

Abstract—The main drawback of a huge software process

verification is the variety of the sub-system models. The
designers have to transform the design models described in
semi-formal modeling language to be an abstract model
expressed in the formal modelling language. The complexity of
the design model results in the time-consuming and may leads
to the incorrect abstract model. In this paper, we propose an
alternative fashion to verify the business process models that
contains sub-process models designed in the heterogeneous
modeling languages, BPMN, BPEL and UML Activity
diagram. The partial and hierarchical verification techniques
are proposed. The design model are mapped into Colored Petri
Net (CPN) models using transformation rules. Next, we
validate the model’s properties the obtained CPN models using
our framework.

Index Terms—Formal Verification, Business Transaction,

Colored Petri Net, BPMN, BPEL, UML Activity Diagram

I. INTRODUCTION
model checking [1] has been used for verifying
software models. The designers have to model the

abstract model in formal modeling language using the
automatic transformation framework or the manual creation.
The huge business process model contains heterogeneous
representation of sub-systems, which each sub-system may
be represented in different semi-formal modeling languages
such as BPMN, BPEL, and UML activity diagram. It results
in a cumbersome procedure of the formal model abstraction
for the designers. Moreover, the abstract model used in the
validating stage may produce tremendous state space graph
and faces with the state space explosion problem [2].

CPN is an outstanding formal modeling language for
verifying the concurrent system. It is suitable for complex
and huge system verification since the modelers can perform
the construction of compact and parameterized models, is
able to entirely verify the procedural logic in business
process models. The CPN color sets and inscriptions can be

C. Dechsupa received Ph.D. degree in computer engineering from
Chulalongkorn University, Bangkok, 10330 Thailand (e-mail:
Dechsupa_chan@yahoo.com).

W. Vatanawood is an associate professor at department of computer
engineering faculty of engineering, Chulalongkorn University, Bangkok,
10330, Thailand (e-mail: wiwat@chula.ac.th).

A. Thongtak is an assistant professor at department of computer
engineering faculty of engineering, Chulalongkorn University, Bangkok,
10330, Thailand (e-mail: arthit.t@chula.ac.th).

used for determining data flows, data objects, and primitive
data types. However, the modelers must have the CPN
background knowledge and how to create an abstract model
form the existing process models or from the software
requirement specifications. To make compositional formal
verification easier, the automated transformation and
verification tools are a precious equipment for the designers
who are not familiar with CPN language. They advocate a
transparency of the complicated transformation procedures
and also provide functionality advoiding the state space
explosion problem.

In this paper, we propose a CPN model automated
framework and verification techniques supporting the
business process models described in BPMN, BPEL and
UML activity diagram. In our verification processes, the
existing design models are transformed into the CPN
models. The transformation rules are extended from our
previous works [3, 4, 5], and they are implemented as a
revision of CP4BPMN tool [4]. We generate state spaces
from the obtained CPN model and analyze the state spaces
using the exploration queries formalized from the user
requirements to check that the model satisfies safeness,
soundness and transaction properties or not.

The remaining of this paper is organized as follows:
Section II describes background of General Ledger System.
Section III reviews the related researches. Section IV
discusses the proposed approach and section V illustrates
our implementation with a simple case study. Section VI is
the study’s conclusion.

II. BACKGROUND

A. Formal Verification using Model Checking
A model checking is an automatic verification technique

for testing the software and hardware design models. The
verification procedure is divided into two main stages, the
model abstraction stage and properties checking stage. For
the state space analysis method, all possible states are
generated as state space graph. In case of huge abstract
model, the hierarchically structural re-arrangement can
reduces the complexity of an abstract model and size of a
state space. It can be applied in conjunction with other
existing techniques to avoid a state space explosion problem
such as sweep-line method [6] and partial verification
method.

B. Business Process Model Notation (BPMN)
Business Process Model Notation is commonly known as

BPMN [7]. It is graphical notations that are used for
modeling a business process or describing procedural logic

C. Dechsupa, W. Vatanawood, and A. Thongtak

Compositional Formal Verification for Business
Process Models with Heterogeneous Notations

Using Colored Petri Net

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

of software. BPMN contains four main elements groups: 1)
flow elements divided into events, activities and gateways,
2) connecting flows, 3) pools and lanes and 4) artifacts. The
BPMN elements can express both structural and behavioral
models, there are many tools and model types. Process
Diagram can express the procedural logic in low-level,
which a data flow and control flow can be detailed event if
the data types through an activity. Furthermore,
Collaboration Diagram is an extended model of process
diagram by integration of interfaces among organizations
into the model.

