 
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times L0 and   L0+Q/D̃. The expected total cost per cycle of 

case1 is given by: 

𝑇𝐶𝑐𝑎𝑠𝑒2(𝑄) = ∫ (𝑆 + (
𝑄2

2𝑃
+ (𝑡 − 𝐿0)𝑄)ℎ𝑠)

𝐿0+𝑄/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡 

 

                       +∫ (𝐴 +
(𝑡 − 𝐿0)

2�̃�𝜋

2
+
ℎ𝑏(𝑄 − (𝑡 − 𝐿0)�̃�)

2

2�̃�

𝐿0+𝑄/�̃�

𝐿0

+ 𝑅2𝑔𝑏)𝑓(𝑡)𝑑𝑡 

where 

𝑅2 = 𝑤(
(𝑤 + 1)𝛼 − (𝑡 − 𝐿0)�̃�

�̃�
) 

      + (
𝑛(𝑛 − 1)

2�̃�
−
𝑤(𝑤 + 1)

2�̃�
)𝛼  with 𝑤 =

(𝑡 − 𝐿0)�̃�

𝛼
 

 

Case 3: L0+Q/D̃ < t < ∞ 

Late return shipments, where the backorder quantity 

equals the lot size Q. Given that the returned RTIs arrive at 

the supplier with L0+Q/D̃ < t< ∞. The expected total cost per 

cycle of case1 is given by: 

𝑇𝐶𝑐𝑎𝑠𝑒3(𝑄) = ∫ (𝑆 + 𝐴)
∞

𝐿0+𝑄/�̃�

𝑓(𝑡)𝑑𝑡 

                    +∫ (
𝑄2

2
(
ℎ𝑠
𝑃
−
𝜋

�̃�
) − 𝐿0𝑄(ℎ𝑠 + 𝜋))

∞

𝐿0+𝑄/�̃�

𝑓(𝑡)𝑑𝑡 

                    +∫ (ℎ𝑠 + 𝜋)𝑄𝑡
∞

𝐿0+𝑄/�̃�

𝑓(𝑡)𝑑𝑡 

 

After summing up case1 to case3, the expected total cost of 

per unit of time can be expressed by: 

𝐸𝑇𝐶(𝑄) =
(𝑆 + 𝐴)�̃�

𝑄
+ ∫ (𝑘1(𝑄) − (𝑡 − 𝐿0)

𝑔𝑠�̃�

𝛼
)

𝐿0

0

 𝑓(𝑡)𝑑𝑡 

               +∫ (�̃�(ℎ𝑠 − ℎ𝑏)(𝑡 − 𝐿0) + 𝑘1(𝑄)
𝐿0+𝑄/�̃�

𝐿0

+
𝐿0(𝐿0 − 1)�̃�

2𝑔𝑏
2𝑄𝛼

)𝑓(𝑡)𝑑𝑡 

               +
�̃�

2𝑄
(�̃� (𝜋 + ℎ𝑏 −

𝑔𝑏
𝜋
)∫ (𝑡 − 𝐿0)

2
𝐿0+𝑄/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡

+ 𝑔𝑏∫ (𝑡 − 𝐿0)
𝐿0+𝑄/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡) 

                 +�̃� ∫ ((ℎ𝑠 + 𝜋)(𝑡 − 𝐿0) +
𝑄

2
(
ℎ𝑠
𝑃
−
𝜋

�̃�
))

∞

𝐿0+𝑄/�̃�

 𝑓(𝑡)𝑑𝑡 

where 

𝑘1(𝑄) =
𝑄�̃�

2
(
ℎ𝑠
𝑃
+
ℎ𝑏

�̃�
) +

(𝑄 − 𝛼)

2𝛼
𝑔𝑏 

 

By substituting nα for Q, the expected total cost of per unit 

of time can be rearranged by: 

𝐸𝑇𝐶(𝑛) =
(𝑆 + 𝐴)�̃�

𝑛𝛼
+ ∫ (𝑘2(𝑛) − (𝑡 − 𝐿0)

𝑔𝑠�̃�

𝛼
)