 Because of the lack of BPMN standard semantics, that
can cause a system crash or desirable properties
dissatisfaction. There are many researches provided tools
and methodologies to cope with the issues of BPMN design
model verification.

C. Unified Modeling Language :UML Activity Diagram
UML activity diagram [8] is used for presenting the

activity sequence of a workflow. It focuses on the control
flows perspective. The most common components of an
activity diagram include Activity, Decision and Control
flows (gateways), Start and End. We can simplify and
improve any process by clarifying complicated business
process using activity diagram, supporting the expression
both sequential processing and concurrent processing of
activities using a gateway symbols. In UML 2.0, the activity
diagrams were re-formalized to be based on Petri net-like
semantics.

D. Web Service Business Process Execution Language
Business Process Execution Language is commonly

known as BPEL or WS-BPEL [9], which is used for
business processes definition as coordinated sets of Web
service interactions to achieve business goals. It uses an
XML-based language supporting the web services
technology stack, including SOAP, WSDL, UDDI, WS-
Reliable Messaging, WS-Addressing, WS-Coordination, and
WS-Transaction. These standard languages are used to
define business process definition, process model including
the process grammar for describing the application
behaviors based on interactions between the service
partners.

E. Colored Petri-Net
Colored Petri-Net or CPN [10] is a formal modeling
language for verifying the concurrent systems. It is a
combination of the classical Petri-net and programming
language. CPN provides functionalities to address the
variables declaration, data types, data manipulation
including the hierarchically structural representation. The
data types declared in a CPN model are called a color set.
Place represents a state of a model, containing the data
objects called token, whereas the data value of a token is
called a token color. Transition is used to represent the state
change, which is located between places and their
connections are an Arc. A state space generator is required
to compute the reachability graph and needs temporal logic
[11] queries for validating the model’s properties.

Fig. 1. Core elements and transition firing of CPN [10].

III. LITERATURE REVIEW
In the area of BPMN model verification, the works of [12,

13] proposed the CPN based representation for the formal
model abstraction of BPMN design model. They used CPN
tools to verify the model properties. The control flows were
considered but they did not focus on the data flows
perspective. In [14] focused on the loop, sub-process and
transaction of the BPMN model. CPN places were used for
representing the task properties but they did not detail a
colored set handling and implementation. Dechsupa et al. [4,
5] provided the transformation rules and framework for
verify the BPMN design model, solving the gaps of
transformation rules of previous related works.

In the area of UML activity diagram verification. In [15]
considered a variant of UML activity diagram. They
addressed the issues by providing a formal semantics with
Petri nets as the semantical domain of interpretation. Eshuis
et al. [16] compared the design choices between Petri nets
and UML activity diagram. They defined two formal
semantics for UML activity diagrams and illustrated only
the advantage of their UML activity diagram semantics but
they did not verify the model properties. Likewise, D.
Foures et al. [17] checked the invariant properties in activity
diagram using TINA toolbox, and selt.

There are various verification techniques applied to verify
the composite service. Almost all research in this area focus
the service composition verification on the service
interaction designed in BPEL, works of [18, 19]. Artifacts in
service models transformed into formal mathematical
models that were allowed the designer to verify the structure
and behavior of service model. CPN tools framework were
used for modeling and analyzing the web service models.
The service models and its additional files were mapped into
CPN model. Next, the temporal properties written in
Computational Tree Logic (CTL) were used to verify their
properties. Wei Tan et al. [20] provided an approach to
verify the compatibility of web services composition. They
transformed BPEL description written BPEL processes to
CPN model and analyzed the message passing of the
mediator of web service composition. Likewise, Yingmin LI
et al. [21] diagnosed of faulty activities and data in
orchestrated web services. The inequations solving
algorithm is proposed to improve the fault detection.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

IV. METHODOLOGY
The overview of our verification technique is shown in

Fig. 2. A system template will be created to fill in the
components or sub-system of a whole system. The model
types are determined in order to use in the transformation
step. The model files are imported accordingly with a model
type determined (BPMN, BPEL and UML Activity
diagram). The elements of all models in the system template
are extracted and considered. Each element is transformed
into CPN structures depended on the transformation rules.
The connection edges between sub-systems are manually
identified by the designers in order to merge them together.
Next, the designers assign CPN model inscriptions and take
the obtained CPN model to generate a state space and to
validate the model properties using the state space analysis
technique.