𝐿0

0

 𝑓(𝑡)𝑑𝑡 

                +∫ (�̃�(ℎ𝑠 − ℎ𝑏)(𝑡 − 𝐿0) + 𝑘2(𝑛)
𝐿0+𝑛𝛼/�̃�

𝐿0

+
𝐿0(𝐿0 − 1)�̃�

2𝑔𝑏
2𝑛𝛼2

)𝑓(𝑡)𝑑𝑡 

             +
�̃�

2𝑛𝛼
(�̃� (𝜋 + ℎ𝑏 −

𝑔𝑏
𝜋
)∫ (𝑡 − 𝐿0)

2
𝐿0+𝑛𝛼/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡

+ 𝑔𝑏∫ (𝑡 − 𝐿0)
𝐿0+𝑛𝛼/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡) 

            +�̃� ∫ ((ℎ𝑠 + 𝜋)(𝑡 − 𝐿0) +
𝑛𝛼

2
(
ℎ𝑠
𝑃
−
𝜋

�̃�
))

∞

𝐿0+𝑛𝛼/�̃�

 𝑓(𝑡)𝑑𝑡 

where 

𝑘2(𝑛) =
𝑛𝛼�̃�

2
(
ℎ𝑠
𝑃
+
ℎ𝑏

�̃�
) +

(𝑛 − 1)

2
𝑔𝑏 

 

Definition 1. From kaufmann and Gupta (1991), 

Zimmermann (1996), Yao and Wu (2000), for a fuzzy set 

�̃� ∈ R and 0 ≤ α ≤ 1, the α-cut of the fuzzy set �̃� is𝐵(𝛼) =
{𝑥 ∈ R|𝜇𝐵(𝑥) ≥ 𝛼} = [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)] , where 𝐵𝐿(𝛼) = 𝑎 +
𝛼(𝑏 − 𝑑)  and 𝐵𝑈(𝛼) = 𝑐 − 𝛼(𝑐 − 𝑏).   We can obtain the 

following equation.  The signed distance of �̃� to 0̃1 is defined 

as: 

𝑑(�̃�, 0̃1) = ∫ 𝑑{[𝐵𝐿(𝛼), 𝐵𝑈(𝛼)], 0̃1}
𝑡

0
𝑑α =

1

2
∫ [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]𝑑𝛼
1

0
.  

So this equation is 

𝑑(�̃�, 0̃1) =
1

2
∫ [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]𝑑𝛼
1

0
=

1

4
(2𝑏 + 𝑎 + 𝑐). 

�̃� = 𝑑(�̃�, 0̃1) =
1

4
[(𝐷 − 𝛥1) + 2𝐷 + (𝐷 − 𝛥2)]

= 𝐷 +
1

4
(𝛥2 − 𝛥1) 

 

Streamlined distance method is used to the defuzzification 

of  𝐸𝑇𝐶(𝑛). The expected total cost of per unit of time can be 

stated as follow: 

𝐸𝑇𝐶(𝑛) = [𝐷 +
(∆2 − ∆1)

4
]
(𝑆 + 𝐴)

𝑛𝛼
 

          +∫ (𝑘2(𝑛) − (𝑡 − 𝐿0)
𝑔𝑠
𝛼
[𝐷 +

(∆2 − ∆1)

4
])

𝐿0

0

 𝑓(𝑡)𝑑𝑡 

                +∫ ([𝐷 +
(∆2 − ∆1)

4
] (ℎ𝑠 − ℎ𝑏)(𝑡 − 𝐿0) + 𝑘2(𝑛)

𝐿0+𝑄/�̃�

𝐿0

+
𝐿0(𝐿0 − 1)𝑔𝑏

2𝑛𝛼2
[𝐷 +

(∆2 − ∆1)

4
]

2

)𝑓(𝑡)𝑑𝑡 

               +
1

2𝑛𝛼
[𝐷 +

(∆2 − ∆1)

4
] ([𝐷 +

(∆2 − ∆1)

4
] (𝜋 + ℎ𝑏

−
𝑔𝑏
𝜋
)∫ (𝑡 − 𝐿0)

2
𝐿0+𝑄/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡

+ 𝑔𝑏∫ (𝑡 − 𝐿0)
𝐿0+𝑄/�̃�

𝐿0

𝑓(𝑡)𝑑𝑡) 

                  + [𝐷 +
(∆2 − ∆1)

4
]∫ ((ℎ𝑠 + 𝜋)(𝑡 − 𝐿0)

∞

𝐿0+𝑄/�̃�

+
𝑛𝛼

2
(
ℎ𝑠
𝑃
− 𝜋 (

4

4𝐷 + (∆2 − ∆1)
)))  𝑓(𝑡)𝑑𝑡 

 

3.4 Solving Procedure 

 

The second order partial derivative of the expected total 

cost function with respect to n is positive and the function is 

consequently convex which proves that there is a minimum to 

the solution. 

 

∂𝐸𝑇𝐶(𝑛)

∂𝑛2
=
2(𝑆 + 𝐴)�̃�

𝑛3𝛼
+ ((𝑛 + 1)𝜆 − 1)

𝑔𝑏𝛼

𝑛𝑒�̃�
𝑒
−𝜆(

𝑛𝛼
�̃�
)
> 0
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𝑛

=

√
  
  
  
  
  
 

2(𝑆 + 𝐴)�̃� + (�̃�2 (𝜋 + ℎ𝑏 −
𝑔𝑏
𝛼 ))∫

(𝑡 − 𝐿0)
2𝐿0+𝑛𝛼/�̃�

𝐿0
𝑓(𝑡)𝑑𝑡 + (𝑔𝑏�̃�

2 (
𝐿0

2 − 𝐿0
𝛼 ))∫ 𝑓(𝑡)𝑑𝑡 + 𝑔𝑏�̃� ∫ (𝑡 − 𝐿0)

𝐿0+𝑛𝛼/�̃�

𝐿0
𝑓(𝑡)𝑑𝑡

𝐿0+𝑛𝛼/�̃�

𝐿0

𝛼 ((𝛼�̃� (
ℎ𝑠
𝑃 +

ℎ𝑏
�̃�
) + 𝑔𝑏) ∫ 𝑓(𝑡)𝑑𝑡

𝐿0+𝑛𝛼/�̃�

0
+ 𝛼�̃� (

ℎ𝑠
𝑃 −

π

�̃�
) ∫ 𝑓(𝑡)𝑑𝑡

∞

𝐿0+𝑛𝛼/�̃�
+ 𝑓(𝐿0 + 𝑛𝛼/�̃�) (

(𝐿0
2 − 𝐿0)�̃�𝑔𝑏
𝑛𝛼 ))

 

 

where  

�̃� =
1

4
[(𝐷 − 𝛥1) + 2𝐷 + (𝐷 − 𝛥2)] = 𝐷 +

1

4
(𝛥2 − 𝛥1) 

 

    For the case of an exponentially distributed lead time, i.e., 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 with 𝜆 = 1/𝐿0,  an optimal solution for n can 

be reformulated by: 

 
𝑛∗

=

√
  
  
  
  
  
 

2(𝑆 + 𝐴)�̃� + 𝑔𝑏�̃�
2 (
𝐿0

2 − 𝐿0
𝛼𝑒 ) +

𝑔𝑏�̃�
𝑒 ((

𝐿0
2 ) (

𝑛𝛼

�̃�𝐿0
)
2

− (
�̃�(𝐿0

2 − 𝐿0)
𝛼 )) 𝑒−(𝑛𝛼/�̃�𝐿0)

𝛼 ((𝛼�̃� (
ℎ𝑠
𝑃 +

ℎ𝑏
�̃�
) + 𝑔𝑏) + (

(𝐿0 − 1)�̃�𝑔𝑏
𝑛𝛼𝑒 −

𝛼(𝜋 + ℎ𝑏)
𝑒 −

𝑔𝑏
𝑒 ) 𝑒

−(𝑛𝛼/�̃�𝐿0))

 

 

where  

�̃� =
1

4
[(𝐷 − 𝛥1) + 2𝐷 + (𝐷 − 𝛥2)] = 𝐷 +

1

4
(𝛥2 − 𝛥1) 

 

Subsequently, an optimal solution for n can be found by 

increasing n stepwise from 1 until ETC increases for the first 

time. An optimal solution for n∗ has to satisfy the following 

condition: 

 