Since we extend the capacity of CP4BPMN tool by adding
transformation rules supporting the notation of UML
activity diagram and BPEL. We use the template model to
classify the input model type, and design the one-to-one
mapping rules to transform input element to be CPN
constructs. On the basis of the formal definitions in [4], we
present formal definitions involving an extension. Section A
describes the BPMN transformation rules, and Section B
and C show the transformation rules of BPEL and UML
activity diagram respectively.

A. Transform BPMN to CPN.
We extended the transformation rules of [4, 5]. The

transaction and boundary event elements can be addressed

Fig. 2. Compositional Formal verification process.

by our transformation rules. We define the formal definition
to show the relationships of elements as bellows.
Definition 1: Extended Ordinary BPMN process.

An extended ordinary BPMN process is a tuple 𝒪𝒪′= (𝒪𝒪,
fET, fEsT) where

 𝒪𝒪 is ordinary BPMN process.
fET is a mapping function revised that is used to indicate
the type of an intermediate event, fET: EI ⟶{catch, throw,
boundary, boundary non-interrupt}.
fEsT is a mapping function used to indicate the type of an
intermediate boundary event, fEsT: EI ⟶{Error,
compensation, Cancel, Signal, Timer}.

Definition 2: Extended Hierarchical BPMN process (BPMN
process with sub-processes or transaction).
A hierarchical BPMN process is a tuple ℋ′= (ℋ,𝑇𝑇𝒪𝒪, fNST),
where
𝑇𝑇𝒪𝒪 is a set of ordinary BPMN processes that are sub-

process determined as the transactional processes.
fNST is a mapping function, fNsT: A⟶ 𝑇𝑇𝒪𝒪.

The basis of transformation rules BPMN to CPN relies the
transformation rules of [4, 5]. The CPN structure of the
extended rules likes that of the existing rules, and arcs
connected between CPN structures are adjudged. In
boundary events transformation rule, if the boundary event
occupies on an activity or sub-process determined as the
transactional processes, the structure of the boundary events
are linked from all CPN transitions of such activity to the
transition of boundary events by the CPN arcs.

B. Transform BPEL to CPN.
On the basis of the transformation rules in [3], the

transformation rules are revised in order to obtain the CPN
constructs that can be composed with CPN contracts derived
from the other transformation. The transformation rules
from BPEL elements to CPN structures are as follows:

1) For the set of consecutive basic activities, two CPN
transitions are defined to represent the state change:
input reading state and output writing state.

2) For a partner link in Plnk, an additional dummy web
service is defined by a CPN transition.

3) For structured activity of "If-Else", CPN transitions are
defined along with their guard conditions.

4) For each pair of activities or the pair of activity and
dummy web service, a CPN place is defined to show
that such activity has been computed already.

5) Between a transition and a place is connected by an
arc. The direction of the arc relies on the direction of
the pertnerLink.

6) For each variable in BPEL is defined in CPN model.
7) For each type of variable is defined as a color set in

CPN model.
8) WSDL is used to create the arc inscriptions depending

on input and output definition.

C. Transform UML Activity diagram to CPN.
The definitions and simple rules of transformation of

UML activity diagram into CPN model are proposed.
Definition 3: Ordinary UML Activity Diagram.

An ordinary UML activity diagram is a tuple 𝒪𝒪𝒪𝒪= (B, 𝑇𝑇,
BS, BE, BG, BF) where

B is a finite nodes.
T is a finite set of activities or atomic tasks, T ⊆ B.
BS is a set of start events, BS ⊆ 𝐵𝐵.

Create template
model

Map BPMN
into CPN

Map BPEL into
CPN

Is BPMN element

Is BPEL element

Extract elements

Import sub-system
models into the
template model

Refine CPN Mode

Verify model using
state space analysis

BPMN, BPEL,
UML Activity

WSDL+XSD

CPN Structure Nest CPN
structures

CPN Structure”

CPN Model

Map UML Activity
into CPN

Is UML activity element

CPN Structure’

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

BE is a set of end events, BE ⊆ 𝐵𝐵.
BG is a set of gateways, BG ⊆ B. There are three symbols:

Fork, Join and Decision.
BF is a set of connector symbols, BF ⊆ (B x B).
Var is a set of variables in 𝒪𝒪𝒪𝒪.

Definition 4: Partition UML activity diagram.
A UML activity diagram is a tuple 𝒫𝒫𝒪𝒪= (𝒪𝒪𝒪𝒪, SL, fSM)
where:
𝒪𝒪𝒪𝒪 is a set ordinary UML activity diagram.
SL is a set of swim-lanes.
fSM is a mapping functions used to indicate the pool of

BPMN process, fPM: 𝒪𝒪𝒪𝒪 ⟶ SL.
According to the definitions of UML activity diagram and

CPN models [4], we define the simple rules of UML activity
diagram transformation into CPN.
Transformation rules from 𝒫𝒫𝒪𝒪 to CPN:

1) For the sets of the start and end event, a transition in TT
is defined in CPN.

2) For the set of the activities, the state transitions of an
activity are spited into two states, input reading state
and output writing state. A transition in TT is defined in
CPN.

3) For a gateway, all connectors outgoing the gateways, a
transition in TT is defined in CPN, and a guard
condition on the connector symbol is copied to be the

transition’s inscription.
4) For each pair of activities or the pair of activity and

event, a CPN place is defined to show that such
activity has been computed already.

5) CPN arc is used for connecting between a place and
transition, which is depended on the direction of the
connector symbol.

6) For each variable in Var, a corresponding variable in
VV is defined in CPN.

7) For each type of variable in Var, a corresponding Σ is
defined in CPN.

The elements in a business process model are arranged
likely a directed graph. The graph of design models must
conform to the well-defined process [4]. The elements in the
business process model are transformed into CPN structures,
and they will be connected to the other CPN constructs by
using the concatenation rule of [4]. The excerpt of the
transformation rules are illustrated in Fig. 3. The designers
will determine the interface between sub-systems in the
model refinement stage. Including, the initial marking,
inscription expression and hierarchical structural re-
arrangement. These steps must be proceeded before the state
space construction. In the refinement procedure, the
designers can concentrate at certain sub-systems or sub-
processes in a sub-system. The sub-system represented in

Fig. 3. The excerpt of transformation rules into CPN.

Task
T_Task_read

(a,b)

(a) BPMN task with error handling

Type_di Type_di
(a, b+100)

Type_do

(a,b)

T_Task_write

(b) CPN task with error handling

colset STR = string;
colset INT = int;
colset Type_di = product STR * INT;
colset Type_do = product STR * STR;
colset Type_err = STR;
var a, c,out : STR;
var b : INT;

di
{a,b}

do
{a,c} (a,b)

p1(a,b)

Type_di

p2
(a,b)

Type_di

(a,b)

(a,b) T_writing_E

T_Reading_E

Task_l

p3
(out)

Type_err

(out)

T_Task_l_read T_Task_l_write

(c) UMLActivity diagram Fork symbol
(d) CPN Fork symbol

P_pre

T_ Fork

P_Pre1

N/A

N/A

N/A

N/A

N/A

N/A
P_Pos1

N/A

N/A

N/A

N/A N/A

N/A

P_Pos(n)P_Pre(n)

(e) BPEL Receive task (f) CPN Receive task

T_Task_read

p1 p1
(wsdl)

Type_di Type_di2

p3
(wsdl)

Type_do
T_Task_write

p_m

(wsdl)Type_msg

(wsdl)N/ABPEL

UML
Activity
diagram

BPMN

Model types Example of input elements Obtained CPN constructs

T_ Fork-Out1

T_ Fork-Out0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

CPN is called Sub-nets. The designer can select the sub-nets
and can also re-arrange them in deferent abstraction level
that is called the hierarchical structure by reducing some of
the sub-nets to be a black box process.

The example of a CPN model derived from the
transformation stage is shown in Fig. 4. The template model
of a mortgage loan contains two sub-systems, Loan system
and Debt restring system. The loan system is designed in
BPMN while the debt restricting system is described in
UML activity diagram. Both sub-systems are transformed
into CPN model shown in Fig. 4(b). Each sub-system may
contains semi sub-nets that are derived from the partitioning
algorithm of CP4BPMN tool such as S1:{S1-1, S1-2}. The
sub-nets can be arbitrarily chosen to be the abstract model
for the state space construction. And the designer can use
the hierarchical verification technique to reduce the state
space size. Since the state space generator of CP4BPMN
tool implemented the sweep-line method in the state space
construction algorithm to store only certain fragment states.
 To validate the model properties, the state space
exploration queries are formalized form the user
requirements in term of temporal logic. The tool provides
the functional commands for creating the exploration
queries. We verify the model properties such as safety
property, completeness property, including specific
properties.