 𝐸𝑇𝐶(𝑛∗ − 1) ≥ 𝐸𝑇𝐶(𝑛∗) ≤ 𝐸𝑇𝐶(𝑛∗ + 1) 
 

IV. NUMERICAL EXAMPLE 

We adopt the data of Kim, Glock, and Kwon (2014) to 

illustrate the results of our proposed models. For the case 

study considered here: 

The return time of RTIs takes, on average, 0.0023 years 

(𝐿0= 0.0023 years). The RTI capacity, 𝛼, is 500 kg. Inventory 

holding costs for finished products and RTIs at the supplier’s 

and buyer’s side are ℎ𝑠  = $0.0045/kg, ℎ𝑏  = $0.005/kg,  𝑔𝑠 
=𝑔𝑏  = $13.6 per RTI. The other model parameters are as 

follows: D = 3,400,000 kg per year, P = 4,533,000 kg per 

year, S = $2970 per setup, A = $1562 per order and 𝜋 = $2.5 

per unit short. In addition, we need multiple (∆1, ∆2) to 

obtain the optimal solution, and that (∆1, ∆2)  were 

determined by the decision maker to solve problems under 

the uncertain environments. Table III illustrates all of the 

results. 

 

Table I 
VARIOUS PARAMETER FACTORS 

𝐿0 𝛼 D P 𝜋 

0.0023 500 3400000 4533000 2000 

 

 

TableⅡ 
VARIOUS PARAMETER FACTORS 

ℎ𝑠 ℎ𝑏 𝑔𝑠 𝑔𝑏 𝑆  A 

0.0045 0.005 13.6 13.6 2970 1562 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

TABLE III 

NUMERICAL EXAMPLE RESULTS 

∆1 ∆2 �̃� 𝑛 𝐸𝑇𝐶(𝑛) 

250000 500000 3462500 1854 33294.8 

500000 1000000 3525000 1854 33622.2 

750000 1500000 3587500 1854 33950.1 

1000000 2000000 3650000 1854 34276.3 

1250000 2500000 3712500 1854 34603.9 

1500000 3000000 3775000 1854 34758.7 

3000000 3000000 3400000 1854 32966.6 

2500000 1250000 3087500 1854 31325.8 

2000000 1000000 3150000 1854 31654.1 

1500000 750000 3212500 1854 31983.2 

1000000 500000 3275000 1854 32311.1 

500000 250000 3337500 1854 32639.6 

 

 

 
Fig.1.  The distribution relationship diagram of ETC and 

(∆𝟐 − ∆𝟏) 
 

(1) When ∆1< ∆2 , then  d(D̃, 0̃1) > D ; If the variation 

between ∆1 and ∆2 is smaller in this fuzzy model, the 

correlated variation between the fuzzy model and the 

traditional model will also be smaller. 

(2) When ∆𝟏= ∆𝟐= 30000 , then 𝑑(�̃�, 0̃1) = 𝐷 =

3400000. In this case, the optimal solution of this 

fuzzy model will be the same as the solution of the 
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traditional model. 

(3) According to the Fig.1, the minimum of expected total 

cost equals 31325.8$ which can be obtained while 

∆1= 2500000, ∆2= 1250000. 

V. CONCLUSION 

In traditional integrated inventory model, we assumed that 

demand rate for finished products at the buyer can be 

obtained by historical data. However, product life time is 

getting shorter in today’s competitive supply chain 

environment and products are substituted by another one 

within a very short time. Thus, we programmed a fuzzy 

demand integrated inventory model which is commonly used 

by general decision maker and used streamlined distance 

method to defuzzify  expected total cost.  

In addition, we assumed a stochastic return lead time in our 

inventory model, but did not assume that the return quantity 

of RTIs is stochastic in practical terms. For instance, RTIs 

may be confronted with lose or damage that need to be 

repaired during shipping and not high-quality anymore so the 

supplier may consider the way of renting to avoid shortage of 

RTIs. Moreover, the production procedure of the supplier 

may be restricted to some stochastic factors such as 

deterioration situation of agricultural products or stochastic 

demand for the customer. Considering such scenarios and 

including the situation mentioned above in our model would 

lead to an even more realistic result of supply chain. These 

extensions are worth studying for future research. 
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