V. IMPLEMENTATION
A case study is used to illustrate the detail of our

implementation. The template model of a retail system is
shown in Fig. 5. The template model comprises six sub-
systems, the dashed-line arrows represent the interactions
between sub-systems. The sub-system models are
represented in deference semi-formal modeling languages.
For example, Core process of POS is modeled in BPMN
model while Insurance process is expressed in BPEL model.

We create the template model using CP4BPMN tool. All
sub-system models are uploaded into the template model.

Next, the tool transforms all elements in all sub-system
models into CPN models. We refine the obtained CPN
models before generating state space graph. Due to the huge
design model, we verify the retail system by combination of
partial and hierarchical verification techniques to reduce the
state space size. For instance, we re-arrange the CPN model
in hierarchical structure by determining the sub-net S-3, S-4
and S-5 into substituted transitions if they are inconsiderable
sub-systems, or selecting only sub-net S-1, S-2 and S-6 to be
an abstract model. Fig. 6 shows the CPN model of sub-net
S-1, S-2 and S-6 in hierarchical structure by the sub-net S-6
is a substituted transition. The model contains 16 places, 13
transitions and 32 arcs.

We test the implementation by combination of various
sub-systems for five case studies. Case 1: {S-1, S-2, S-6},
Case 2: {S-1, S-2, S-5, S-6}, Case 3: {S-1, S-3, S-5, S-4},
Case 4: {S-1, S-2, S-3, S-4} and whole sub-systems. The
CPN models are refined at their inscriptions and structures
including the initial markings. Next, the state spaces of the
obtained CPN models are constructed. The state spaces are
tested by the exploration queries. The Excerpt results of the
CPN model verification are detailed in Table 1.

Fig. 5. The template model of a retail system.

Core process of
POS

Instatallment
calculation system

Promotion and discount
calculation process

Insurance
process Sub-Systems

Interfaces

S-1 S-3

S-4

S-6

<<BPEL>>

<<BPEL>>

<<BPMN>>

<<BPMN>>

<<representation>>
Notes:

Inventory
management system

S-2 <<Activity Diagram>>

Refund
System

S-5 <<BPMN>>

#

Fig. 4. An example of the template model and obtained CPN model derived from the transformation rules.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

TABLE I
THE EXCERPT RESULTS OF CPN MODEL VERIFICATION

No Requirements : Queries Results
1 Soundness checking : SOUND() Satisfied
2 Invariant checking: INV() Satisfied
3 Find unreachable activities: -UNREACH() Satisfied
4 The system must calculate the inventory amount

of item; next, the processes of the add item
check the duplicated item before adding new
amount.: EF_AND_EF(’t12’, ’t5’)

Unsatisfied

5 All sale transactions have to proceed three
processes: get item, get promotion and interface
insurance date respectively. :
EF_IMPLY_EF(’t4’,AND(’t8’, ’t9’))

Satisfied

6 The closes of sale transaction and POS
transaction are mandatory processes for the
point of sale termination. : EG_AND(’t15’,
’t17’)

Satisfied

The ‘t*’ in the query is the CPN transition’s name representing an activity.

VI. CONCLUSION
The business process models should be verified for

achieving desired properties. These models may have
heterogeneous representation such as BPMN, BPEL and
UML activity diagram. If the design model contains many
sub-systems, and they are represented in deferent
representation, it means that the designer have to transform
the design models into the formal model represented in the
same formal modeling language. We propose the method for
verifying a composite design models written in BPMN,
BPEL, and UML activity diagram in the early stage of the
low level design process using the model checking
technique. We present the transformation rules of input
elements into CPN models, which is extended from our
previous works. The state spaces are constructed and they
are explored with the soundness, safeness, and specific
properties queries. All stages of verification are activated by
using CP4BPMN tool. Form the experiment, we observe
that the limitation of the UML activity diagram
transformation rules are clumsily procedure because of the
lack of data flows in a UML activity diagram. Thus, CPN
constructs derived from the UML activity diagram are
without inscriptions. Our future works will include the
additional files describing the data flows of UML activity
diagram to be the data sources for inscription creation. We
will adjust the template model creation process and will
provide the flexible functionality to determine the
communication flows between the sub-systems as well.

REFERENCES
[1] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,

2008.
[2] C. E. M., K. William, N. Miloš, and Z. Paolo, Model Checking and

the State Explosion Problem. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 1–30.

[3] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Formal verification
of web service orchestration using colored petri net,” IMECS 2016,
pp. 398–403, 2016.

[4] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Transformation of
the BPMN design model into a colored petri net using the partitioning
approach,” IEEE Access, vol. 6, pp. 38421–38436, 2018.

[5] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Hierarchical
Verification for the BPMN Design Model Using State Space
Analysis,” 2019, DOI: 10.1109/ACCESS.2019.2892958.

[6] K. Jensen, L. M. Kristensen, and T. Mailund, “The sweep-line state
space exploration method,” Theoretical Computer Science, vol. 429,
pp.169–179, 2012.

[7] Object Management Group, “OMG Unified Modeling Language TM
(OMG UML) version 2.5,” 2015.

[8] UML Revision Task Force. OMG Unified Modeling Language
Specification, Version 1.4 (final draft), 2001.

[9] OASIS, “Web Services Business Process Execution Language
Version 2.0,” 2015.

[10] K. Jensen and L. M. Kristensen, ‘‘Colored Petri nets: A graphical
language for formal modeling and validation of concurrent systems,’’.
ACM, vol. 58, pp. 61–70, May 2015.

[11] M. Fisher, An Introduction to Practical Formal Methods Using
Temporal Logic. Hoboken, NJ, USA: Wiley, 2011.

[12] C. Ou-Yang and Y. D. Lin, “Bpmn-based business process model
feasibility analysis: a petri net approach,” Journal of Production
Research, vol. 46, no. 14, pp. 3763–3781, 2008.

[13] M. M. Ibrahim, “Formal semantics of bpmn process models using
cpn,” IREIT. J, vol. 5, no. 3, 2017.

[14] M. Ramadan, H. G. Elmongui, and R. Hassan, “Bpmn formalisation
using coloured petri nets,” The Global Science and Technology
Forum.

[15] D. Fahland, “Translating UML2 Activity Diagrams to Petri Nets,”
2008.

[16] R. Eshuis and R.Wieringa, “A Comparison of Petri Net and Activity
Diagram Variants,” 2007.

[17] D. Foures, V. Albert and J.C. Pascal,
“ACTIVITYDIAGRAM2PETRINET:Transformation-based Model in
Accordance with the OMG SYSML Specifications,” ESMC 2011,
p.429-433, 2011.

[18] M. Perepletchikov “A Formal Model of Service-Oriented Design
Structure”, Software Engineering Conference, 2007. ASWEC 2007.
18th Australian, pp.71 -80.

[19] H. Guan, S. Ying and C. Wang, “A Correctness Verification
Approach of the BPEL Exception Handling CPN Model Based on
Temporal Property,” Journal of Networks, Vol.9, pp. 2743-2750,
2014.

[20] W. Tan, Y. Fan, and M. Zhou, “A Petri Net-Based Method for
Compatibility Analysis and Composition of Web Services in Business
Process Execution Language,” IEEE Trans. on Automation Science
and Engineering, Vol.6, pp. 94–106, 2009.

[21] Y. Yan, P. Dague, Y. Pencole and M. -O. Cordier, “A Model-based
Approach for Diagnosing Faults in Web Service Processes”, JWSR. ,
vol. 6, pp. 87-110, 2009.

Fig. 6. An example of hierarchical CPN model of retail system considered only sub system, S-1, S-2 and S-6 (Case 1).

Sub-net S-6

Get Mem
code

Close sale
trans

Get net
item

Close
tran POS

interface
Insure

get Pro
&Discount

O-S-5

refund

Refresh JDA Add item Ret item

End InvenCal balance

O-S-5

I-S-5

Sub-net:S-1

Sub-net:S-2

Notes:

Is Input/output port place

* this model is omitted the detailed information about the inscriptions

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019

	I. INTRODUCTION
	II. Background
	A. Formal Verification using Model Checking
	B. Business Process Model Notation (BPMN)
	C. Unified Modeling Language :UML Activity Diagram
	D. Web Service Business Process Execution Language
	E. Colored Petri-Net

	III. Literature Review
	IV. Methodology
	A. Transform BPMN to CPN.
	B. Transform BPEL to CPN.
	C. Transform UML Activity diagram to CPN.

	V. Implementation
	VI. Conclusion
	References

